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THE ROUND HANDLE PROBLEM

MIN HOON KIM, MARK POWELL, AND PETER TEICHNER

Abstract. We present the Round Handle Problem (RHP), proposed by Freedman and
Krushkal. It asks whether a collection of links, which contains the Generalised Borromean
Rings (GBRs), are slice in a 4-manifold R constructed from adding round handles to the
four ball. A negative answer would contradict the union of the surgery conjecture and
the s-cobordism conjecture for 4-manifolds with free fundamental group.

1. Statement of the RHP

We give an alternative proof of the connection of the Round Handle Problem to the
topological surgery and s-cobordism conjectures (these will all be recalled below). The
Round Handle Problem (RHP) was formulated in [FK16, Section 5.1]. We give a shorter
and easier argument that the above mentioned conjectures imply a positive answer to the
RHP.

Let L = L1 t · · · t Lm be an oriented ordered link in S3 with vanishing pairwise
linking numbers. We will be particularly concerned with the Generalised Borromean
Rings (GBRs). By definition these are the collection of links arising from iterated Bing
doubling starting with a Hopf link. An example is shown in Figure 1.

Figure 1. An example of a GBR: the two-fold Bing double of the Hopf link.

Write XL := S3rN(L) for the exterior of L. Let µi ⊂ XL be an oriented meridian
of the ith component of L, and let λi ⊂ XL be a zero-framed oriented longitude. Both
are smoothly embedded curves. Make µi small enough that lk(µi, λi) = 0 (of course
lk(µi, Li) = 1 and lk(λi, Li) = 0). Let N(µi), N(λi) ⊂ XL be closed tubular neighbour-
hoods, each homeomorphic to S1 ×D2.

A Round handle H is a copy of S1×D2×D1. The attaching region is S1×D2× S0 ⊂
∂(S1 ×D2 ×D1) ∼= S1 × S2. The notion of round handles is due to Asimov [Asi75].

Definition 1.1. Given an m-component link L, construct a manifold R(L) by attaching
m round handles {Hi}mi=1 to D4 as follows. For the ith round handle, glue S1×D2×{−1}

2010 Mathematics Subject Classification. 57M25, 57M27, 57N13, 57N70,
Key words and phrases. Round handle problem, topological surgery, s-cobordism.

1



THE ROUND HANDLE PROBLEM 2

to N(µi) ⊂ XL ⊂ S3 = ∂D4, and glue S1 × D2 × {1} to N(λi). In both cases use the
zero-framing for the identification of N(µi) and N(λi) with S1 ×D2. Note that the link
L lies in ∂R(L).

The key question will be whether L is slice in R(L).

Definition 1.2 (Round Handle Slice). A link L is Round Handle Slice (RHS) if L ⊂ ∂R(L)
is slice in R(L), that is if L is the boundary of a disjoint union of locally flat embedded
discs in R(L).

Theorem 1.3. Suppose that the topological surgery and s-cobordism conjectures hold for
free fundamental groups. Then for any link L with pairwise linking numbers all zero, L is
round handle slice.

Problem 1.4. The Round Handle Problem is to determine whether all pairwise linking
number zero links are round handle slice.

By Theorem 1.3, a negative answer for one such link would contradict the logical union
of the topological surgery conjecture and the s-cobordism conjecture for free fundamental
groups. It is suggested by Freedman and Krushkal, but by no means compulsory, to focus
on the links arising as GBRs. It is also suggested that one might try to adapt Milnor’s
invariants to provide obstructions. The primary purpose of this problem, like the AB slice
problem, is to provide a way to get obstructions to surgery and s-cobordism. Key work
on the AB slice problem includes [Fre86, FL89, Kru08, FK16].

We briefly recall the statements of these conjectures and their relation to the disc
embedding problem.

Conjecture 1.5 (Topological surgery conjecture). Every degree one normal map (M,∂M)→
(X, ∂X) from a compact 4-manifold M to a 4-dimensional Poincaré pair (X, ∂X), that is
a Z[π1(X)]-homology equivalence on the boundary, is topologically normally bordant rel.
boundary to a homotopy equivalence if and only if the surgery obstruction in L4(Z[π1(X)])
vanishes.

Conjecture 1.6 (s-cobordism conjecture). Every compact topological 5-dimensional s-
cobordism (W ;M0,M1), that is a product on the boundary, is homeomorphic to a product
W ∼= M0 × I ∼= M1 × I, extending the given product structure on the boundary.

In Section 3 we will explain why the union of these two conjectures is equivalent to the
disc embedding conjecture, stated below. In the statement of this conjecture we use the
equivariant intersection form

λ : H2(M,∂M ;Z[π1(M)])×H2(M ;Z[π1(M)])→ Z[π1(M)]

and the group-valued self-intersection number

µ : H2(M ;Z[π1(M)])→ Z[π1(M)]

g ∼ w(g)g−1, 1 ∼ 0
,

where w : π1(M)→ C2 = {±1} is the orientation character. Also note that the transverse
spheres are required to be framed, which means that they have trivialised normal bundles.

Conjecture 1.7 (Disc embedding conjecture). Let fi : (D2, S1) # (M,∂M) be a collec-
tion of generically immersed discs in a compact 4-manifold M with disjointly embedded
boundaries. Suppose that there are framed generically immersed spheres gi : S

2 #M such
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that for every i, j we have λ(gi, gj) = 0, µ(gi) = 0, and the gi are transverse spheres, so
λ(fi, gj) = δij. Then the circles fi(S

1) bound disjointly embedded, locally flat discs in M
with geometrically transverse spheres, inducing the same framing on fi(S

1) as the fi.

Conjectures 1.5, 1.6, and 1.7 are already theorems for good groups, a class of groups
containing groups of subexponential growth [FT95, KQ00], and closed under taking sub-
groups, extensions, quotients, and direct limits.

Remark 1.8. The obstruction theory presented in the proof of [FK16, Lemma 5.4], which
forms part of the proof given there of Theorem 1.3, is incomplete. First, H3(R, ∂R;π2(R

′)) ∼=
H1(R;π2(R

′)) = 0 since π2(R
′) is a free Z[π1(R

′)] ∼= Z[π1(R)]-module, so the obstruction
here certainly vanishes, as asserted in [FK16]. However a potentially non-trivial obstruc-
tion, not considered in [FK16], lies in H4(R, ∂R;π3(R

′)). Analysing this depends on the
relationship between the intersection forms of R and R′. Our proof of Theorem 1.3 avoids
obstruction theory altogether.

Remark 1.9. Our proof implies that every knot is round handle slice, since in that case
the proof applies Conjectures 1.5 and 1.6 with fundamental group Z. But for fundamental
group Z these conjectures are theorems, since they are both implied by the disc embedding
theorem [FQ90, Section 2.9, Theorem 5.1A].

Acknowledgements. We thank Allison N. Miller for delivering a lecture on the Round
Handle Problem that motivated us to produce this alternative proof. We also thank
Peter Feller and Arunima Ray for helpful comments on a previous version, prompting
us to elucidate the relation between the disc embedding conjecture and the topological
surgery and s-cobordism conjectures. We also thank an anonymous referee for several
useful comments that helped improve the exposition.

We are grateful to the Hausdorff Institute for Mathematics in Bonn, in whose fantastic
research environment this paper was written. The first author was partly supported
by NRF grant 2019R1A3B2067839. The second author was supported by an NSERC
Discovery Grant.

2. Proof of Theorem 1.3

The proof of Theorem 1.3 involves the construction of an s-cobordism rel. boundary
from the manifold R(L), henceforth abbreviated to R, to another 4-manifold R′, in which
L is slice. We begin with a Kirby diagram for R, shown in Figure 2.

First we will explain the figure, then we will explain why this is a diagram for R.
The diagram does not show the literal Kirby diagram for R. Rather, the curve labelled
d specifies a solid torus, as the complement of a regular neighbourhood of this curve.
Inside the solid torus a dotted circle, corresponding to a 1-handle, and a zero-framed
circle, corresponding to a 2-handle, can be seen. Embed a copy of this solid torus into a
closed tubular neighbourhood N(Li) for each i = 1, . . . ,m, using the zero framing. One
therefore has m 1-handles and m 2-handles, one pair in each solid torus neighbourhood
N(Li), arranged as shown in Figure 2. The diagram also shows the link component Li

parallel to the core of the solid torus.
Now we explain why Figure 2 is a diagram for the 4-manifold R. A round handle can be

constructed from a 1-handle and a 2-handle whose boundary goes around one attaching
circle of the round handle (a meridian of L), traverses the 1-handle, goes around the other
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d

0

Li

Figure 2. A handle diagram for R in N(Li). Replicate this for each i = 1, . . . ,m.

attaching circle (a zero-framed longitude of the same component of L), and then traverses
the 1-handle in the other direction. Ignoring the link L, we see that R is diffeomorphic to
the zero-trace of L with m 1-handles added.

d

0

0

Li

Figure 3. The handle diagram from Figure 2 with a cancelling pair introduced.

Figure 3 shows another diagram for R with a cancelling 1-handle and 2-handle pair
introduced in each N(Li).

Next, Figure 4 shows a Kirby diagram, with the same convention as above, for a 4-
manifold that we call RM . Here M stands for “middle,” since this manifold will lie in the
middle of the s-cobordism we are about to construct.

The diagram for RM is very similar to the diagram for R from Figure 3; in order to
get from the diagram for RM to that for R, inside each solid torus neighbourhood N(Li),
change the zero-framed 2-handle whose attaching curve is labelled αi in Figure 4 to a
1-handle. That is, for each i, perform surgery on the 2-sphere obtained from the core of
the 2-handle union a disc bounded by the attaching circle in D4. The fundamental group
of RM is π1(RM ) ∼= Fm, the free group on m letters, generated by meridians of the dotted
circles.
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d

0

0

αi 0

βiγi

Li

Figure 4. A handle diagram for RM in N(Li). The 2-handles in the
picture are labelled αi, βi and γi.

Note that, by virtue of the cores of the βi 2-handles, L is slice in RM . To see this,
observe that Li can be passed through the attaching region of the αi 2-handle in Figure 4.

Remark 2.1. This remark explains why the remainder of the proof is necessary: it is
far from obvious that L is slice in R. In Figure 3, Li cannot be passed through a dotted
circle corresponding to a 1-handle, so the argument just given cannot be used to show
that Li is slice in R via Figure 3. On the other hand if one isotopes the link through the
attaching region of a 2-handle, one cannot later use the core of that 2-handle to construct
an embedded slice disc, so one cannot use Figure 2 to see that L is slice in R.

Next, there are also generically immersed 2-spheres in RM obtained from the union of
the cores of the βi 2-handles with immersed discs Di in D4 bounded by the βi attaching
curves. By choosing the immersed discs Di so that their normal bundles induce the 0-
framing on the curves βi ⊂ S3, we have framed immersed spheres. We call these the
βi-spheres. The linking number zero hypothesis implies that the algebraic intersection
numbers in Z[π1(RM )] ∼= Z[Fm] between these 2-spheres vanish.

Consider similar framed spheres arising from the round handle 2-handles, namely the
2-handles whose attaching curves are labelled γi in Figure 4. For each i, isotope the curve
γi through βi and out from the 1-handle; that is, pull the oxbow part straight until γi is
a round circle, parallel to βi. Embed the isotopies in a collar S3 × [1− ε, 1]. Use parallel
push offs of the discs Di, minus their intersection with S3× [1− ε, 1], to cap the resulting
curves. We have just constructed discs Ei with boundary γi, that intersect the discs Dj

algebraically in δij . Cap off the discs Ei with the cores of the γi 2-handles to obtain
framed immersed 2-spheres in RM , that we call the γi-spheres. The βi- and γj-spheres are
algebraically dual over Z[Fm].

Lemma 2.2. There exist framed, locally flat, embedded spheres Bi ⊂ RM in the comple-
ment of the slice discs for L, with Bi regularly homotopic to the βi-sphere for i = 1, . . . ,m.

Proof. To prove Lemma 2.2, we will apply the disc embedding conjecture to immersed
Whitney discs fk pairing up double points of the βi-spheres, in the complement of the
slice discs for L in RM , and in the complement of the βi-spheres themselves. We will
then perform the Whitney move using the resulting embedded Whitney discs to obtain
the spheres Bi.
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We argue that the immersed Whitney discs fk can be found. First, apply the geometric
Casson lemma [Fre82, Lemma 3.1], [FQ90, Section 1.5] to convert the βi-spheres and the
γj-spheres from algebraic duals into geometric duals, intersecting in precisely one point if
i = j and with empty intersection otherwise.

Preliminary immersed Whitney discs f ′k can be found in the complement of slice discs for
L because the slice discs for L in RM use push offs of the core of the βi 2-handles, whereas
the double points of the βi-spheres lie in the interior of D4. So one can find immersed
Whitney discs in D4 pairing up all double points among the βi-spheres. However, these
initial Whitney discs f ′k, which we can assume to be framed Whitney discs by boundary
twisting, might intersect the βi-spheres. Tube each intersection of a Whitney disc with a
βi-sphere into a parallel copy of the dual sphere γi. This produces Whitney discs fk in
RM that are framed and disjoint from both the slice discs for L and the βi-spheres.

Construct framed transverse spheres for the fk from Clifford tori for the double points,
with caps given by normal discs to the βi-spheres tubed into the dual γi-spheres. Use
the caps to symmetrically contract [FQ90, Section 2.3] the tori to immersed spheres. See
[FQ90, Corollary 5.2B] for more details. Call the resulting spheres gk. All intersections
among the transverse spheres gk arose from contraction, so they cancel algebraically over
Z[Fm], and we therefore have λ(gk, g`) = 0 = µ(gk) for every k, `. Similarly, all of the
intersection points between the fk and the g` cancel, except those arising from the original
intersection points between Clifford tori and the Whitney discs fk. It follows that the fk
and the g` are algebraically dual over Z[Fm]. We may therefore apply the disc embedding
Conjecture 1.7 to find embedded Whitney discs, in the complement of the slice discs
for L and in the complement of the βi-spheres. The disc embedding conjecture has no
hypothesis on the fundamental group, so we do not need to control the fundamental
group here. Whitney moves across the embedded discs resulting from Conjecture 1.7 give
a regular homotopy to the desired framed embedded spheres Bi. This completes the proof
of Lemma 2.2. �

Perform surgery on RM using these framed embedded spheres Bi, and define R′ to be
the 4-manifold obtained as result of these surgeries. Note that L is still slice in R′, since
the spheres Bi lie in the complement of the slice discs.

Lemma 2.3. The 4-manifolds R and R′ are s-cobordant rel. boundary.

Proof. To prove Lemma 2.3, start with RM . The trace of surgeries on the αi-spheres gives
a cobordism to R. The trace of surgeries on the βi-spheres gives a cobordism to R′. The
union of the two cobordisms along RM is an s-cobordism from R to R′, since algebraically
the intersection numbers αi · βj = δij . This completes the proof of Lemma 2.3. �

Note that we used duals to the βi-spheres twice, once to apply surgery and once to
prove that we have an s-cobordism. However we use different duals. For the surgery we
used the γi-spheres arising from the round handle 2-handles. For the s-cobordism, we
used the αi-spheres.

Then since R and R′ are s-cobordant, the s-cobordism Conjecture 1.6 implies that
they are homeomorphic rel. boundary. Since the homeomorphism is an identity on the
boundary, the link L is preserved. Thus the image of the slice discs for L in R′ under the
homeomorphism f : R′ → R are slice discs for L in R. It follows that L is Round Handle
Slice as desired. This completes the proof of Theorem 1.3.
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3. Disc embedding is equivalent to surgery and s-cobordism

In this section we briefly argue that the disc embedding Conjecture 1.7 is equivalent
to the combination of the surgery and s-cobordism Conjectures, numbered 1.5 and 1.6
respectively. There are no new equivalences described in this section. Indeed, references
are given throughout, mostly to the relevant subsections of [FQ90]. We include this section
for readers wanting a succinct guide to establishing these equivalences.

We will argue that the following are equivalent: (i) surgery and s cobordism; (ii) disc
embedding; (iii) height 1.5 capped gropes contain embedded discs with the same boundary;
(iv) certain links L ∪m, to be described below, are slice with standard slice discs for L.
We will show:

(i) =⇒
(4)

(iv) ⇐⇒
(3)

(iii) ⇐⇒
(2)

(ii) =⇒
(1)

(i).

(1) The disc embedding conjecture (ii) implies (i) surgery and s-cobordism. This follows
from inspection of the high dimensional proof: the proof of topological surgery in di-
mension four and the five dimensional topological s-cobordism theorem can be reduced
to precisely the need to find embedded discs with geometrically transverse spheres in
the presence of algebraically transverse spheres. See for example [Lüc02] for an ex-
position of the high dimensional theory. The s-cobordism theorem requires an extra
argument to find the transverse spheres, which can be found in [FQ90, Chapter 7].

(2) The disc embedding conjecture (ii) is equivalent to the statement (iii) that every height
1.5 capped grope contains an embedded disc with the same framed boundary. For one
direction, if disc embedding holds, then we can use it to find a disc in a height 1.5
capped grope, as follows. The caps on the height 1 side are immersed discs, and
parallel copies of the symmetric contraction of the height 1.5 side, together with
annuli in neighbourhoods of the boundary circles, give transverse spheres that have
the right algebraic intersection data. See [FQ90, Section 2.6] for the construction
of transverse gropes within a grope neighbourhood, which are then symmetrically
contracted [FQ90, Section 2.3] to yield transverse spheres. Apply disc embedding to
find embedded discs with framed boundary the same as the height 1 caps’ framed
boundary. These correctly framed embedded discs can be used to asymmetrically
contract the first stage of the height 1.5 grope to an embedded disc. On the other
hand, a collection of discs with transverse spheres as in Conjecture 1.7 gives rise to a
height 1.5 capped grope with the same boundary and with geometrically transverse
spheres for the bottom stage, as shown in [FQ90, Section 5.1]. Thus if every height
1.5 capped grope contains an embedded disc, then disc embedding holds.

(3) Height 1.5 capped gropes contain embedded discs with the same boundary (iii) if and
only if (iv) certain links L ∪ m are slice with standard slice discs for L. A Kirby
diagram for a capped grope consists of an unlink L, in the form of a link obtained
from the unknot by iterated ramified Bing doubling, followed by a single operation of
ramified Whitehead doubling. Place a dot on every component to denote that they
correspond to 1-handles; a neighbourhood of a capped grope is diffeomorphic to a
boundary connected sum of copies of S1 × D3. The boundary circle of the grope is
represented by a meridian m to the original unknot. One can think of performing
the ramified Bing and Whitehead doubling on one component of the Hopf link. A
grope contains an embedded disc with the same framed boundary if and only if this
link L ∪ m is slice with standard smooth slice discs for all the dotted components.
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The desired embedded disc is the slice disc for m. See [FQ90, Proposition 12.3A] for
further details.

(4) Surgery and s-cobordism (i) together imply (iv) that the links L ∪ m are slice with
standard slice discs for L. Let L ∪m be any link from the family constructed in the
previous item, using iterated ramified Bing and Whitehead doubling on one component
of the Hopf link. The zero surgery on L∪m bounds a spin 4-manifold over a wedge of
circles since the Arf invariants of the components vanish. By the topological surgery
conjecture, this can be improved, via a normal bordism rel. boundary, to be homotopy
equivalent to the wedge of circles. Attach a 2-handle to fill in the surgery torus D2×S1

of m. The remaining 4-manifold is homeomorphic to a boundary connected sum of
copies of S1 × D3, by the s-cobordism conjecture. Therefore it is homeomorphic to
the exterior of standard smooth slice discs for L in D4. (We have no control over the
remaining slice disc, whose boundary is the link component m.) Thus surgery and
s-cobordism imply that the link L ∪m is slice with standard slice discs for L. More
details are given in [FQ90, Section 11.7C] and the preceding sections of Chapter 11.
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