Laurent Bartholdi and Dzmitry Dudko. Algorithmic aspects of branched coverings. Ann. Fac. Sci. Toulouse Math. (6), 26(5):1219–1296, 2017.
Laurent Bartholdi and Volodymyr Nekrashevych. Thurston equivalence of topological polynomials. Acta Math., 197(1):1–51, 2006.
Ben Bielefeld, Yuval Fisher, and John Hubbard. The classification of critically preperiodic polynomials as dynamical systems. J. Amer. Math. Soc., 5(4):721–762, 1992.
Sylvain Bonnot, Mark Braverman, and Michael Yampolsky. Thurston equivalence to a rational map is decidable. Mosc. Math. J., 12(4):747–763, 884, 2012.
J. W. Cannon, W. J. Floyd, W. R. Parry, and K. M. Pilgrim. Nearly Euclidean Thurston maps. Conform. Geom. Dyn., 16:209–255, 2012.
Lei Chen, Kevin Kordek, and Dan Margalit. Homomorphisms between braid groups. arXiv e-prints, page arXiv:1910.00712, Oct 2019.
Marc Culler and Karen Vogtmann. Moduli of graphs and automorphisms of free groups. Invent. Math., 84(1):91–119, 1986.
A. Douady and J. H. Hubbard. Étude dynamique des polynômes complexes, Part 1, volume 84 of Publications Mathématiques d'Orsay [Mathematical Publications of Orsay]. Université de Paris-Sud, Département de Mathématiques, Orsay, 1984.
A. Douady and J. H. Hubbard. Étude dynamique des polynômes complexes, Part 2, volume 85 of Publications Mathématiques d'Orsay [Mathematical Publications of Orsay]. Université de Paris-Sud, Département de Mathématiques, Orsay, 1985. With the collaboration of P. Lavaurs, Tan Lei and P. Sentenac.
Adrien Douady and John H. Hubbard. A proof of Thurston’s topological characterization of rational functions. Acta Math., 171(2):263–297, 1993.
Benson Farb and Dan Margalit. A primer on mapping class groups. Princeton University Press, 2011.
William Floyd, Walter Parry, and Kevin M. Pilgrim. Modular groups, Hurwitz classes and dynamic portraits of NET maps. arXiv:1703.03983, 2017.
William Floyd, Walter Parry, and Kevin M. Pilgrim. Rationality is decidable for nearly Euclidean Thurston maps. arXiv:1812.01066, 2018.
Mikhail Hlushchanka. Invariant graphs, tilings, and iterated monodromy groups. PhD thesis, 2017.
Mikhail Hlushchanka. Tischler graphs of critically fixed rational maps and their applications, 2019.
John Hubbard and Howard Masur. Quadratic differentials and foliations. Acta Math., 142(3-4):221–274, 1979.
John H. Hubbard and Dierk Schleicher. The spider algorithm. In Complex dynamical systems (Cincinnati, OH, 1994), volume 49 of Proc. Sympos. Appl. Math., pages 155–180. Amer. Math. Soc., Providence, RI, 1994.
John Hamal Hubbard. Teichmüller theory and applications to geometry, topology, and dynamics. Vol. 2. Matrix Editions, Ithaca, NY, 2016. Surface homeomorphisms and rational functions.
Gregory Kelsey and Russell Lodge. Quadratic Thurston maps with few postcritical points. arXiv:1704.03929, 2017.
Russell Lodge. Boundary values of the Thurston pullback map. Conform. Geom. Dyn., 17:77–118, 2013.
Volodymyr Nekrashevych. Combinatorics of polynomial iterations. In Complex dynamics, pages 169–214. A K Peters, Wellesley, MA, 2009.
Volodymyr Nekrashevych. Combinatorial models of expanding dynamical systems. Ergodic Theory Dynam. Systems, 34(3):938–985, 2014.
Volodymyr Nekrashevych. Personal communication, 2020.
R. C. Penner. The simplicial compactification of Riemann’s moduli space. In Topology and Teichmüller spaces (Katinkulta, 1995), pages 237–252. World Sci. Publ., River Edge, NJ, 1996.
Kevin Pilgrim. Dynamics of Thurston’s pullback map on the Weil–Peterssen boundary. http://pages.iu.edu/ pilgrim/Talks/Pucon.pdf, December 2010.
Kevin Pilgrim. Personal communication, June 2019.
Kevin M. Pilgrim. Canonical Thurston obstructions. Adv. Math., 158(2):154–168, 2001.
Kevin M. Pilgrim. An algebraic formulation of Thurston’s combinatorial equivalence. Proc. Amer. Math. Soc., 131(11):3527–3534, 2003.
Kevin M. Pilgrim. An algebraic formulation of Thurston’s characterization of rational functions. Ann. Fac. Sci. Toulouse Math. (6), 21(5):1033–1068, 2012.
Kevin M. Pilgrim. Semigroups of branched mapping classes: Dynamics and geometry. Notices of the AMS, 64(8):824–827, September 2017.
Kevin M. Pilgrim and Tan Lei. Combining rational maps and controlling obstructions. Ergodic Theory Dynam. Systems, 18(1):221–245, 1998.
Alfredo Poirier. Hubbard trees. Fund. Math., 208(3):193–248, 2010.
Kasra Rafi, Nikita Selinger, and Michael Yampolsky. Centralizers in mapping class group and decidability of Thurston equivalence. arXiv:1902.02645, 2019.
Dierk Schleicher. Internal addresses of the Mandelbrot set and Galois groups of polynomials. Arnold Math. J., 3(1):1–35, 2017.
Nikita Selinger. Topological characterization of canonical Thurston obstructions. J. Mod. Dyn., 7(1):99–117, 2013.
Nikita Selinger and Michael Yampolsky. Constructive geometrization of Thurston maps. C. R. Math. Acad. Sci. Soc. R. Can., 37(3):100–113, 2015.
Anastasia Shepelevtseva and Vladlen Timorin. Invariant spanning trees for quadratic rational maps. arXiv:1808.05489, 2018.
Dylan P. Thurston. A positive characterization of rational maps. arXiv: 1612.04424.
William P. Thurston. On the geometry and dynamics of diffeomorphisms of surfaces. Bull. Amer. Math. Soc. (N.S.), 19(2):417–431, 10 1988.