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A B S T R A C T 

As the number of gravitational wave observations has increased in recent years, the variety of sources has broadened. Here, we 
investigate whether it is possible for the current generation of detectors to distinguish between very short-lived gravitational wave 
signals from mergers between high-mass black holes and the signal produced by a close encounter between two black holes, 
which results in gravitational capture and ultimately a merger. We compare the posterior probability distributions produced by 

analysing simulated signals from both types of progenitor events, both under ideal and realistic scenarios. We show that while 
under ideal conditions it is possible to distinguish both progenitors, under realistic conditions they are indistinguishable. This 
has important implications for the interpretation of such short signals, and we therefore advocate that these signals be the focus 
of additional investigation even when satisfactory results have been achieved from standard analyses. 

Key words: black hole physics – gra vitational wa ves – galaxies: nuclei. 
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 I N T RO D U C T I O N  

n recent years, binary black hole (BBH) observations have become a 
ainstay of gravitational wave (GW; Sathyaprakash & Schutz 2009 ) 

etection (Abbott et al. 2019a ; Abbott et al. 2021 ; Collaboration
t al. 2021 ). Observable BBH signals are produced during the late
tages of the decay of a bound orbit of two black holes (BHs):
hese observations are typically short-lived, and have a distinctive 
orphology, produced by the final orbits (the ‘inspiral’ phase), the 
erger of the two BHs, and finally the ‘ringdown’ of the final, merged
H. Most BBHs are expected to be circularized before the merging 
ue to the loss of the orbital energies during the inspiral phase (Peters
964 ; Hinder et al. 2008 ; Abadie et al. 2010 ), therefore the current
nalyses of GW data and the parameter estimations of GW sources
ave focused on binaries with circular orbits. Eccentricity has not 
een detected (Romero-Sha w, Lask y & Thrane 2019 ; Abbott et al.
019b ; Wu, Cao & Zhu 2020 ) in the O1 and O2 observing runs of
IGO/Virgo (Acernese et al. 2014 ; Aasi et al. 2015 ), while a high-
ass BBH event in O3a, GW190521 (Abbott et al. 2020a , b ), shows

vidence it may have been both highly eccentric and dynamically 
ormed, as a result of parameter estimation analysis (Romero-Shaw 

t al. 2020b ; Gamba et al. 2021 ) using both spin-aligned eccentric
aveform approximants, SEOBNRE (Cao & Han 2017 ; Liu, Cao & 

hao 2020 ; Romero-Shaw et al. 2020b ) and TEOBResumS (Gamba 
t al. 2021 ; Nagar et al. 2021 ); and numerical relativity simula-
ions (Gayathri et al. 2022 ). 
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There are several dynamical-formation scenarios (Lightman & 

hapiro 1978 ; Sigurdsson & Hernquist 1993 ; Zwart & McMillan
000 ; Samsing, MacLeod & Ramirez-Ruiz 2014 ; Morscher et al.
015 ; Gond ́an et al. 2018 ; Yang et al. 2019 ) that support the
ormation and merger of binary systems while retaining eccentricity 
hroughout their lifetime. One of the formation processes of these 
ccentric BH binaries is a gravitational radiation-driven capture. 
aptures are expected to take place in galactic nuclei, where the
entral super massive BH creates a steep density cusp of stellar-
ass BHs. This can provide a suitable environment for eccentric 
BH formation (O’Leary, Kocsis & Loeb 2009 ). In accordance with

he conditions of the initial orbital energy E orbital and the initial
ngular momentum L initial , the motion of the binary systems can
e classified as bound (circular or elliptical) and unbound (parabolic 
r hyperbolic) orbits (Capozziello et al. 2008 ; Capozziello & De
aurentis 2008 ; Berry & Gair 2010 ; De Laurentis & Capozziello
010 ). 
Gravitationally unbound interactions, or encounters, occur when 

 orbital ≥ 0 without direct capture, and the trajectory of one component 
f the system will be either parabolic or hyperbolic relative to the
ther. The GW signals produced from such encounters do not resem-
le those from bound systems, but will instead produce a strong burst
f radiation as the objects have their closest encounter. The process
ay be considered a gravitational analogy to Bremsstrahlung (Peters 

970 ). 
In this work, we will focus on parabolic encounters (Bae et al.

017 ) with E orbital = 0. BH encounters that correspond to parabolic
rbits at infinity merge quickly if their initial angular momentum is
ot suitably large enough (O’Leary et al. 2009 ). We use the term
parabolic BH capture’ to refer to the systems that form and merge
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n this way. In other cases, the binaries tentatively pass by and finally
erge in the very distant future. 
We expect the GW signal from BH capture to be detectable both in

he current generation of detectors, and planned future detectors (De
ittori, Jetzer & Klein 2012 ; Garc ́ıa-Bellido & Nesseris 2018 ).
he e xpected ev ent rate for hyperbolic BH encounters in galactic
uclei is comparable to estimates for other sources of GW signals,
hich is ∼0.9 Gpc −3 yr −1 (Mukherjee, Mitra & Chatterjee 2021 ),

ndependent of any detector. 
GW signals from BBH ev ents hav e a characteristic morphology:

uring the inspiral, before the two BHs merge the signal is sinusoidal,
ith a growing frequency as the radius of the binary decreases.
he remainder of the signal is produced from the merger, and the

ingdown. As the total mass of the binary increases, the frequency
t which the merger occurs decreases, and consequently, for high-
ass systems, the merger may occur close to the lowest frequency

he detector is capable of successfully observing. In such a scenario,
he signal might appear to have little or no inspiral due to the lower
requency limit of ground-based detectors. The waveforms of BH
ncounters, or parabolic BH captures will often have no inspiral,
r only a small number of cycles of inspiral. As a result, it is not
mplausible that an event may be misinterpretted as a high-mass BH
oalescence when in fact it had been a BH capture. An example of
n observation that fits these conditions is GW190521, which has
een interpreted as a BBH coalescence with a total mass around
42 M � (Abbott et al. 2020a , b ; Nitz et al. 2021 ; Nitz & Capano
021 ; Estell ́es et al. 2022 ). 
The use of unmodelled ‘burst’ searches has been proposed for

hese highly eccentric mergers (Tiwari et al. 2016 ; Abbott et al.
019b ; Ramos-Buades et al. 2020 ), though they are less capable of
igging deep into the noise for signals and their sensitivity is hard
o quantify (Klimenko et al. 2016 ). Therefore, it is probable that
W190521-like signals will be detected using analyses designed

o identify and analyse BBH signals in the future, rather than
hose designed for more exotic waveform morphologies. At present,
arameter estimation analyses using an approximant for parabolic
apture signals is not viable due to a lack of sufficiently flexible
aveform models. We therefore ask if analyses using BBH waveform
odels will produce different, and distinguishable, results when used

o analyse both BBH and parabolic capture signals. In order to do
his,we conducted two sets of analyses: one analysing simulated BBH
ignals injected into simulated noise and one analysing simulated
arabolic capture signals in simulated noise. We then compare the
osterior probability distributions of the BBH and parabolic capture
njections. 

The conventional approach for parameter estimation used in GW
nalysis uses Bayesian inference and stochastic sampling, which
sually requires a large amount of computation. Therefore, a neural
etwork that can quickly give a posterior under BBH model while
aintaining a fairly high accuracy was employed. Comparative

tudies of such a neural network approach and conventional Bayesian
arameter estimation techniques have shown that a properly trained
eural network is capable of emulating a posterior distribution to an
cceptable level of accuracy (Gabbard et al. 2021 ). Given the large
mount of simulated data required for our study, we used the network
o obtain the posteriors for each simulation. We compare the mass,
istance,and merger time posterior distributions using the Jensen–
hannon (JS) divergence (Lin 1991 ) to quantify any differences
etween these posteriors for the simulated population of BH captures
nd BBH signals. 

The outline of this paper is as follows. In Section 2 , we
escribe the production of the simulated parabolic BH capture
NRAS 516, 3847–3860 (2022) 
nd BBH signals thate used for the analysis. In Section 3 , we
escribe the parameter estimation method, and the use of a deep
earning approach to impro v e computing speed. The results of this
nalysis are presented in Section 4 . Finally, the main outcomes
f the work and possible future directions are summarized in
ection 5 . 

 M O C K  DATA  CREATI ON  

ecent advances in numerical relativity (Bae et al. 2017 ) have
llowed the production of gravitational waveforms for unequal mass
H encounters under the parabolic approximation, which were used

n this work. The generated waveforms are applicable for non-
pinning pairs of BHs with relative velocity up to 10 ∼ 20 per cent
f the speed of light. The four waveforms we used to produce
ur mock data are from parabolic BH captures with mass ratios
 ∈ { 1, 4, 8, 16 } . While these waveforms contain a merger and a
ingdown, they lack the characteristic sinusoidal morphology of the
nspiral. 

We used the MINKE (Williams 2018 ) python package to generate
he parabolic capture injections. MINKE is a toolkit designed to
roduce injection sets for signals derived from numerical relativity
imulations and performs the appropriate rescaling required to
roduce waveforms for systems with any total mass and at any
uminosity distance. The signal is then convolved with the detector’s
ntenna pattern and time shifted for the corresponding detector.
he process for producing the mock data set using MINKE is as

ollows. 
For each of the four mass ratios we considered, we chose a

uminosity distance and a sky location for the parabolic capture
aveforms, which produced a posterior probability distribution
hen analysed by VITAMIN , which was visually similar to the
osterior from analysing a high-mass BBH signal. The posterior of a
ypical BBH has a shape with the following features: it should have
bvious peaks and narrow width of the marginal distributions, which
ndicates that the corresponding parameters have been inferred well
nder the BBH model. The maxima of the marginal distributions
rom BH captures are not required to be in the same locations as a
ypical BBH. The visual method essentially checks that the posterior
istributions neither rail against nor are compressed towards one of
he edges of the prior for a particular parameter. This led us choosing
he waveform parameters shown in Table 1 . The simulated data are
reated with a fixed total mass of 150 M � and a luminosity distance
 0 in [100, 8000] Mpc. Here, and elsewhere in this work, masses are
uoted in the detector frame. The right ascension and declination,
, δ, and the waveform polarization, ψ were distributed uniformly

or all waveforms. The detectors we used are LIGO Handford (H1),
IGO Livingston (L1; Aasi et al. 2015 ), and Virgo (V1; Acernese
t al. 2014 ). 

The start time t start was specified when generating mock signal,
hile the merger time t 0 and signal length could not be. For the
arabolic BH capture waveforms with a mass ratio of 1, 4, 8, and 16,
he length of the raw data produced by MINKE ranges from 0.88 to
.34 s. We manually truncated the time series, or padded it with
eros, to fit the 1-s analysis constraint of VITAMIN . At the same
ime, we put the signal’s peak at t 0 = 0.22 s, which lies within the
retrained prior range [0.15, 0.35] s expected by VITAMIN . To make
he network function properly, signals were processed in the same
ay as the training data. VITAMIN requires that the input data are
hitened using detector amplitude spectral density (ASD), and given
 zero mean, unit variance Gaussian noise. This whitening process
as adopted mainly to scale the data more properly for input to the
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(a) (b)

(c) (d)

Figure 1. Examples of BBH and parabolic BH capture injections are used in this work. The panels on the left show the signal before injection, and those on 
the right show the signal whitened against the power spectrum of the simulated detector noise. In the top row, (a) represents a typical high-mass BBH signal for 
a system with m 1 = 78 M �, m 2 = 72 M � at a distance of 1400 Mpc and (b) depicts the signal from (a) whitened. In the bottom row, (c) represents a parabolic 
BH capture signal for a system with mass ratio q = 1, and a total mass of 150 M � at a distance of 5000 Mpc, with (d) depicting it whitened. All waveforms in 
this paper correspond to a three-detector configuration, while here we only show the signal in H1 detector. 

Table 1. The injections of parabolic BH capture mock data used for VITAMIN 
analysis. We list the start time t start , the reference time t ref in GPS time, and 
the fixed merger time t 0 = 0.22 s , where the merger time in GPS time t merger 

= t ref + t 0 . Here, and elsewhere in this work, masses are quoted in the detector 
frame. 

Parameter Injection 

m total (M �) 150 
d L (Mpc) d 0 
t 0 (s) 0.22 
α (0, 2 π ) 
δ ( −π /2, π /2) 
ψ (0, 2 π ) 
Duration (s) 1 
t start (GPS time) 1126259642 
t ref (GPS time) 1126259642.5 
Detector network H1, L1, V1 
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eural network, and we employed aLIGO zero detuning, 1 high power 
esign sensitivity ASD for H1 and L1, and the advanced Virgo 2 ASD
 See https://dcc.ligo.org/T1800044-v5/public 
 See https://dcc.ligo.org/LIGO- P1200087- v42/public 

3

I
z

or V1. Examples of BBH and parabolic BH capture injections are
howed in Fig. 1 . 

 ANALYSI S  

he most widely used approach to analysing BBH signals uses 
ayesian inference (Veitch & Vecchio 2008 , 2010 ). One analysis
ipeline that is widely used is BILBY (Ashton et al. 2019 ; Romero-
haw et al. 2020a ), a modular PYTHON package. Ho we ver, it is com-
utationally intensive because it uses stochastic sampling techniques 
o estimate the posterior. Instead, we used VITAMIN (Gabbard et al.
021 ) to produce rapid posterior estimates for each injection. Due
o the high-mass systems we focus on, we first used the pre-training
unction supported by VITAMIN to expand its prior parameter space 
o Table 2 . Once we obtained a posterior that is visually similar to
hat for a BBH, we applied Bayesian inference to the corresponding
ignal using non-spinning and spinning BBH templates. For the two 
nferences, we employed the IMRPhenomPv2 (Ajith et al. 2007 ; 
han et al. 2016 ) approximant, respectively 3 because it was used
MNRAS 516, 3847–3860 (2022) 

 IMRPhenomPv2 has six parameters to model the spins of BBH system. 
n order to produce non-spinning waveforms from it, we set the six spins as 
ero. 

art/stac2385_f1.eps
https://dcc.ligo.org/T1800044-v5/public
https://dcc.ligo.org/LIGO-P1200087-v42/public
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M

Table 2. The priors and fixed parameter values used on non-spinning BBH 

model parameters for VITAMIN analysis. 

Parameter min max prior 

m 1, 2 (M �) 30 160 uniform 

d L (Mpc) 1000 3000 uniform 

t 0 (s) 0.15 0.35 uniform 

α 0 2 π uniform 

δ −π /2 π /2 cosine 
θ jn 0 π sine 
spins 0 - 
duration (s) 1 - 
t start (GPS time) 1126259642.0 - 
t ref (GPS time) 1126259642.5 - 
detector network H1, L1, V1 
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Table 3. The priors and fixed parameter values used on non-spinning BBH 

model parameters for BILBY analysis. In this analysis, we use a 4-s duration 
time series. 

Parameter Min Max Prior 

m 1, 2 (M �) 30 160 uniform 

d L (Mpc) 1000 3000 uniform 

t 0 (s) 0.15 0.35 uniform 

α 0 2 π uniform 

δ −π /2 π /2 cosine 
θ jn 0 π sine 
ψ 0 π uniform 

φ 0 2 π uniform 

spins 0 - 
duration (s) 4 - 
t start (GPS time) 1126259642.0 - 
t ref (GPS time) 1126259644.5 - 
detector network H1, L1, V1 

Table 4. The priors and fixed parameter values used on spinning BBH model 
parameters for BILBY analysis. In this analysis, we use a 4-s duration time 
series. 

Parameter Min Max Prior 

m 1, 2 (M �) 30 160 uniform 

d L (Mpc) 1000 3000 uniform 

t 0 (s) 0.15 0.35 uniform 

α 0 2 π uniform 

δ −π /2 π /2 cosine 
θ jn 0 π sine 
ψ 0 π uniform 

φ 0 2 π uniform 

a 1, 2 0 0.99 uniform 

θ1, 2 0 π sine 
	φ 0 2 π uniform 

φJL 0 2 π uniform 

duration (s) 4 - 
t start (GPS 
time) 

1126259642.0 - 

t ref (GPS time) 1126259644.5 - 
detector 
network 

H1, L1, V1 
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o train VITAMIN . We carried-out these analyses using BILBY as a
orroboration for VITAMIN analysis. 

.1 Bayesian inference 

he probability distribution on a set of parameters, conditional on
he measured data, can be determined using Bayes Theorem, which
an be represented as 

( x | y ) = 

p( y | x ) p( x ) 

p( y ) 
, (1) 

here x are the parameters, y are the observed data, p ( x ) is the prior
n the parameters, p ( y ) is the probability of the data, p ( x | y ) is the
osterior, and p ( y | x ) is the likelihood. 
GW parameter estimation analyses typically require the explo-

ation of a very large parameter space while analysing a large
olume of data. To address this, it is typical to use a stochastic
ampler to reconstruct the posterior. This sampling can be done with
 variety of techniques, including Nested Sampling and Markov
hain Monte Carlo (Hastings 1970 ; Christensen & Meyer 2001 ;
ornish & Crowder 2005 ) methods. The popular software packages
sed by LIGO parameter estimation analyses are LALINFERENE and
ILBY , which offer multiple sampling methods. We used BILBY , a
ayesian inference library for GW astronomy, as an interface for the
YNESTY (Speagle 2020 ) sampler. 

Once the appropriate posteriors had been obtained in Section 3.2 ,
ne example of the corresponding signals was expanded with a data
egment of 4 s and a sampling rate of 1024 Hz for a precise analysis.
e used the DYNESTY sampler and both spinning and non-spinning
BH wav eforms dra wn from the IMRPhenomPv2 model to perform
arameter estimation on the data. The priors we used are shown in
ables 3 and 4 . 
We then calculated the Bayes factors K for non-spinning BBH-

emplate and spinning BBH-template against the noise. The Bayes
actor is defined as 

 = 

p( y | x , H 1 ) 

p( y | x , H 2 ) 
= 

∫ 
p( x 1 | H 1 ) p( y| x 1 , H 1 )d x 1 ∫ 
p( x 2 | H 2 ) p( y| x 2 , H 2 )d x 2 

, (2) 

here H 1 and H 2 are two different hypotheses. With a K > 1 indicating
reater support for H 1 hypothesis. 
Finally, we used the median reco v ered values from the parabolic

apture signal posterior to create injections using two BBH models
one spinning and one non-spinning). These two reco v ered signals
ere compared with the corresponding parabolic capture, demon-

trating the ability of a parabolic capture to mimic a high-mass BH
hen analysed with the IMRPhenomPv2 waveform approximant. 
NRAS 516, 3847–3860 (2022) 
.2 VITAMIN analysis 

ITAMIN is a recently proposed network for BBH signals based
n a conditional variational auto-encoder (Pagnoni, Liu & Li 2018 ;
onolini et al. 2020 ), which has been shown to produce samples
escribing the posterior distribution six orders of magnitude faster
han the traditional Bayesian approach (Gabbard et al. 2021 ). The
etwork used non-spinning BBH approximant IMRPhenomPv2 . It
mits the six additional parameters required to model the spins of
he BBH system and produces posteriors on eight parameters: the
omponent masses m 1 , m 2 , the luminosity distance d L , the time of
oalescence t 0 , the binary inclination θ jn , right ascension α, and
eclination δ. The phase at coalescence φ0 and the GW polarization
ngle ψ are internally marginalized out. For each parameter, we
sed a uniform prior, with the exception of the declination and
nclination parameters for which we used priors that were uniform
n cos ( δ) and sin θ jn . The corresponding prior ranges are defined
n Table 2 . The initial prior range of VITAMIN focuses on low-

ass BH binaries, and the upper limit of the component mass is
0 M �. Ho we ver, we trained the network with a customized prior,
ncreasing the maximum component mass to 160 M � to deal with
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Table 5. The d L injections to produce VItamin posteriors that are visually 
similar to BBH. It decreases with the increase in the mass ratio q . 

Mass ratio q d L injection (Mpc) 

1 5000 
4 2000 
8 1500 
16 500 
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he high-mass BBH system in this study. The BBH signals used 
s training and test data were produced using IMRPhenomPv2 , 
ith a minimum cutoff frequency of 20 Hz. The training procedure 
nly needed to be performed once, and took O(1) day to complete.
he resulting trained network could then quickly generate samples 
escribing the posterior distribution, which was pro v ed to achiev e
he same accuracy of results as trusted benchmark analyses used 
ithin the LIGO-Virgo Collaboration (Gabbard et al. 2021 ). For 
BH signals, GW data are usually sampled to frequencies between 
 and 16 kHz , depending upon the mass of binary. We have chosen a
ow sampling rate of 256 Hz for the VITAMIN network to decrease
he computational time required to train it. We observed that the 

ain frequency component of BH capture signals with total mass 
f 150 M � is around 80 Hz, which is below Nyquist sampling rate
 Nyquist = 128 Hz, thus the signal is well co v ered by the sampling
ange. 

For all parabolic BH capture waveforms, we used one set of sky
ocation injections ( α, δ, and ψ) that contains 100 samples. We only
djusted d L injection for the appropriate posteriors, which were given 
y the VITAMIN network rapidly once the data had been input. d L 
njection is a critical factor due to the effect of waveform scaling.
t must be chosen such that the injected waveform has an SNR that
ould be detectable and produce a plausible posterior distribution 

hat might be mistaken as that of a high-mass BBH. 

 RESULTS  

n the VITAMIN reco v ery study on parabolic BH capture using non-
pinning BBH approximate IMRPhenomPv2 , we did obtain the 
osteriors look superficially like a BBH posterior. 4 The d L injections 
o produce such posteriors are recorded in T able 5 . W e calculated the
ptimal SNR in each detector, which is defined as 

opt = 2 

[∫ f max 

f min 

| h 

2 ( f ) | 
S h ( f ) 

d f 

] 1 
2 

, (3) 

where h ( f ) is the Fourier transform of the (time-domain) GW
ignal, S h ( f ) is the one-sided noise spectral density in units of Hz −1 ,
nd f min ≤ f ≤ f max correspond to the frequency band of the instrument. 
e found that, in the step of adjusting d L injection, waveforms with

 higher mass ratio produced a detectable SNR to smaller luminosity 
istances. 
We also conducted parameter estimation using BILBY on one 

arabolic capture signal, with the posterior distribution sampled 
y DYNESTY . 5 Both spinning and non-spinning BBH templates 
 The posterior probability distribution of a parabolic BH capture that mimics 
 BBH determined by VITAMIN could be seen in Fig. A1 . As a comparison, 
e also display the VITAMIN posterior of a typical high-mass BBH in Fig. 
2 . 
 The posterior probability distributions for a parabolic capture signal analysed 
y BILBY is shown in Figs A3 and A4 using non-spinning and spinning models, 
espectively. 

c  

s
p  

a
s
m  

c  

t  
MRPhenomPv2 have a high log Bayes factor ln K = 134.620 ±0.168 ,
17.134 ±0.155 against noise, strongly supporting the hypothesis that 
he signal is a BBH merger. As a comparison, the reference BBH data
ives a log Bayes factor ln K = 157.363 ±0.209 compared to the noise
ypothesis in the non-spinning BBH analysis. Then we have the 
og Bayes factor between spinning and non-spinning BBH templates 
n K = 17.486 ±0.229 , which is quite small. This illustrates that it is
ery difficult for the Bayes factor to distinguish between the spinning
nd non-spinning models in this case. We then generated the signal
orresponding to the median values of each waveform parameter’s 
osterior, and compared it with the original signal from Fig. 2 , and
e show the whitened waveforms of both the parabolic BH capture

ignal and the reco v ered BBH signal o v erlayed. Here, we can see the
trong similarity in the merger-ringdown phase. 

Furthermore, we might be able to make a case that the resemblance
s more than superficial by reference to a statistic. To do this,
e calculate the JS divergence (Lin 1991 ) between the posterior
istributions calculated by analysing both injected BBH signals and 
njected parabolic capture waveforms. If the posterior distributions 
rom an injected BBH and an parabolic capture signal are not
tatistically distinctiv e, the y will hav e a small JS div ergence, and
e can infer that the use of the incorrect waveform model in the

nalysis would not be detected. The JS divergence is a symmetrized
nd smoothed measure of the distance between two probability 
istributions p ( x ) and q ( x ) defined as 

 JS ( p | q) = 

1 

2 
[ D KL ( p | s) + D KL ( q | s) ] , (4) 

here s = 1/2( p + q ) and D KL is the Kullback–Leibler divergence
etween the distributions p ( x ) and q ( x ) expressed as 

 KL ( p | q) = 

∫ 
p ( x) log 2 

(
p ( x) 

q( x) 

)
d x. (5) 

JS divergence ranges between [0, 1], a greater value of which
ndicates that the posteriors from two signals have a greater difference 
herefore they could be well distinguished. The two JS divergences 
e considered are: 

(i) D JS, noise : the divergence between posteriors of reference BBH 

ignal with different white noise realizations. 
(ii) D JS, ref : the divergence between posteriors of parabolic capture 

nd reference BBH signal, with the same noise realization. 

D JS, noise reflects the volatility of the VITAMIN results when dealing 
ith different white noise, whereas D JS, ref represents the bias of the
MRPhenomPv2 template when modelling parabolic BH capture 
ignals. We expect that D JS, ref should be obviously greater than the
 JS, noise , in this case calculating D JS, ref could be considered as a fast

pproach to distinguish BBH and parabolic BH capture events. 
We then created mock data for the JS divergence analysis. For each

arabolic BH capture waveform, we reproduced one signal that can 
enerate a posterior, which is visually similar to one from a BBH.
e analysed 100 noise realizations with the same signal injected 

nd produced injections at the same sky location. As a result, by
onsidering the same injection time t 0 , the antenna pattern is the
ame for each waveform. The injections and corresponding posterior 
eaks from the reco v ery are presented in Table 6 . For reference, we
lso analysed 100 noise realizations with BBH signals, where the 
ignal parameters: total mass, right ascension α, declination δ, and 
erger time t 0 , are the same as the parabolic BH capture. d L was

hanged in order to scale the BBH signal’s amplitude to be similar
o the parabolic BH capture by visual comparison. Its injections and
MNRAS 516, 3847–3860 (2022) 
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Figure 2. The whitened parabolic BH capture and the whitened reco v ered BBH signals at detector H1. The waveform with mass ratio q = 1 was injected with 
a total mass of 150 M � at a distance of 5000 Mpc. The parameter estimation was then performed on the signal using non-spinning and spinning BBH model 
IMRPhenomPv2 by BILBY . Here, we present the waveform corresponding to the median values of each parameter’s posterior distribution. 

Table 6. The injections of mock signals used for JS divergence analysis, including parabolic BH capture, its reco v ered BBH, and reference BBH. 
For parabolic BH capture, we took the average peak value of VITAMIN posterior as the reco v ered injection. The inefficienc y and bias introduced by 
analysing the parabolic BH capture signal with a non-spinning BBH model IMRPhenomPv2 can be seen clearly, as waveforms with a higher mass 
ratio were reco v ered to a higher total mass and lower luminosity distance with a detectable SNR. NB: ψ is marginalized in VITAMIN inference, so 
we used ψ = 0 for the injection. θ jn is not an ef fecti ve parameter for the parabolic BH capture waveform. We also note that the start time t start = 

1126259642.0, the reference time t ref = 1126259642.5 in GPS time, and the merger time t merger = t ref + t 0 . 

Mock signal m 1 (M �) m 2 (M �) d L (Mpc) t 0 (s) α δ ψ θ jn 

Network 
SNR 

Parabolic BH capture m1 75 75 5000 0.22 0.89 −0.94 1.54 - 11.13 
Reco v ered BBH 76 68 1624 0.25 1.69 1.20 - 1.33 10.76 
Parabolic BH capture m4 120 30 2000 0.22 0.89 −0.94 1.54 - 7.63 
Reco v ered BBH 88 75 2278 0.26 4.69 1.21 - 1.76 4.38 
Parabolic BH capture m8 133.3 16.7 1500 0.22 0.89 −0.94 1.54 - 9.93 
Reco v ered BBH 98 83 1804 0.26 4.66 1.23 - 1.78 6.77 
Parabolic BH capture m16 141.2 8.8 500 0.22 0.89 −0.94 1.54 - 13.90 
Reco v ered BBH 104 90 1647 0.26 1.94 1.24 - 1.30 11.86 
Reference BBH 78 72 1400 0.22 0.89 −0.94 1.54 1.51 11.27 
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orresponding posterior peaks from the reco v ery are also shown in
able 6 . 
In this way, we created a situation where two similar-looking GW

vents, one BBH and one parabolic capture, were observed. We then
omputed the JS divergence between their posteriors to measure
heir similarity. We note that while eight parameters can be inferred
or a input signal by VITAMIN , the three parameters that showed the
reatest JS divergences were the component masses, m 1 , m 2 and the
erger time, t 0 . 
Having computed the JS divergence for all 100 pairs of signals,

e looked at the distribution of the divergences in Fig. 3 , where
he three subplots represent the JS divergences of the components

asses m 1 , m 2 , and the merger time t 0 . The distribution of D JS, noise 

s generally close to zero, suggesting that the effect of noise on
ITAMIN ’s posterior is rather limited as we hope. We calculated D 90 ,
he 90 per cent confidence interval of p ( D JS, noise ), and used this as a
hreshold. Then the percentage of D JS, ref , which is higher than this
hreshold, can indicate how far the distribution of D JS, ref is away
rom the noise benchmark. The related result is recorded in Table 7 .
he D 90 are 0.121, 0.134, and 0.309 for m 1 , m 2 , and t 0 , respectively.
hough D 90 of t 0 is noticeably larger than those of the component
asses of high, there is a large gap between distributions of D JS, noise 

nd D JS, ref for this parameter, the percentage of which reaches 100
er cent for three waveforms and 97 per cent for the other one. The
NRAS 516, 3847–3860 (2022) 
reatest difference between the posteriors comes from the bias of
he BBH approximatant IMRPhenomPv2 . For the same injection
 0 = 0.22 s, a BBH signal is reco v ered with a peak value of 0.22 s,
ut a parabolic BH capture is more likely to be reco v ered slightly
ater with a reco v ered peak value of 0.25 or 0.26 s (See this in
able 6 ). Therefore, this bias can be demonstrated through the the
S divergence analysis and used to test if a signal is a parabolic BH
apture. Besides, we also find that, for m 1 , the average percentage of
 JS, ref abo v e D 90 is 79.5 per cent, which has a more discriminative

ffect than that of m 2 . Parabolic captures with a mass ratio of 8
nd 16 can be distinguished fairly well from BBH signals, and the
owest percentage of them that is higher than the threshold is also
s high as 85 per cent. This means we could have great confidence
o distinguish the two types of signals when analysing with a BBH
aveform. 
Ho we ver, under a more realistic detection scenario, we have no

ccess to the true parameters of the signal. Thus, in addition to
alculating D JS, ref , we should also compare the posteriors of the
arabolic BH capture and its reco v ered signal and look for the
vidence of the bias. Therefore, the reco v ered peak values were taken
he average from 100 samples and used to inject the non-spinning
BH model IMRPhenomPv2 with the same noise realization. The

njections are recorded in Table 6 . The new JS divergence we
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(a) (b)

(c)

Figure 3. Distributions of the JS divergence between parabolic BH capture and reference BBH D JS, ref shown as the outline histograms and the JS divergence 
between reference BBHs with different noise D JS, noise , shown as the shaded histogram. The JS divergence analysis is performed for four waveforms with mass 
ratio q = 1, 4, 8, and 16 and three parameters m 1 , m 2 , and t 0 , respecti vely. We e v aluated our distinguishing method in terms of stability and ef fecti veness. The 
former is illustrated by very low distributions of D JS, noise , which have 90 per cent upper limit, shown as a dashed line, of m 1 , m 2 , and t 0 at 0.121, 0.134, and 
0.309. The latter is demonstrated by a high gap between distributions of D JS, noise and D JS, ref , especially regarding JS divergence of t 0 . The exact information 
about it is presented in Table 7 . This demonstrates that our approach works well. 

Table 7. The percentage of D JS, ref and D JS, reco v er is higher than the noise 
threshold for parabolic BH capture waveform with a mass ratio of 1, 4, 8, and 
16. The threshold is represented by D JS, noise at 90 per cent confidence level, 
which is 0.309, 0.121, and 0.134 for t 0 , m 1 , and m 2 , respectively. 

Mass ratio t 0 m 1 m 2 

D JS, ref 1 100 % 49 % 11 % 

4 97 % 74 % 52 % 

8 100 % 95 % 86 % 

16 100 % 100 % 100 % 

D JS, reco v er 1 9 % 28 % 24 % 

4 46 % 62 % 64 % 

8 19 % 32 % 27 % 

16 8 % 32 % 27 % 
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b  
(i) D JS, reco v er : the JS divergence between the posterior of a 
arabolic BH capture and its reco v ered BBH signal injected using
he reco v ered peak values, with the same noise realization. 

D JS, reco v er describes the effect of reco v ering parabolic BH capture.
f the input signal is actually a BBH merger, its reco v ered signal
hould have a very similar posterior probability density distribution. 
n this case, the distribution of D JS, reco v er is close to zero but slightly
igher due to the noise, of which the effect can be represented by
 JS, noise . But for other signals, if the difference between the posteriors 
f the reco v ered signal and itself is great, then D JS, reco v er could be
sed as a criterion. 
We plotted the distributions of D JS, reco v er and compared it with the

oise benchmark in Fig. 4 . Three subplots represent JS divergence 
f m 1 , m 2 , and t 0 . Ho we v er, it almost o v erlaps with the distributions
f D JS, noise for the three parameters, which suggests a high similarity
etween posteriors of parabolic BH capture and the reco v ered high-
MNRAS 516, 3847–3860 (2022) 

art/stac2385_f3.eps


3854 W. Guo et al. 

M

(a) (b)

(c)

Figure 4. Distributions of the JS divergence between parabolic BH capture and its reco v ered BBH D JS, reco v er shown as the outline histograms, and the JS 
divergence between reference BBHs with different noise D JS, noise shown as a shaded histogram. The JS divergence analysis is performed for four waveforms 
with mass ratio q = 1, 4, 8, and 16 and three parameters m 1 , m 2 , and t 0 , respectively. Here, we considered the application of our distinguishing method in more 
realistic scenarios and e v aluated it in terms of stability and ef fecti veness. The stability is the same as before with very low distributions of D JS, noise , with the 
90 per cent upper limit represented by a dashed line. Ho we ver, the distributions of D JS, noise and D JS, reco v er almost overlap, which suggests that the two types of 
signal cannot be well distinguished in this situation. (More information about this is presented in Table 7 .). 
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ass BBH. We also determined the percentage of D JS, reco v er that were
igher than D 90 and recorded them in Table 7 . D JS, reco v er has a much
ower percentage than D JS, ref abo v e D 90 . Except for the waveform
ith mass ratio of 4, the highest percentage of their D JS, reco v er greater

han the threshold is only 32 per cent . The waveform with mass ratio
f 4 is unusual compared to others, with the average percentage
eaching 57 . 3 per cent . Since we do not know a priori what the mass
atio of the waveform is in the real analysis, we must consider all
he waveforms equally, so this value would not be enough to provide
upport that the evidence of the bias has been found. In addition,
 JS, ref has a good performance on t 0 , while D JS, reco v er is difficult to

ell apart from D JS, noise as it has an average percentage of 20 . 5 per cent
bo v e D 90 . 

Apart from being used for JS divergence analysis, Table 6 also
ives us an inspiration about the patterns on injected and reco v ered
NRAS 516, 3847–3860 (2022) 
arameters. First, for parabolic BH capture waveforms with mass
atios of 1, 4, 8, and 16, the total mass is reco v ered as 144, 163,
81, and 194 M �, respectively. These amount to a tendency for the
ising of the reco v ered total mass with the mass ratio q increasing,
nd the former one is much higher than the injection of 150 M �
hen the mass ratio is greater than 1. We also find that the reco v ered
ass ratios are 1.12, 1.17, 1.18, and 1.16, respectively, which are all

lose to one. For comparison, GW190521 has a mass ratio of 1.29,
nd it is basically consistent with the analysis result we got. The
ensitive distance decreases with the increase in the mass ratio q . For
qual-mass BH binaries, eccentric sources are thought to be much
loser than BBH sources with a circular orbit in inspiral. Another
iscrepancy that could be highlighted is that the reco v ered merger
imes t 0 are all about 0.04 s behind the injection truth. We suspect that
t is caused by a mathematical fit of the BBH model to the capture
ignal, but we will investigate for a deeper pattern in the future. 

art/stac2385_f4.eps


Binary black hole mimics 3855 

5

I
G  

s
a
p
t
e
m  

i
c  

w  

r  

e  

t
c
t
D  

s

B  

s  

1
i  

T  

a
G
w

 

d
s
n
o  

w  

J
B  

o  

d
o
i  

b  

c  

s  

a  

G
n  

a
a

e  

m  

s  

a  

v  

s  

o
m  

t

o

t  

r  

i
a
c
p  

o
i  

f  

c  

p  

n
c
d  

a  

p

n  

B
e  

B
i
Z  

2
p  

a
2  

e  

p  

p
a  

a

t  

T
t
e  

s
a  

i  

l
f  

r  

i  

f
p  

2

A

W  

R
t
a
D
S
N
(  

2
N
a

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/3/3847/6677409 by U
niversity of G

lasgow
 user on 22 Septem

ber 2022
 SUMMARY  A N D  DISCUSSION  

n this work, we proposed the possibility that current approaches to 
W analysis could misclassify parabolic BH capture signal as a BBH

ignal. We then demonstrated a scenario under which this could occur 
nd devised for a statistical method to distinguish them. We injected 
arabolic BH capture waveforms to produce mock data, using a 
ool developed for characterizing burst searches, MINKE , which was 
xploited to make injection with the customized distribution. The 
ain difficulty is that it is impossible to predict how a signal can be

nferred under a biased multiparameter model, and the computational 
ost of traditional Bayesian inference is e xpensiv e. To o v ercome this,
e adopted VITAMIN , a neural network based on the BBH model, and

etrained it to fit high-mass BBH signals, which reduced the cost of
ach parameter estimation to a very low level. This greatly helped us
o continuously adjust the injection parameters of the parabolic BH 

apture and finally obtain the appropriate posterior probability. After 
hat, we also performed confirmatory parameter estimation using 
YNESTY sampler, of which the result also had a strong statistical
upport. 

Here, we summarize our main conclusions in more detail. 
We have established that there are scenarios in which a parabolic 

H capture could be reco v ered as a spinning (non-spinning) BBH
ignal with high statistical support, a log Bayes factor of ln K =
34.6 (111.7), compared to a noise hypothesis. This type of signal 
s likely to be mistaken as a high-mass BBH by LIGO and Virgo.
herefore, it would be valuable to be vigilant to this possibility when
 high-mass BBH system is identified in an analysis, otherwise future 
W events may be misclassified. This should be considered in cases 
here the waveform seems to lack a clear inspiral phase. 
In this study, we have built a rapid approach to describe the

ifference between the posteriors of BBH and parabolic BH capture 
ignals and distinguish them. This approach is based on neural 
etwork, VITAMIN , and compares the distribution of JS divergences 
f three parameters m 1 , m 2 , and t 0 from two types of GW signals,
ith that of noise benchmark D 90 . Its validity has been pro v ed by the

S divergence between the parabolic BH capture and the reference 
BH, D JS, ref , which has 79.5 per cent, 62.3 per cent, and 99.3 per cent
f samples o v er D 90 for m 1 , m 2 , and t 0 . Ho we ver, in a more realistic
etection scenario, our analysis does not yield evidence that two types 
f GW events are distinguishable with the current BBH Bayesian 
nference. This is a result of the lo wer v alue of the JS divergence
etween the parabolic BH capture and its reco v ered BBH D JS, reco v er ,
ontaining only 38.5 per cent, 35.5 per cent, and 20.5 per cent of
amples located abo v e D 90 for m 1 , m 2 , and t 0 . The result of our
nalysis would not therefore allow us to make an identification of a
W190521-like signal. As a result, the parabolic BH capture could 
ot be distinguished from a BBH by the current quasi-circular BBH
nalysis, which highlights the importance of a good BH capture 
pproximant in the future. 

We have identified the patterns on injected and recovered param- 
ters. F or four wav eforms, there is a tendenc y for the reco v ered total
ass to rise as the mass ratio increases; only one from the equal-mass

ystem has a reco v ered total mass close to the injection of 150 M,
nd the total masses of the others are reco v ered with much higher
alues. The reco v ered mass ratios are all close to one, which we also
ee on GW190521 with a mass ratio of 1.29. In contrast to the pattern
bserved with the total mass, the sensitive distance decreases as the 
ass ratio increases. We also note that that the reco v ered merger

imes are all offset by around 0.04 s compared to the injected value. 
The research in this paper constitutes a comparatively novel use 

f deep learning in GW data analysis. A typical Bayesian approach 

b

o analyses used in this study takes 8–14 h while the neural network
equires around 50 s. For each waveform, there were about four
terations on average before determining the appropriate d L injection, 
nd each turn gave 100 Bayesian posteriors corresponding to the 
ombinations of sky location. A total of 1600 inferences were 
erformed in this stage. Once the posteriors that mimic BBH were
btained, we selected one signal from each waveform and analysed 
t with 100 noise realizations, as well as the reference BBH signal,
or the construction of JS divergence distribution, of which the stage
ontained 500 inferences. BBH signals injected from the reco v ered
eaks of the BH capture signals were then inferred with the same
oise realization sets. This last step required 400 inferences and 
onstructed the distribution of D JS, reco v er to finally describe the 
ifference between BBH and BH capture signals. Overall, the use of
 neural network saved around 2.7 × 10 4 h when performing 2500
arameter estimation analyses. 
Because of computational cost limitations in training, the VITAMIN 

etwork has not been trained to take into account the spins of the
BH model. One promising signature of the BH binary formation 
nvironment is the angular distribution of BH spins (Farr et al. 2017 ).
inaries formed through dynamical interactions are expected to have 

sotropic spin orientations (Sigurdsson & Hernquist 1993 ; Portegies 
wart & McMillan 2000 ; Rodriguez et al. 2015 ; Rodriguez et al.
016 ; Stone, Metzger & Haiman 2017 ) whereas systems formed from 

airs of stars born together are more likely to have spins preferentially
ligned with the binary orbital angular momentum (Belczynski et al. 
016 ; Mandel & de Mink 2016 ; Marchant et al. 2016 ; Stevenson
t al. 2017 ). When modelling the BH capture data, the six additional
arameters of spins, as intrinsic properties of a binary, are expected to
lay an important role in distinguishing binary formation channels, 
llowing a further precise search that has been done in the real data
nalysis. We will return to this subject in future work. 

The component mass prior range of VITAMIN can be expanded and 
he sampling rate can be raised to co v er more BH capture samples.
hese events are principally from low-frequency sources, making 

hem ideal candidates for both Einstein Telescope (Sathyaprakash 
t al. 2012 , 2013 ), which aims to achieve much greater low-frequency
ensitivity than current detectors, but also for Deci-Hz detectors, such 
s DECIGO (Kawamura et al. 2006 , 2021 ). The misclassification
s expected to be eliminated with their ability to observe at much
ower frequencies, removing the ambiguity between unobserved low- 
requency inspiral cycles and a total lack of inspiral. The detection
ate of BH captures is dependent on the initial mass function of stars
n galactic nuclei and the mass of the most massive BHs. Therefore
uture observations can constrain both the average star formation 
roperties and upper mass of BHs in galactic nuclei (O’Leary et al.
009 ). 
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PPENDI X  A :  FULL  V I TAM I N A N D  BILBY  

OSTERI ORS  

n this appendix, we present corner plots for the posterior distri-
utions produced by analysing a parabolic BH capture with both
ITAMIN (Fig. A1 ) and BILBY with a non-spinning BBH model
Fig. A3 ), a BBH merger injection with VITAMIN (Fig. A2 ), and
ILBY with a spinning BBH model (Fig. A4 ). 
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Figure A1. The posterior probability density distribution for a BH capture, reco v ered using a non-spinning BBH model and VITAMIN . 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/3/3847/6677409 by U
niversity of G

lasgow
 user on 22 Septem

ber 2022

art/stac2385_fA1.eps


3858 W. Guo et al. 

MNRAS 516, 3847–3860 (2022) 

Figure A2. The posterior probability density distribution for a BBH, reco v ered using a non-spinning BBH model and VITAMIN . 
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Figure A3. The posterior probability density distribution for a BH capture, reco v ered using a non-spinning BBH model and the DYNESTY sampler. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/3/3847/6677409 by U
niversity of G

lasgow
 user on 22 Septem

ber 2022

art/stac2385_fA3.eps


3860 W. Guo et al. 

MNRAS 516, 3847–3860 (2022) 

Figure A4. The posterior probability density distribution for a parabolic BH capture, reco v ered using a spinning BBH model and the DYNESTY sampler. Here, 
we show the posterior for the main parameters and omit six spins. 

This paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/516/3/3847/6677409 by U
niversity of G

lasgow
 user on 22 Septem

ber 2022

art/stac2385_fA4.eps

	1 INTRODUCTION
	2 MOCK DATA CREATION
	3 ANALYSIS
	4 RESULTS
	5 SUMMARY AND DISCUSSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: FULL AND BILBY POSTERIORS

