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A lower bound for the doubly slice genus
from signatures

Patrick Orson and Mark Powell

Abstract. The doubly slice genus of a knot in the 3-sphere is the
minimal genus among unknotted orientable surfaces in the 4-sphere for
which the knot arises as a cross-section. We use the classical signature
function of the knot to give a new lower bound for the doubly slice
genus. We combine this with an upper bound due to C. McDonald to
prove that for every nonnegative integer N there is a knot where the
difference between the slice and doubly slice genus is exactly N , refining
a result of W. Chen which says this difference can be arbitrarily large.

Contents

1. Introduction 379

2. Signature defects 383

3. A lower bound on gds 386

4. Examples of band moves 389

References 391

1. Introduction

In what follows all manifolds are topological, compact, and oriented, and
embeddings are locally flat, although our results also hold in the smooth
category. A basic 4-dimensional measurement for the complexity of a knot
K ⊂ S3 is the slice genus g4(K), defined as the minimal genus among con-
nected properly embedded surfaces in D4 that have the knot as boundary.
Doubling such a surface along its boundary produces a closed connected sur-
face in S4 for which the knot appears as a cross section. This doubled surface
will be genus minimising among surfaces in S4 for which the knot appears
as a cross section, but will in general be a knotted surface embedding.

A connected surface in S4 is unknotted if it bounds an embedded 3-
dimensional handlebody in S4. Unknotted surfaces with the knot K as
cross section are easily produced by doubling a Seifert surface for K that
has been pushed in to D4. The doubly slice genus gds(K), which was first
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defined in [8, §5], is the minimal genus among unknotted surfaces in S4

for which the knot arises as a cross-section. Writing g3(K) for the min-
imal genus among Seifert surfaces for K, it is immediate from the above
discussion that

2g4(K) ≤ gds(K) ≤ 2g3(K).

Further comparison of these quantities is fairly subtle, but we will show in
this article that classical abelian knot invariants can be employed for this
purpose.

A choice of Seifert surface for a knot K ⊂ S3 and a choice of basis for
the first homology gives rise to a Seifert matrix V . Then given ω ∈ S1 ⊂ C
the ω-signature of K is defined as the signature of the complex hermitian
matrix

σω(K) := sgn
(
(1− ω)V + (1− ω−1)V T

)
.

Theorem 1.1. Let K be a knot in S3. The doubly slice genus of K is at
least

gds(K) ≥ max
ω∈S1\{1}

|σω(K)|.

Let ∆K(t) denote the Alexander polynomial of K. A classical lower bound
for the slice genus is that for every ω ∈ S1 such that ∆K(ω) 6= 0, we have
|σω(K)| ≤ 2g4(K) [4]. It follows that |σω(K)| ≤ gds(K) for these ω. Our
theorem refines this, since it also applies when ω is a root of the Alexander
polynomial of K. Given a slice knot K, in other words a knot with g4(K) =
0, and for ω ∈ S1 such that ∆K(ω) 6= 0, we have σω(K) = 0. Therefore the
classical bound contains no information on the doubly slice genus for slice
knots.

On the other hand, for every ν ∈ S1 \{1} that is the root of some Alexan-
der polynomial there exists a slice knot K for which σω(K) is nontrivial
exactly at ω = ν, ν [1, Corollary 2.1]. For any N ∈ N, Theorem 1.1 applied
to the N -fold connected sum of such a knot with itself immediately pro-
duces a slice knot with doubly slice genus at least N , recovering a theorem
of Chen [2], which we discuss below. In the following result we obtain a
refinement of such examples.

Theorem 1.2. For each N ∈ N there exists a slice knot KN with gds(KN ) =
N . In fact, we may take KN = #NJ , the N -fold connected sum of J with
itself for some

J ∈


820, 1087, 10140, 11a28, 11a58, 11a165, 12a189, 12a377,

12a979, 12n56, 12n57, 12n62, 12n66, 12n87, 12n106,

12n288, 12n501, 12n504, 12n582, 12n670, 12n721

 .

Here we use the notation of KnotInfo [9].

Proof. The 21 knots listed are slice knots, found by searching the KnotInfo
tables, of at most 12 crossings, whose ω-signature equals 1 for some ω ∈ S1
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with ∆J(ω) = 0. As the lower bound of Theorem 1.1 is additive under
connected sum we therefore have gds(KN ) ≥ N .

We will show in Proposition 4.2 that each of these knots admits a slice disc
on which the radial Morse function has two minima and one saddle point
i.e. J arises from one band move on the 2-component unlink. The following
theorem of Clayton McDonald therefore shows that each of the knots J has
doubly slice genus at most 1, and that KN therefore has gds(KN ) ≤ N . �

Theorem 1.3 (McDonald [10, Theorem 3.2]). Let K ⊂ S3 be a knot and let
Σ be a smoothly embedded surface in D4 such that the radial Morse function
restricts to a Morse function on Σ with b saddle points and no maxima.
Then gds(K) ≤ b.

Corollary 1.4 (to Theorem 1.2). Let M,N be nonnegative integers with M
even and M ≤ N . There exists a knot K with M = 2g4(K) and N = gds(K).

Proof. Let J be the mirror image of the knot 52. This has g4(J) = g3(J) =

gds(J) = 1, and σω(J) = 2 for ω := eπi/3, which is not a root of the
Alexander polynomial. The knot L := 820 has g4(L) = 0, but σω(L) = 1
and gds(L) = 1. Taking

K :=
(
#M/2J

)
#
(
#N−ML

)
yields a knot with 2g4(K) ≤ M and gds(K) ≤ N . Then σω(K) = N , so
gds(K) = N by Theorem 1.1. Since |σρ(K)| ≤ 2g4(K) except for finitely
many values of ρ ∈ S1, the averaged signature function defined by

σeiπθ(K) :=
1

2

(
lim
ϕ→θ+

σeiπϕ(K) + lim
ϕ→θ−

σeiπϕ(K)

)
satisfies |σρ(K)| ≤ 2g4(K) for all ρ ∈ S1. Then σω(K) = M so 2g4(K) =
M . �

Remark 1.5. KnotInfo does not provide an explanation for the computa-
tions of signature signature functions that we use in Theorem 1.1, so a brief
discussion is in order. When computing the signature function at roots of
the Alexander polynomial, one must take a little more care than with com-
putations away from the roots. Nevertheless the signatures can be evaluated
as follows. Let V be a Seifert matrix for K and calculate, by hand or with
a computer algebra package, the set of roots for ∆K = det(tV −V T ) on the
unit circle, in the form of algebraic numbers. For each such root, ω say, find
the eigenvalues of (1− ω)V + (1− ω−1)V T . In order to compute the signa-
ture one only needs to know whether each eigenvalue is positive, negative,
or zero, so just evaluating the roots as decimal approximations will usually
enable one to determine which of these three options is pertinent. In princi-
ple there might arise the problem that one is not sure how to categorise an
eigenvalue that the computer tells us is very close to zero: is it actually 0
but appears different due to rounding errors? Similarly if the evaluation is
claimed to be 0, it could be in reality a very small nonzero eigenvalue that
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the number of decimal places stored by the computer cannot distinguish
from 0. However this issue does not occur for the low crossing number knots
we looked at. In addition, as ω is a root of ∆K , the matrix we are studying
must have at least one 0 eigenvalue, and in practice the computer algebra
package identified this eigenvalue precisely.

Context from previous work. A knot K is doubly slice if gds(K) = 0,
and the doubly slice genus is a measure of how far a knot is from being
doubly slice. The first detailed study of doubly slice knots, and the related
algebra, was made by Sumners [13]. Further foundational algebraic studies,
related to the work in this article, are those of Stoltzfus [12] and Levine [7].
We collect some previously known invariance properties of the signature
function of a knot as motivation for Theorem 1.1.

(1) For every ω ∈ S1, the signature σω(K) ∈ Z is a knot invariant.
(2) If ω ∈ S1 is such that there is a polynomial ∆ ∈ Z[t, t−1] with

∆(1) = 1 and ∆(ω) = 0, then we call ω a Knotennullstelle; cf. [11].
If ω is not a Knotennullstelle, then σω(K) is a concordance invariant
and |σω(K)| ≤ 2g4(K).

(3) For all ω ∈ S1, the averaged signature σω(K) defined in the previous
proof is a concordance invariant, and |σω(K)| ≤ 2g4(K).

(4) For ω not a root of the Alexander polynomial of K, σω(K) = σω(K).
The functions may differ at roots of ∆K [1].

The observation motivating Theorem 1.1 is that while signatures of slice
knots vanish away from roots of the Alexander polynomial, this is in general
does not hold at roots; e.g. [1]. It was known that such signatures provide
obstructions to a knot being doubly slice [7]. The signatures at roots of
the Alexander polynomial may be be computed via the intersection form of
a suitable 4-manifold with boundary the zero-framed surgery on the knot.
Roughly speaking, our proof of Theorem 1.1 connects the size of the intersec-
tion form with the genus of a doubly slice surface, and shows that the knot
signature, for every ω ∈ S1, is a lower bound for the size of the intersection
form.

Instead of the doubly slice genus, a different measure of the failure of a
knot to be doubly slice was studied by Cherry Kearton [5]. Given a slice
knot K, he considered the minimal complex dimension of H1(S4\J ;C[t, t−1])
among all knotted 2-spheres J ⊂ S4 with cross-section K. He gave lower
bounds for his invariant arising from signature obstructions. The signatures
he considered are the (p, i)-signatures of the Blanchfield form (see [7]), and
it is known that these signatures can be used to compute the ω-signatures
of K [7, Theorem 2.3], tempting one to imagine a connection to the results
of this paper. But despite the similar flavour of the invariants he uses,
Kearton’s complexity measure appears to be independent of the doubly slice
genus, so there is no clear dependency between his work and ours.

This article was partly inspired by work of Wenzhao Chen [2], who in-
geniously applied Casson-Gordon invariants to show that for every N ∈ N,
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there is a slice knot K with gds(K) ≥ N . In particular he proved that
gds(K) − 2g4(K) can be arbitrarily large. Casson-Gordon invariants rely
on the existence of interesting metabelian representations of the knot group
π1(S3 \ K) and are thus less basic than the ω-signatures in this paper,
which can be thought of as arising from the abelianisation of the knot group
π1(S3\K)→ Z. While our method refines Chen’s theorem, with a more ele-
mentary invariant, we cannot recover Chen’s examples. These examples, as
the original Casson-Gordon examples, are constructed using the Stevedore’s
knot. With rational coefficients the Stevedore’s knot shares a Seifert matrix
with 946, which is doubly slice. This means Chen’s examples have hyper-
bolic Seifert matrices over the rational numbers, and so for all ω ∈ S1 \ {1}
the ω-signature of his knots vanish.

Outline. The paper is organised as follows. In Section 2 we recall the
signature defect invariants of a 3-manifold with a map to BZ, associated
with a cobounding 4-manifold. We equate the signature defect invariant with
ω-signatures. In Section 3 we use this to prove Theorem 1.1. In Section 4
we establish the upper bounds for the examples listed in Theorem 1.2.

Acknowledgements. We thank Lucia Karageorghis of Durham Univer-
sity, who was supported by an LMS summer undergraduate research fellow-
ship, for help finding the band moves for the knots in Proposition 4.2, as
part of her study of the doubly slice genus of the prime knots up to 12 cross-
ings. She was aided by the Kirby calculator/KLO; we are grateful to Frank
Swenton for creating this excellent tool. We are also grateful for the exis-
tence of KnotInfo; we thank Chuck Livingston for help interpreting it and
for his insightful comments during the preparation of this article. Finally
we thank the referee for several useful suggestions that helped us improve
the article.

2. Signature defects

Let R be either the ring C with the involution given by complex conjuga-
tion, or the ring of finite complex Laurent polynomials C[Z] ∼= C[t, t−1] with
involution given by

∑
akt

k 7→
∑
akt
−k. An R-module will mean a left R-

module unless otherwise stated, and P will denote the use of the involution
to switch a left R-module P to a right R-module, or vice-versa.

A CW pair of connected topological spaces (X,Y ) is over Z if X is
equipped with a homomorphism ϕ : π1(X) → Z. We write (X,Y, ϕ) for

these data, or (X,ϕ) if Y = ∅. Write p : X̃ → X for the cover corresponding

to ϕ and Ỹ = p−1(Y ) for the corresponding cover of Y . Given a map of rings
with involution α : C[Z] → R, the ring R becomes an (R,C[Z])-bimodule,
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and there are associated twisted homology and cohomology modules over R

Hr(X,Y ;α) := Hr(R⊗α C∗(X̃, Ỹ ;C)),

Hr(X,Y ;α) := Hr(HomC[Z](C∗(X̃, Ỹ ;C), R)).

Note we are abusing notation in suppressing the particular ϕ being used,
but for all applications in this article the choice of ϕ will be understood, so
this should cause no confusion.

Setting α to be the identity map Id: C[Z] → C[Z] returns the ordinary
complex coefficient homology and complex coefficient cohomology with com-

pact support of the cover (X̃, Ỹ ). We denote these by Hr(X,Y ;C[Z]) and
Hr(X,Y ;C[Z]) respectively.

For each ω ∈ S1 \ {1} there is a map of rings with involution

αω : C[t, t−1]→ C; αω(t) = ω.

The map αω induces a (C,C[Z])-bimodule structure on C and we will write
Cω when we wish to emphasise this structure is being used. We will write

Hr(X,Y ;Cω) := Hr(X,Y ;αω), Hr(X,Y ;Cω) := Hr(X,Y ;αω).

Now consider (X,ϕ) where X is a compact, oriented n-dimensional man-
ifold with (possibly empty) boundary. Denote the Poincaré duality isomor-
phism by PD : Hn−k(X;Cω) → Hk(X, ∂X;Cω). Define a map of complex
vector spaces

λω(X) : Hk(X;Cω)→ Hk(X, ∂X;Cω)
PD−1

−−−−→ Hn−k(X;Cω)
ev−→ HomC(Hn−k(X;Cω),C),

where ev denotes the evaluation map given by ev([f ])([z ⊗ x]) = z · f(x).
The map λω(X) determines a pairing

Hn−k(X;Cω)×Hk(X;Cω)→ C; (x, y) 7→ λω(X)(y)(x),

which is hermitian and sesquilinear but in general is degenerate. In partic-
ular, when n = 2k, we may take the signature of this complex hermitian
pairing, denoted σ(λω(X)) ∈ Z.

Definition 2.1. ForW a compact, oriented 4-manifold with (possibly empty)
boundary, over Z, the (middle dimensional) Cω-coefficient intersection form
is the hermitian sesquilinear form (H2(W ;Cω), λω(W )).

Definition 2.2. Let (M,ϕ) be a closed, connected, oriented 3-manifold
over Z. A null-bordism of (M,ϕ) is a pair (W,ψ) consisting of a compact,
connected, oriented 4-manifold W with boundary ∂W = M and a homo-
morphism ψ : π1(W )→ Z such that ψ|∂W = ϕ.

Given a null-bordism (W,ψ) of (M,ϕ), we define the ω-signature defect

σω(M) := σ(λω(W ))− σ(W ).

(We are abusing notation in suppressing the particular ϕ and ψ.)
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Proposition 2.3. Given a closed, connected, oriented 3-manifold (M,ϕ)
over Z, and any ω ∈ S1 \ {1}, the ω-signature defect σω(M) is defined and
well-defined, independent of the choice (W,ψ).

Proof. Because Ω3(BZ) = 0, there always exists a null-bordism (W,ψ) for
(M,ϕ). The proof that the resultant ω-signature defect is independent of
the choice of (W,ψ) is a well-known Novikov additivity argument, as we now
outline. First, write i : H2(M ;Cω) → H2(W ;Cω) for the inclusion induced
map. The image of i lies in the kernel of λω(W ) by exactness of the long
exact sequence of the pair (W,M). The restriction of λω(W ) to the quotient
H2(W ;Cω)/i(H2(M ;Cω)) determines a nonsingular pairing [11, Proposition
5.3 (i)]. Thus the signature of λω(W ) and the signature of its restriction
to H2(W ;Cω)/i(H2(M ;Cω)) agree. We now refer the reader to the proof
of [11, Proposition 5.3 (ii)] for the completion of the argument. �

Example 2.4. The main example we are interested in is the closed, ori-
ented 3-manifold MK obtained by 0-framed Dehn surgery on S3 along an
oriented knot K. The orientation on the knot determines a natural map
ϕK : π1(MK)→ Z via abelianisation.

The associated C[Z]-coefficient homology H∗(MK ;C[Z]) is torsion; that is
there exists a Laurent polynomial p ∈ C[Z] such that p ·H∗(MK ;C[Z]) = 0.

Example 2.5. Let G ⊂ D4 be a properly embedded, connected genus g
surface with one boundary component, homeomorphic to Σg \D2 =: Σg,1.
Let νG be an open tubular neighbourhood extending an open tubular neigh-
bourhood of the boundary knot K ⊂ S3. Let Hg denote the 3-dimensional
handlebody of genus g and let Σg be its boundary. By choosing a disc
D2 ⊂ ∂Hg, decompose the boundary of Hg × S1 as

∂(Hg × S1) = (Σg,1 × S1) ∪S1×S1 (D2 × S1).

Glue the exterior of G to Hg × S1, along Σg,1 × S1 to form

W := (D4 \ νG) ∪G×S1 (Hg × S1),

a compact, connected, oriented 4-manifold with boundaryMK , the 0-surgery
on K. Mayer-Vietoris calculations give

Hk(W ;Z) ∼=


Z k = 0,
Z k = 1, generated by a meridian of G,
Z2g k = 2,
0 otherwise.

In particular, the abelianisation of ϕ : π1(MK)→ Z extends to ψ : π1(W )→
Z so that (W,ψ) is a null-bordism of (MK , ϕ). Note that the homology is
independent of the choice of identification of G with Σg,1 ⊂ ∂Hg.

Lemma 2.6. Let K ⊂ S3 be an oriented knot and let MK be the 0-surgery
manifold. For any ω ∈ S1 \ {1} and there is equality

σω(MK) = σω(K).
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Proof. As the ω-signature is well-defined, independent of choice of null-
bordism, it suffices to find a single null-bordism of MK over Z such that the
signature of the Cω-coefficient intersection form agrees with σω(K). Perform
the construction of Example 2.5 on a pushed in Seifert surface F for K. In
this case it was shown by Ko [6, pp. 538-9] (see also Cochran-Orr-Teichner [3,
Lemma 5.4]) that in some basis the resultant Cω-coefficient intersection form
of WF has matrix (1 − ω)V + (1 − ω−1)V T , where V is a Seifert matrix
associated to F . Moreover the ordinary signature σ(WF ) = 0, so the defect
satisfies

σω(MK) = σ(λω(WF ))− σ(WF ) = σω(K). �

3. A lower bound on gds

Let K ⊂ S3 be an oriented knot, let G1, G2 ⊂ D4 be locally flat, con-
nected, compact, orientable, embedded surfaces with boundary K, such that
S = G1 ∪K G2 is an unknotted surface in S4 of genus g.

Perform the construction described in Example 2.5 on each of G1 and G2

to obtain W1 and W2 respectively. Define

V := W1 ∪MK
−W2.

Observe that V = (S4 \ νS) ∪Σg×S1 (Hg × S1), where Hg denotes the
3-dimensional handlebody of genus g and Σg = ∂Hg.

A straightforward Seifert-Van Kampen argument shows that π1(V ) ∼= Z.
Various Mayer-Vietoris calculations give

Hk(V ;Z) ∼=


Z k = 0,
Z k = 1, generated by a meridian of Σg,
Z2g k = 2,
0 otherwise.

We now derive a series of technical lemmas we will use in the proof of
Theorem 1.1

Lemma 3.1. Let T be a finitely generated, torsion C[Z]-module, and let

ω ∈ S1 \ {1}. Then dimC Tor
C[Z]
1 (T,Cω) = dimC(Cω ⊗C[Z] T ).

Proof. By the structure theorem for finitely generated modules over a prin-
cipal ideal domain, there exists an injective map A : P1 ↪→ P0 such that
T ∼= P0/A(P1) and so that P1, P0 are free C[Z]-modules of the same rank.
The functor Cω ⊗C[Z] − induces an exact sequence

Tor
C[Z]
1 (P0,Cω)→ Tor

C[Z]
1 (T,Cω)→ Cω ⊗C[Z] P1

Id⊗A−−−→ Cω ⊗C[Z] P0 → Cω ⊗C[Z] T → 0.

The leftmost term is 0 because P0 is free. As P1 and P0 have the same
free rank, Cω ⊗C[Z] P1 and Cω ⊗C[Z] P0 have the same complex dimension.
The sequence has vanishing Euler characteristic because it is exact, so the
claimed result follows. �
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Lemma 3.2. For a space X over Z with H0(X;C[Z]) ∼= C, and for ω ∈
S1 \ {1} we have

H0(X;Cω) = 0 and H1(X;Cω) ∼= Cω ⊗C[Z] H1(X;C[Z]).

Proof. First, C ∼= C[t, t−1]/(t−1) as a C[Z]-module, so that Cω⊗C[Z]C = 0
since ω 6= 1. This immediately gives Cω ⊗C[Z] H0(X;C[Z]) = 0 and by

Lemma 3.1 we also have Tor
C[Z]
1 (H0(X;C[Z]),Cω) = 0. The result now

follows from the Universal Coefficient Theorem. �

Lemma 3.3. With V = W1 ∪MK
−W2 as described above and ω ∈ S1 \ {1},

H1(V ;Cω) = 0, H3(V ;Cω) = 0, and dimCH2(V ;Cω) = 2g,

so that the Mayer-Vietoris sequence for V with Cω coefficients becomes

0→ H2(MK) −→ H2(W1)⊕H2(W2)→ C2g

→ H1(MK) −→ H1(W1)⊕H1(W2)→ 0.

Proof. Consider that Cω ⊗C[Z] H1(V ;C[Z]) = 0 since π1(V ) ∼= Z implies
H1(V ;C[Z]) = 0. Since H0(V ;C[Z]) ∼= C and ω 6= 1, this combines with
Lemma 3.2 to give H1(V ;Cω) = 0.

Next, we have H3(V ;Cω) ∼= H1(V ;Cω) by Poincaré duality. By the
Universal Coefficient Theorem for cohomology we obtain an isomorphism
H1(V ;Cω) ∼= Ext1

C[Z](H0(V ;C[Z]),Cω). The projective C[Z]-module resolu-

tion

0→ C[Z]
f−→ C[Z]→ H0(V ;C[Z])→ 0,

where f : p(t) 7→ (t− 1)p(t), can be used to compute

Ext1
C[Z](H0(V ;C[Z]),Cω)

= coker(HomC[Z](C[Z],Cω)
f∗−→ HomC[Z](C[Z],Cω)).

But f∗(ϕ) = (ω − 1)ϕ, and ω 6= 1, so this module vanishes as required.
Using the integral homology of V , we compute the Euler characteristic

χ(V ) = 2g. We shall compute it again with Cω-coefficients in order to find
the dimension of H2(V ;Cω). By Lemma 3.2 we have H0(V ;Cω) = 0, so also
H4(V ;Cω) = 0 by Poincaré duality and the Universal Coefficient Theorem.
Therefore Hi(V ;Cω) = 0 for i 6= 2, and we have

2g = χ(V ) = χCω(V ) = dimCH2(V ;Cω). �

Lemma 3.4. For i = 1, 2 there is equality

dimC Im(H2(MK ;Cω)→ H2(Wi;Cω))

= dimCH2(MK ;Cω)− dimCH1(Wi;Cω).
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Proof. The map H1(MK ;Cω) → H1(Wi;Cω) is surjective by Lemma 3.3.
This implies H1(Wi,MK ;Cω) = 0, since H0(MK ;Cω) = 0 by Lemma 3.2.
Therefore

H3(Wi;Cω) ∼= H1(Wi,MK ;Cω) ∼= H1(Wi,MK ;Cω) = 0

by Poincaré duality and the Universal Coefficient Theorem. For the same
reasons, we have

H3(Wi,MK ;Cω) ∼= H1(Wi;Cω) ∼= H1(Wi;Cω).

Since H3(Wi;Cω) = 0, the long exact sequence of the pair (Wi,MK) takes
the form

0→ H3(Wi,MK ;Cω)→ H2(MK ;Cω)→ H2(Wi;Cω)→ · · · .

We deduce that

dimC Im(H2(MK ;Cω)→ H2(Wi;Cω))

= dimCH2(MK ;Cω)− dimCH3(Wi,MK ;Cω)

= dimCH2(MK ;Cω)− dimCH1(Wi;Cω).

as desired. �

We are now in a position to prove Theorem 1.1.

Proof of Theorem 1.1. Fix ω ∈ S1 \ {1} and let W1, W2 be as above.
Define for i = 1, 2,

β := dimCH2(MK ;Cω),

ni := dimC(Cω ⊗C[Z] H2(Wi;C[Z])),

mi := dimC Tor
C[Z]
1 (H1(Wi;C[Z]),Cω).

By the Universal Coefficient Theorem

ni +mi = dimCH2(Wi;Cω) and β = dimC Tor
C[Z]
1 (H1(MK ;C[Z]),Cω),

where the latter equality also uses the fact that H2(MK ;C[Z]) = 0.
The module H1(MK ;C[Z]) is C[Z]-torsion. As H1(V ;C[Z]) = 0, the

map H1(MK ;C[Z]) → H1(W1;C[Z]) ⊕ H1(W2;C[Z]) in the Mayer-Vietoris
sequence is surjective. Hence H1(Wi;C[Z]) is torsion for i = 1, 2. By
Lemma 3.1 we deduce

β = dimC(Cω ⊗C[Z] H1(MK ;C[Z])),

mi = dimC(Cω ⊗C[Z] H1(Wi;C[Z])).

For each of the spaces X = MK ,W1,W2, Lemma 3.2 implies Cω ⊗C[Z]

H1(X;C[Z]) ∼= H1(X;Cω) so that we furthermore obtain

β = dimCH1(MK ;Cω),

mi = dimCH1(Wi;Cω).
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By Example 2.6 we have |σω(K)| ≤ dimCH2(Wi;Cω). However, recall
that the image of H2(MK ;Cω) → H2(Wi;Cω) lies in the kernel of λω(Wi),
so that moreover

|σω(K)| ≤ dimCH2(Wi;Cω)− dimC Im(H2(MK ;Cω)→ H2(Wi;Cω))

= dimCH2(Wi;Cω)−
(

dimCH2(MK ;Cω)− dimCH1(Wi;Cω)
)

= (ni +mi)− (β −mi)

= ni + 2mi − β,
where in the second line we have used Lemma 3.4. Taking the sum for
i = 1, 2 we obtain:

2|σω(K)| ≤ n1 + n2 + 2m1 + 2m2 − 2β. (∗)

We saw in Lemma 3.3 that H1(MK ;Cω)→ H1(W1;Cω)⊕H1(W2;Cω) is
surjective, so that

m1 +m2 ≤ β.
It follows that 2m1 + 2m2 − 2β ≤ 0, so combining this with (∗) we have

2|σω(K)| ≤ n1 + n2 + 2m1 + 2m2 − 2β ≤ n1 + n2. (†)
Finally, we calculate the Euler characteristic for the section of the Mayer-

Vietoris sequence of V = W1 ∪MK
−W2 obtained in Lemma 3.3 as

0 = β − (n1 +m1 + n2 +m2) + 2g − β + (m1 +m2),

so that 2g = n1 + n2. Substituting into (†) yields 2|σω(K)| ≤ 2g and hence
|σω(K)| ≤ g.

Since this is true for all ω ∈ S1 \ {1} and all pairs of slice surfaces that
glue to be unknotted, the claimed result follows. �

4. Examples of band moves

A ribbon surface for a knot K ⊂ S3 is a smoothly embedded surface
Σ ⊂ D4 with ∂Σ = K, such that the radial function D4 → [0, 1] restricts to
a Morse function on Σ whose critical points are of index either 0 or 1.

Definition 4.1. The ribbon surface band number b(K) of a knot K is the
minimal number of index 1 critical points, among all ribbon surfaces Σ forK.

The following proposition, combined with Theorem 1.3 of McDonald,
gives the promised upper bounds on gds that complete the proof of The-
orem 1.2.

Proposition 4.2. The ribbon surface band number b(J) = 1 for each of the
knots

J ∈


820, 1087, 10140, 11a28, 11a58, 11a165, 12a189, 12a377,

12a979, 12n56, 12n57, 12n62, 12n66, 12n87, 12n106,

12n288, 12n501, 12n504, 12n582, 12n670, 12n721

 .
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820 1087 10140

11a28 11a58 11a165

12a189 12a377 12a979

12n56 12n57 12n62

Figure 1. Band moves for the proof of Proposition 4.2.
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12n66 12n87 12n106

12n288 12n501 12n504

12n582 12n670 12n721

Figure 2. More band moves for the proof of Proposition 4.2.

Proof. It suffices to exhibit a single band move on J that produces a 2-
component unlink. The required band moves are shown in the diagrams of
Figure 1 and Figure 2. �
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