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EMBEDDING Q INTO A FINITELY PRESENTED GROUP

JAMES BELK, JAMES HYDE, AND FRANCESCO MATUCCI

Abstract. We observe that the group of all lifts of elements of Thompson’s
group T to the real line is finitely presented and contains the additive group Q

of the rational numbers. This gives an explicit realization of the Higman
embedding theorem for Q, answering a Kourovka notebook question of Martin
Bridson and Pierre de la Harpe.

Introduction

In 1961, Graham Higman proved that any countable group with a computable
presentation can be embedded into a finitely presented group [11]. For example,
the additive group Q of rational numbers has computable presentation

〈s1, s2, s3, . . . | s
n
n = sn−1 for all n ≥ 2〉

and can therefore be embedded into some finitely presented group. Unfortunately,
Higman’s construction is difficult to carry out in practice, and group presentations
produced by his procedure are quite large and unwieldy.

Higman was for many years interested in finding more explicit embeddings of
various naturally occurring recursively presented groups such as Q into finitely pre-
sented groups [16]. In 1999, the following question was submitted to the Kourovka
notebook [18] and labeled as a “well-known problem”. The question is attributed
to Pierre de la Harpe in [18], but Martin Bridson and de la Harpe have informed
us that the question was originally submitted jointly by the two of them.

Problem 14.10(a). It is known that any recursively presented group embeds in a

finitely presented group. Find an explicit and “natural” finitely presented group Γ
and an embedding of the additive group of the rationals Q in Γ.

The problem then asks the same question for the group GLn(Q). The prob-
lem originally included a part (b) that asked for any finitely generated example,
although such examples had already been supplied by Hall in 1959 [10]. In particu-
lar, Hall observed that if W is a vector space over Q with basis {en}n∈Z and σ, ρ are
the linear transformations of W defined by σ(en) = en+1 and ρ(vn) = pnen, where
{pn}n∈Z is some enumeration of the primes, then the orbit of e0 under 〈σ, ρ〉 gener-
ates W as an abelian group, and hence the semidirect product W ⋊ 〈σ, ρ〉 is finitely
generated and contains Q. Further finitely generated examples were later supplied
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by Mikaelian [19]. As for embeddings into finitely presented groups, Mikaelian [20]
has described how to explicitly carry out Higman’s construction for Q as well as
many other groups of interest, such as GLn(Q).

In this note we observe that Q embeds into a finitely presented group T which
was introduced by Ghys and Sergiescu in 1987 [9]. This is an explicit group of
homeomorphisms of the real line, which has a presentation with two generators and
four relators (see Remark 3 below). Specifically, T consists of all homeomorphisms
f : R → R that satisfy the following conditions:

(1) The homeomorphism f is piecewise-linear, with finitely many breakpoints
on each compact interval.

(2) Each linear portion of f has the form f(x) = 2nx + d, where n ∈ Z and d
is a dyadic rational.

(3) Each breakpoint of f has dyadic rational coordinates.

(4) The homeomorphism f commutes with the translation x 7→ x+1. That is,
f(x+ 1) = f(x) + 1 for all x ∈ R.

It follows from (4) that the set of breakpoints of f is invariant under x 7→ x + 1,
and hence any f ∈ T is either linear or has infinitely many breakpoints. As a
group of orientation-preserving homeomorphisms of the real line, T is torsion-free,
and indeed right-orderable [8, Theorem 6.8]. The monomorphisms Q → T that we
describe below are order-preserving.

The group T is closely related to the three groups F , T , and V introduced by
Richard J. Thompson in the 1960’s [21, 5]. Thompson’s group F arises naturally as
the “group of associative laws” and also arose independently in homotopy theory [6],
while Thompson’s groups T and V were the first known examples of infinite, finitely
presented simple groups. Thompson’s group T is the group of homeomorphisms of
the circle R/Z that satisfy conditions (1), (2), and (3) above, and T is precisely the
group of all “lifts” of elements of T to the real line. In particular, the quotient of
T by the cyclic subgroup generated by x 7→ x + 1 is isomorphic to T . This cyclic
subgroup is precisely the center of T , and therefore T is a central extension of T
(though it is not the universal central extension). Ghys and Sergiescu introduced
T in this context as part of their investigation into the cohomology of T [9].

Thompson made the surprising observation that T contains elements of arbitrary
finite order [21]. In 2011, Bleak, Kassabov, and the third author gave an elementary
argument that Q/Z embeds into Thompson’s group T [2]. They did not consider
the consequences for the group T , but it follows easily from their result that Q

embeds into T . We give a self-contained proof of this below, and indeed we prove
something a bit stronger:

Theorem 1. The group T has continuum many different subgroups isomorphic

to Q, all of which contain the center of T .

Brin has proven that T embeds naturally into the automorphism group of Thomp-
son’s group F . Specifically, Brin proved [4, Theorem 1] that Aut(F ) has an index-
two subgroup Aut+(F ) which is isomorphic to the group of all homeomorphisms
of R that satisfy conditions (1), (2), and (3) above and agree with elements of T
in neighborhoods of −∞ and ∞. Brin also showed [4, Theorem 1] that this group
Aut+(F ) fits into a short exact sequence

1 → F → Aut+(F ) → T × T → 1,
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and it follows easily that Aut(F ) is finitely presented. Indeed, Burillo and Cleary
have computed an explicit finite presentation for Aut(F ) in [3]. This gives another
natural example of a finitely presented group that contains Q:

Corollary 2. The automorphism group of Thompson’s group F has a subgroup

isomorphic to Q.

Remark 3. The smallest known presentation for Thompson’s group T has two
generators and five relators, and was derived by Lochak and Schneps in [17]. (Note
that the version in [17] contains a typo. See [7, Proposition 1.3] for a corrected
version). Using this presentation together with the fact that T is a central extension
of T by Z, it is not difficult to derive a presentation for T with two generators and
four relators. Specifically,

T =
〈

a, b
∣

∣ a4 = b3, (ba)5 = b9, [bab, a2baba2] = [bab, a2b2a2baba2ba2] = 1
〉

where a and b are the elements of T whose restrictions to [0, 1] are defined by

a(x) =















1
2x+ 1

2 if 0 ≤ x ≤ 3
4 ,

x+ 1
8 if 3

4 < x ≤ 7
8 ,

4x− 5
2 if 7

8 < x ≤ 1,

b(x) =















1
2x+ 1

2 if 0 ≤ x ≤ 1
2 ,

x+ 1
4 if 1

2 < x ≤ 3
4 ,

2x− 1
2 if 3

4 < x ≤ 1.

Remark 4. In addition to the above results, we have obtained an explicit embedding
of T and hence an embedding of Q into a finitely presented simple group TA,
verifying the Boone-Higman conjecture in the case of Q. We have also obtained
an explicit finitely presented simple group VA that contains all countable abelian
groups. Both of these groups will be described in a forthcoming paper.

Remark 5. Hurley [15] and Ould Houcine [14] have proven that there exists a
finitely presented group G whose center is isomorphic to Q. It would be interesting
to find a natural example of such a group, or at least a natural example of a finitely
presented group whose center contains Q.

Acknowledgments. The authors would like to thank Collin Bleak for many help-
ful conversations and suggestions about this work. We would also like to thank
Matthew Brin and Matthew Zaremsky for their comments on an early draft of this
manuscript and Martin Bridson and Pierre de la Harpe for comments on the his-
torical perspective. Finally, we would like to thank an anonymous referee for many
helpful comments and suggestions.

Inclusion of Q into T

Let PL2(R) denote the (uncountable) group of all piecewise-linear homeomor-
phisms of R that satisfy conditions (1) through (3) for elements of T given in the
introduction. The group T is precisely the centralizer in PL2(R) of the homeomor-
phism z(x) = x+ 1.

If [a, b] and [c, d] are closed intervals in R, we say that a piecewise-linear home-
omorphism h : [a, b] → [c, d] is Thompson-like if it is a restriction of an element
of PL2(R), i.e. if it satisfies conditions (1) through (3) for elements of T given in
the introduction. It is well-known that if [a, b] and [c, d] have dyadic rational end-
points, then there exists at least one Thompson-like homeomorphism [a, b] → [c, d]
(cf. [5, Lemma 4.2]).
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Lemma 6. Let g be an element of PL2(R) without fixed points and let n ≥ 2.
Then there exist infinitely many different f ∈ PL2(R) such that fn = g.

Proof. Without loss of generality, suppose that g(0) > 0. Choose dyadic rationals
0 = p0 < p1 < · · · < pn = g(0), and for each 1 ≤ i < n choose a Thompson-
like homeomorphism fi : [pi−1, pi] → [pi, pi+1]. Let fn : [pn−1, pn] → [pn, g(p1)] be
the homeomorphism gf−1

1 f−1
2 · · · f−1

n−1, and let f ∈ PL2(R) be the homeomorphism
that agrees with fi on each [pi−1, pi] (1 ≤ i ≤ n) and satisfies

f(x) = gkfg−k(x)

for each x ∈ [gk(0), gk+1(0)] with k 6= 0.
To prove that fn = g, observe that on the interval [pi−1, pi], the function fn

restricts to the composition

(gfi−1g
−1) · · · (gf2g

−1)(gf1g
−1)fn · · · fi+1fi

Since fn = gf−1
1 f−1

2 · · · f−1
n−1, the expression above simplifies to g. Thus fn agrees

with g on [0, g(0)], and it follows easily that fn = g. Moreover, since there are
infinitely many possible choices for p1, . . . , pn−1 and f1, . . . , fn−1, there are infinitely
many possibilities for f . �

Lemma 7. Let m ≥ 1 and let g ∈ T so that gm = z. Then for every n ≥ 2 there

exist infinitely many different f ∈ T so that fn = g.

Proof. Note that g cannot have any fixed points, since these would also be fixed
points of z. Therefore, by Lemma 6, there exist infinitely many f ∈ PL2(R) such
that fn = g. Any such homeomorphism commutes with z since fmn = z, and
therefore every such f lies in T . �

Proposition 8. The group T has continuum many subgroups isomorphic to Q.

Proof. Observe that Q has presentation

〈s1, s2, . . . | s
n
n = sn−1 for n ≥ 2〉.

To obtain an embedding of Q into T it suffices to find a sequence {sn}n∈N of
elements of T such that s1 has infinite order and snn = sn−1 for all n ≥ 2. Such a
sequence can be defined recursively by letting s1 = z and then repeatedly applying
Lemma 7 to find, for each n ≥ 2, an element sn ∈ T such that snn = sn−1. Since
there are infinitely many choices for sn at each stage, this procedure constructs
continuum many different copies of Q. �

Remark 9. Since each subgroup of T is conjugate to only countably many other
subgroups, it follows from Proposition 8 that T has continuum many conjugacy
classes of subgroups isomorphic to Q.

Remark 10. The choice of the elements sn in the proof of Proposition 8 can be
carried out constructively. For example, let {dn}n∈N be the decreasing sequence of
dyadics in [0, 1] defined recursively by d1 = 1 and dn = dn−1/2

n−1. Let s1 = z,
and for each n ≥ 2 let sn be the nth root of sn−1 in PL2(R) that satisfies

sn(x) =

{

x+ dn if 0 ≤ x ≤ dn,

2x if dn < x ≤ 1
2dn−1.

Then the sequence {sn}n∈N generates a subgroup of T isomorphic to Q.
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It is possible to write these elements explicitly in terms of the generators for T
given in Remark 3. Specifically, let p be any element of T which is the identity on
[

0, 1
2

]

and has slope 1/2 on
[

0, 58
]

(e.g. p = a−1b), let q be any element of T which

maps
[

0, 3
8

]

linearly to
[

0, 34
]

(e.g q = a−1ba2b−1), and let r = b−1aba2(ab)−2ba−1b

be the element of T which satisfies

r(x) =























x if 0 ≤ x ≤ 1
4

1
2x+ 1

8 if 1
4 ≤ x ≤ 1

2

2x− 5
8 if 1

2 ≤ x ≤ 5
8

x if 5
8 ≤ x ≤ 1.

Define a sequence of elements {tn}n≥3 recursively by t3 = b2a(ab)−2b and

tn = (tn−1 ⊳ q
n−2)

(

r ⊳ pn−4qn(n−3)/2
)

for n ≥ 4, where x ⊳ y denotes y−1xy. Then tn maps the left half of [0, dn−1]
linearly to [0, dn−1], maps the right half of [0, dn−1] linearly to the left half of
[dn−1, dn−1+dn], maps [dn−1, dn−1+dn] linearly to its right half, and is the identity
on [dn−1 + dn, 1]. The desired sequence {sn} can now be defined recursively by

sn = [tn, tn ⊳ sn−1]
(

tn ⊳ s
1−(n−1)!
n−1

)

· · ·
(

tn ⊳ s−2
n−1

)(

tn ⊳ s−1
n−1

)

tn

= [tn, tn ⊳ sn−1] s1
(

s−1
n−1tn

)(n−1)!

for n ≥ 4, where [x, y] denotes xyx−1y−1, s3 = b−1aba−2baba−1b−1, s2 = ba2b−1,
and s1 = b3.

The idea here is that tn is roughly the same as sn on [0, dn−1] and is the identity
elsewhere. Since [0, dn−1] is a fundamental domain for the action of 〈sn−1〉, we can
construct sn by multiplying together conjugates of tn by powers of s−1

n−1, with the
correction factor [tn, tn ⊳sn−1] accounting for the overlap between the initial tn and

the last conjugate tn ⊳ s
1−(n−1)!
n−1 = tn ⊳ sn−1. The authors have checked all of the

above computations in Mathematica [1].

Remark 11. The copy of Q constructed in Remark 10 has the property that the
orbit of 0 is dense in R. For such a copy, the resulting action of Q on R is conjugate
by a homeomorphism of R to the usual action of Q on R by translation. However,
there are also “exotic” copies of Q in T for which the orbit of 0 is not dense in R.
For example, we can choose a sequence {sn}n∈N in T with s1 = z and snn = sn−1

(n ≥ 2) such that sn(0) =
1
2 +

1
2n for all n. In this case, the subgroup 〈s1, s2, s3, . . .〉

is isomorphic to Q, but the orbit of 0 under the action of this subgroup does
not intersect the interval (0, 1/2]. It follows that the restricted wreath product
F ≀Q/ZQ =

(
⊕

Q/Z F
)

⋊Q embeds into T , where Thompson’s group F embeds into

T as the group of elements that are the identity on [1/2, 1]. Bleak, Kassabov, and
the third author used a similar argument to prove that F ≀ (Q/Z) embeds into T
[2, Theorem 1.6].

Remark 12. Higman proved that elements of Thompson’s group V of infinite order
do not have roots of arbitrarily large orders [12, Corollary 9.3]. It follows that Q

does not embed into V , and hence Q does not embed into T , either.
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Every copy of Q obtained from the proof of Proposition 8 contains the center
〈z〉 of T . The following proposition asserts that these are all of the subgroups of T
isomorphic to Q.

Proposition 13. Every subgroup of T isomorphic to Q contains the center of T .

Proof. Let A be a subgroup of T isomorphic to Q. Since Q does not embed into T
(see Remark 12), the projection homomorphism T → T cannot be injective on A,
so A must intersect the center of T nontrivially. In particular, A must contain zn

for some n ≥ 1. Since A is isomorphic to Q, there exists an f ∈ A so that fn = zn.
Since f and z commute it follows that (fz−1)n = 1, and since T is torsion-free we
conclude that fz−1 = 1, and therefore A contains z. �
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