Juan M. Alonso. Finiteness conditions on groups and quasi-isometries. J. Pure Appl. Algebra, 95(2):121–129, 1994.
Mladen Bestvina and Noel Brady. Morse theory and finiteness properties of groups. Invent. Math., 129(3):445–470, 1997.
James Belk, Collin Bleak, and Francesco Matucci. Embedding right-angled Artin groups into Brin-Thompson groups. Math. Proc. Cambridge Philos. Soc., 169(2):225–229, 2020.
Laurent Bartholdi, Yves de Cornulier, and Dessislava H. Kochloukova. Homological finiteness properties of wreath products. Q. J. Math., 66(2):437–457, 2015.
Collin Bleak, Luke Elliott, and James Hyde. Sufficient conditions for a group of homeomorphisms of the Cantor set to be two generated. arXiv:2008.04791.
James Belk and Bradley Forrest. Rearrangement groups of fractals. Trans. Amer. Math. Soc., 372(7):4509–4552, 2019.
Kai-Uwe Bux, Martin G. Fluch, Marco Marschler, Stefan Witzel, and Matthew C. B. Zaremsky. The braided Thompson’s groups are of type F∞. J. Reine Angew. Math., 718:59–101, 2016. With an appendix by Zaremsky.
Kenneth S. Brown and Ross Geoghegan. An infinite-dimensional torsion-free FP∞ group. Inventiones mathematicae, 77(2):367–381, 1984.
Collin Bleak and Daniel Lanoue. A family of non-isomorphism results. Geom. Dedicata, 146:21–26, 2010.
A. Björner, L. Lovász, S. T. Vrećica, and R. T. Živaljević. Chessboard complexes and matching complexes. J. London Math. Soc. (2), 49(1):25–39, 1994.
James Belk and Francesco Matucci. Röver’s simple group is of type F∞. Publ. Mat., 60(2):501–524, 2016.
Martin R Bridson. Controlled embeddings into groups that have no non-trivial finite quotients. Geometry and Topology Monographs, 1:99–116, 1998.
Matthew G. Brin. Higher dimensional Thompson groups. Geom. Dedicata, 108:163–192, 2004.
Matthew G. Brin. Presentations of higher dimensional Thompson groups. J. Algebra, 284(2):520–558, 2005.
Matthew G. Brin. On the baker’s map and the simplicity of the higher dimensional Thompson groups nV . Publ. Mat., 54(2):433–439, 2010.
Kenneth S. Brown. Finiteness properties of groups. In Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985), volume 44, pages 45–75, 1987.
Kenneth S. Brown. The geometry of finitely presented infinite simple groups. In Algorithms and classification in combinatorial group theory (Berkeley, CA, 1989), volume 23 of Math. Sci. Res. Inst. Publ., pages 121–136. Springer, New York, 1992.
Peter J. Cameron. Oligomorphic permutation groups, volume 152 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge, 1990.
J. W. Cannon, W. J. Floyd, and W. R. Parry. Introductory notes on Richard Thompson’s groups. Enseign. Math. (2), 42(3-4):215–256, 1996.
Pierre-Emmanuel Caprace and Bertrand Rémy. Simplicity and superrigidity of twin building lattices. Invent. Math., 176(1):169–221, 2009.
Pierre-Emmanuel Caprace and Bertrand Rémy. Non-distortion of twin building lattices. Geom. Dedicata, 147:397–408, 2010.
Arman Darbinyan and Markus Steenbock. Embeddings into left-orderable simple groups. arXiv:2005.06183.
Martin G. Fluch, Marco Marschler, Stefan Witzel, and Matthew C. B. Zaremsky. The Brin–Thompson groups sV are of type F∞. Pacific J. Math., 266(2):283–295, 2013.
A. P. Goryushkin. Imbedding of countable groups in 2-generated simple groups. Mathematical Notes, 16(2):725–727, 1974.
P. Hall. On the embedding of a group in a join of given groups. Journal of the Australian Mathematical Society, 17(4):434–495, 1974.
Johanna Hennig and Francesco Matucci. Presentations for the higher-dimensional Thompson groups nV . Pacific J. Math., 257(1):53–74, 2012.
James Thomas Hyde. Constructing 2-generated subgroups of the group of homeomorphisms of Cantor space. PhD thesis, University of St Andrews, 2017.
Dessislava H. Kochloukova, Conchita Martínez-Pérez, and Brita E. A. Nucinkis. Cohomological finiteness properties of the Brin-Thompson-Higman groups 2V and 3V . Proc. Edinb. Math.
Soc. (2), 56(3):777–804, 2013.
Daniel Quillen. Homotopy properties of the poset of nontrivial p-subgroups of a group. Adv. in Math., 28(2):101–128, 1978.
Paul E. Schupp. Embeddings into simple groups. J. London Math. Soc. (2), 13(1):90–94, 1976.
Melanie Stein. Groups of piecewise linear homeomorphisms. Trans. Amer. Math. Soc., 332(2):477–514, 1992.
Rachel Skipper, Stefan Witzel, and Matthew C. B. Zaremsky. Simple groups separated by finiteness properties. Invent. Math., 215(2):713–740, 2019.
Stefan Witzel. Classifying spaces from Ore categories with Garside families. Algebr. Geom. Topol., 19(3):1477–1524, 2019.
Stefan Witzel and Matthew Zaremsky. Thompson groups for systems of groups, and their finiteness properties. Groups Geom. Dyn., 12(1):289–358, 2018.