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ABSTRACT

As the number of gravitational wave observations has increased in recent years, the variety of sources has broadened. Here, we
investigate whether it is possible for the current generation of detectors to distinguish between very short-lived gravitational wave
signals from mergers between high-mass black holes and the signal produced by a close encounter between two black holes,
which results in gravitational capture and ultimately a merger. We compare the posterior probability distributions produced by
analysing simulated signals from both types of progenitor events, both under ideal and realistic scenarios. We show that while
under ideal conditions it is possible to distinguish both progenitors, under realistic conditions they are indistinguishable. This
has important implications for the interpretation of such short signals, and we therefore advocate that these signals be the focus

of additional investigation even when satisfactory results have been achieved from standard analyses.

Key words: black hole physics —gravitational waves — galaxies: nuclei.

1 INTRODUCTION

In recent years, binary black hole (BBH) observations have become a
mainstay of gravitational wave (GW; Sathyaprakash & Schutz 2009)
detection (Abbott et al. 2019a; Abbott et al. 2021; Collaboration
et al. 2021). Observable BBH signals are produced during the late
stages of the decay of a bound orbit of two black holes (BHs):
these observations are typically short-lived, and have a distinctive
morphology, produced by the final orbits (the ‘inspiral’ phase), the
merger of the two BHs, and finally the ‘ringdown’ of the final, merged
BH. Most BBHs are expected to be circularized before the merging
due to the loss of the orbital energies during the inspiral phase (Peters
1964; Hinder et al. 2008; Abadie et al. 2010), therefore the current
analyses of GW data and the parameter estimations of GW sources
have focused on binaries with circular orbits. Eccentricity has not
been detected (Romero-Shaw, Lasky & Thrane 2019; Abbott et al.
2019b; Wu, Cao & Zhu 2020) in the O1 and O2 observing runs of
LIGO/Virgo (Acernese et al. 2014; Aasi et al. 2015), while a high-
mass BBH event in O3a, GW190521 (Abbott et al. 2020a,b), shows
evidence it may have been both highly eccentric and dynamically
formed, as a result of parameter estimation analysis (Romero-Shaw
et al. 2020b; Gamba et al. 2021) using both spin-aligned eccentric
waveform approximants, SEOBNRE (Cao & Han 2017; Liu, Cao &
Shao 2020; Romero-Shaw et al. 2020b) and TEOBResumsS (Gamba
et al. 2021; Nagar et al. 2021); and numerical relativity simula-
tions (Gayathri et al. 2022).
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There are several dynamical-formation scenarios (Lightman &
Shapiro 1978; Sigurdsson & Hernquist 1993; Zwart & McMillan
2000; Samsing, MacLeod & Ramirez-Ruiz 2014; Morscher et al.
2015; Gondan et al. 2018; Yang et al. 2019) that support the
formation and merger of binary systems while retaining eccentricity
throughout their lifetime. One of the formation processes of these
eccentric BH binaries is a gravitational radiation-driven capture.
Captures are expected to take place in galactic nuclei, where the
central super massive BH creates a steep density cusp of stellar-
mass BHs. This can provide a suitable environment for eccentric
BBH formation (O’Leary, Kocsis & Loeb 2009). In accordance with
the conditions of the initial orbital energy Eomia and the initial
angular momentum Liyia;, the motion of the binary systems can
be classified as bound (circular or elliptical) and unbound (parabolic
or hyperbolic) orbits (Capozziello et al. 2008; Capozziello & De
Laurentis 2008; Berry & Gair 2010; De Laurentis & Capozziello
2010).

Gravitationally unbound interactions, or encounters, occur when
Eowial > 0 without direct capture, and the trajectory of one component
of the system will be either parabolic or hyperbolic relative to the
other. The GW signals produced from such encounters do not resem-
ble those from bound systems, but will instead produce a strong burst
of radiation as the objects have their closest encounter. The process
may be considered a gravitational analogy to Bremsstrahlung (Peters
1970).

In this work, we will focus on parabolic encounters (Bae et al.
2017) with Egwier = 0. BH encounters that correspond to parabolic
orbits at infinity merge quickly if their initial angular momentum is
not suitably large enough (O’Leary et al. 2009). We use the term
‘parabolic BH capture’ to refer to the systems that form and merge
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in this way. In other cases, the binaries tentatively pass by and finally
merge in the very distant future.

We expect the GW signal from BH capture to be detectable both in
the current generation of detectors, and planned future detectors (De
Vittori, Jetzer & Klein 2012; Garcia-Bellido & Nesseris 2018).
The expected event rate for hyperbolic BH encounters in galactic
nuclei is comparable to estimates for other sources of GW signals,
which is ~0.9 Gpc=3 yr~! (Mukherjee, Mitra & Chatterjee 2021),
independent of any detector.

GW signals from BBH events have a characteristic morphology:
during the inspiral, before the two BHs merge the signal is sinusoidal,
with a growing frequency as the radius of the binary decreases.
The remainder of the signal is produced from the merger, and the
ringdown. As the total mass of the binary increases, the frequency
at which the merger occurs decreases, and consequently, for high-
mass systems, the merger may occur close to the lowest frequency
the detector is capable of successfully observing. In such a scenario,
the signal might appear to have little or no inspiral due to the lower
frequency limit of ground-based detectors. The waveforms of BH
encounters, or parabolic BH captures will often have no inspiral,
or only a small number of cycles of inspiral. As a result, it is not
implausible that an event may be misinterpretted as a high-mass BH
coalescence when in fact it had been a BH capture. An example of
an observation that fits these conditions is GW190521, which has
been interpreted as a BBH coalescence with a total mass around
142 Mg (Abbott et al. 2020a,b; Nitz et al. 2021; Nitz & Capano
2021; Estellés et al. 2022).

The use of unmodelled ‘burst’ searches has been proposed for
these highly eccentric mergers (Tiwari et al. 2016; Abbott et al.
2019b; Ramos-Buades et al. 2020), though they are less capable of
digging deep into the noise for signals and their sensitivity is hard
to quantify (Klimenko et al. 2016). Therefore, it is probable that
GW190521-like signals will be detected using analyses designed
to identify and analyse BBH signals in the future, rather than
those designed for more exotic waveform morphologies. At present,
parameter estimation analyses using an approximant for parabolic
capture signals is not viable due to a lack of sufficiently flexible
waveform models. We therefore ask if analyses using BBH waveform
models will produce different, and distinguishable, results when used
to analyse both BBH and parabolic capture signals. In order to do
this,we conducted two sets of analyses: one analysing simulated BBH
signals injected into simulated noise and one analysing simulated
parabolic capture signals in simulated noise. We then compare the
posterior probability distributions of the BBH and parabolic capture
injections.

The conventional approach for parameter estimation used in GW
analysis uses Bayesian inference and stochastic sampling, which
usually requires a large amount of computation. Therefore, a neural
network that can quickly give a posterior under BBH model while
maintaining a fairly high accuracy was employed. Comparative
studies of such a neural network approach and conventional Bayesian
parameter estimation techniques have shown that a properly trained
neural network is capable of emulating a posterior distribution to an
acceptable level of accuracy (Gabbard et al. 2021). Given the large
amount of simulated data required for our study, we used the network
to obtain the posteriors for each simulation. We compare the mass,
distance,and merger time posterior distributions using the Jensen—
Shannon (JS) divergence (Lin 1991) to quantify any differences
between these posteriors for the simulated population of BH captures
and BBH signals.

The outline of this paper is as follows. In Section 2, we
describe the production of the simulated parabolic BH capture
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and BBH signals thate used for the analysis. In Section 3, we
describe the parameter estimation method, and the use of a deep
learning approach to improve computing speed. The results of this
analysis are presented in Section 4. Finally, the main outcomes
of the work and possible future directions are summarized in
Section 5.

2 MOCK DATA CREATION

Recent advances in numerical relativity (Bae et al. 2017) have
allowed the production of gravitational waveforms for unequal mass
BH encounters under the parabolic approximation, which were used
in this work. The generated waveforms are applicable for non-
spinning pairs of BHs with relative velocity up to 10 ~ 20 per cent
of the speed of light. The four waveforms we used to produce
our mock data are from parabolic BH captures with mass ratios
g € {1, 4, 8, 16}. While these waveforms contain a merger and a
ringdown, they lack the characteristic sinusoidal morphology of the
inspiral.

We used the MINKE (Williams 2018) python package to generate
the parabolic capture injections. MINKE is a toolkit designed to
produce injection sets for signals derived from numerical relativity
simulations and performs the appropriate rescaling required to
produce waveforms for systems with any total mass and at any
luminosity distance. The signal is then convolved with the detector’s
antenna pattern and time shifted for the corresponding detector.
The process for producing the mock data set using MINKE is as
follows.

For each of the four mass ratios we considered, we chose a
luminosity distance and a sky location for the parabolic capture
waveforms, which produced a posterior probability distribution
when analysed by viTamIin, which was visually similar to the
posterior from analysing a high-mass BBH signal. The posterior of a
typical BBH has a shape with the following features: it should have
obvious peaks and narrow width of the marginal distributions, which
indicates that the corresponding parameters have been inferred well
under the BBH model. The maxima of the marginal distributions
from BH captures are not required to be in the same locations as a
typical BBH. The visual method essentially checks that the posterior
distributions neither rail against nor are compressed towards one of
the edges of the prior for a particular parameter. This led us choosing
the waveform parameters shown in Table 1. The simulated data are
created with a fixed total mass of 150 My and a luminosity distance
dy in [100, 8000] Mpc. Here, and elsewhere in this work, masses are
quoted in the detector frame. The right ascension and declination,
o, 8, and the waveform polarization, ¥ were distributed uniformly
for all waveforms. The detectors we used are LIGO Handford (H1),
LIGO Livingston (L1; Aasi et al. 2015), and Virgo (V1; Acernese
et al. 2014).

The start time 7y, Was specified when generating mock signal,
while the merger time #, and signal length could not be. For the
parabolic BH capture waveforms with a mass ratio of 1, 4, 8, and 16,
the length of the raw data produced by MINKE ranges from 0.88 to
1.34s. We manually truncated the time series, or padded it with
zeros, to fit the 1-s analysis constraint of viTamIn. At the same
time, we put the signal’s peak at #, = 0.22s, which lies within the
pretrained prior range [0.15, 0.35] s expected by viTamin. To make
the network function properly, signals were processed in the same
way as the training data. viTaMIN requires that the input data are
whitened using detector amplitude spectral density (ASD), and given
a zero mean, unit variance Gaussian noise. This whitening process
was adopted mainly to scale the data more properly for input to the
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Figure 1. Examples of BBH and parabolic BH capture injections are used in this work. The panels on the left show the signal before injection, and those on
the right show the signal whitened against the power spectrum of the simulated detector noise. In the top row, (a) represents a typical high-mass BBH signal for
a system with m; = 78 Mg, my = 72 Mg at a distance of 1400 Mpc and (b) depicts the signal from (a) whitened. In the bottom row, (c) represents a parabolic
BH capture signal for a system with mass ratio ¢ = 1, and a total mass of 150 M, at a distance of 5000 Mpc, with (d) depicting it whitened. All waveforms in
this paper correspond to a three-detector configuration, while here we only show the signal in H1 detector.

Table 1. The injections of parabolic BH capture mock data used for viTamin
analysis. We list the start time 7y, the reference time #.¢ in GPS time, and
the fixed merger time 7o = 0.22 s, where the merger time in GPS time fiyerger
= tret + 19 Here, and elsewhere in this work, masses are quoted in the detector
frame.

Parameter Injection
motal Mg) 150

di, (Mpc) do

1o (s) 0.22

o (0, 27'[)

) (—=m/2, 12)
14 (0, 27)
Duration (s) 1

tstare (GPS time) 1126259642
tret (GPS time) 1126259642.5
Detector network HI1,L1, V1

neural network, and we employed aL.IGO zero detuning,' high power
design sensitivity ASD for H1 and L1, and the advanced Virgo?> ASD

I'See https://dcc.ligo.org/T1800044-v5/public
2See https://dcc.ligo.org/LIGO-P1200087-v42/public

for V1. Examples of BBH and parabolic BH capture injections are
showed in Fig. 1.

3 ANALYSIS

The most widely used approach to analysing BBH signals uses
Bayesian inference (Veitch & Vecchio 2008, 2010). One analysis
pipeline that is widely used is BILBY (Ashton et al. 2019; Romero-
Shaw et al. 2020a), a modular PYTHON package. However, it is com-
putationally intensive because it uses stochastic sampling techniques
to estimate the posterior. Instead, we used vitamIin (Gabbard et al.
2021) to produce rapid posterior estimates for each injection. Due
to the high-mass systems we focus on, we first used the pre-training
function supported by vITAMIN to expand its prior parameter space
to Table 2. Once we obtained a posterior that is visually similar to
that for a BBH, we applied Bayesian inference to the corresponding
signal using non-spinning and spinning BBH templates. For the two
inferences, we employed the IMRPhenomPv2 (Ajith et al. 2007;
Khan et al. 2016) approximant, respectively® because it was used

3IMRPhenomPv2 has six parameters to model the spins of BBH system.
In order to produce non-spinning waveforms from it, we set the six spins as
Zero.
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Table 2. The priors and fixed parameter values used on non-spinning BBH
model parameters for viTaMin analysis.

Parameter min max prior
mi, 2 Mp) 30 160 uniform
di. (Mpc) 1000 3000 uniform
1o (s) 0.15 0.35 uniform
o 0 2 uniform
8 —7/2 /2 cosine
Ojn 0 14 sine
spins 0 -
duration (s) 1 -

tstart (GPS time) 1126259642.0 -

tref (GPS time) 1126259642.5 -
detector network H1,L1, V1

to train viTamIN. We carried-out these analyses using BILBY as a
corroboration for viTamin analysis.

3.1 Bayesian inference

The probability distribution on a set of parameters, conditional on
the measured data, can be determined using Bayes Theorem, which
can be represented as

pxly) = M, (1)

P(y)

where x are the parameters, y are the observed data, p(x) is the prior
on the parameters, p(y) is the probability of the data, p(x|y) is the
posterior, and p(y|x) is the likelihood.

GW parameter estimation analyses typically require the explo-
ration of a very large parameter space while analysing a large
volume of data. To address this, it is typical to use a stochastic
sampler to reconstruct the posterior. This sampling can be done with
a variety of techniques, including Nested Sampling and Markov
chain Monte Carlo (Hastings 1970; Christensen & Meyer 2001;
Cornish & Crowder 2005) methods. The popular software packages
used by LIGO parameter estimation analyses are LALINFERENE and
BILBY, which offer multiple sampling methods. We used BILBY, a
Bayesian inference library for GW astronomy, as an interface for the
DYNESTY (Speagle 2020) sampler.

Once the appropriate posteriors had been obtained in Section 3.2,
one example of the corresponding signals was expanded with a data
segment of 4 s and a sampling rate of 1024 Hz for a precise analysis.
We used the pynEsTY sampler and both spinning and non-spinning
BBH waveforms drawn from the IMRPhenomPv2 model to perform
parameter estimation on the data. The priors we used are shown in
Tables 3 and 4.

We then calculated the Bayes factors K for non-spinning BBH-
template and spinning BBH-template against the noise. The Bayes
factor is defined as

_ p(ylx, Hy) _ J PG HDp(ylxi, Hy)dx,
p(yIx, Hy) [ p(xalHa)p(y|xa, Hy)dx,'

where H; and H, are two different hypotheses. Witha K > 1 indicating
greater support for H; hypothesis.

Finally, we used the median recovered values from the parabolic
capture signal posterior to create injections using two BBH models
(one spinning and one non-spinning). These two recovered signals
were compared with the corresponding parabolic capture, demon-
strating the ability of a parabolic capture to mimic a high-mass BH
when analysed with the IMRPhenomPv2 waveform approximant.

@
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Table 3. The priors and fixed parameter values used on non-spinning BBH
model parameters for BILBY analysis. In this analysis, we use a 4-s duration
time series.

Parameter Min Max Prior
my, 2 (Mg) 30 160 uniform
di, (Mpc) 1000 3000 uniform
to (s) 0.15 0.35 uniform
o 0 27 uniform
$ —n/2 /2 cosine
Ojn 0 T sine

4 0 b4 uniform
¢ 0 27 uniform
spins 0 -
duration (s) 4 -

tstart (GPS time) 1126259642.0 -

tret (GPS time) 1126259644.5 -
detector network HI1,L1, V1

Table 4. The priors and fixed parameter values used on spinning BBH model
parameters for BILBY analysis. In this analysis, we use a 4-s duration time
series.

Parameter Min Max Prior
my,2 Mp) 30 160 uniform
di, (Mpc) 1000 3000 uniform
to (s) 0.15 0.35 uniform
o 0 2w uniform
8 —7/2 /2 cosine
Ojn 0 bis sine

14 0 bd uniform
¢ 0 2 uniform
ai,n 0 0.99 uniform
01,2 0 7 sine

A¢ 0 2 uniform
dIL 0 27 uniform
duration (s) 4 -

tstart (GPS 1126259642.0 -

time)

trer (GPS time) 1126259644.5 -
detector H1,L1, V1

network

3.2 VITAMIN analysis

VITAMIN iS a recently proposed network for BBH signals based
on a conditional variational auto-encoder (Pagnoni, Liu & Li 2018;
Tonolini et al. 2020), which has been shown to produce samples
describing the posterior distribution six orders of magnitude faster
than the traditional Bayesian approach (Gabbard et al. 2021). The
network used non-spinning BBH approximant IMRPhenomPv2. It
omits the six additional parameters required to model the spins of
the BBH system and produces posteriors on eight parameters: the
component masses m;, m,, the luminosity distance d, the time of
coalescence f, the binary inclination 6;,, right ascension ¢, and
declination §. The phase at coalescence ¢ and the GW polarization
angle ¥ are internally marginalized out. For each parameter, we
used a uniform prior, with the exception of the declination and
inclination parameters for which we used priors that were uniform
in cos () and sin®;,. The corresponding prior ranges are defined
in Table 2. The initial prior range of vitamin focuses on low-
mass BH binaries, and the upper limit of the component mass is
80 M. However, we trained the network with a customized prior,
increasing the maximum component mass to 160 Mg to deal with
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Table 5. The dy, injections to produce VItamin posteriors that are visually
similar to BBH. It decreases with the increase in the mass ratio g.

Mass ratio g dy, injection (Mpc)

5000
2000
1500
6 500

— 00 b o—

the high-mass BBH system in this study. The BBH signals used
as training and test data were produced using IMRPhenomPv2,
with a minimum cutoff frequency of 20 Hz. The training procedure
only needed to be performed once, and took O(1) day to complete.
The resulting trained network could then quickly generate samples
describing the posterior distribution, which was proved to achieve
the same accuracy of results as trusted benchmark analyses used
within the LIGO-Virgo Collaboration (Gabbard et al. 2021). For
BBH signals, GW data are usually sampled to frequencies between
1 and 16 kHz, depending upon the mass of binary. We have chosen a
low sampling rate of 256 Hz for the viTamin network to decrease
the computational time required to train it. We observed that the
main frequency component of BH capture signals with total mass
of 150 Mg, is around 80 Hz, which is below Nyquist sampling rate
Suyquiss = 128 Hz, thus the signal is well covered by the sampling
range.

For all parabolic BH capture waveforms, we used one set of sky
location injections (, §, and ) that contains 100 samples. We only
adjusted dy. injection for the appropriate posteriors, which were given
by the viTamMIn network rapidly once the data had been input. di.
injection is a critical factor due to the effect of waveform scaling.
It must be chosen such that the injected waveform has an SNR that
would be detectable and produce a plausible posterior distribution
that might be mistaken as that of a high-mass BBH.

4 RESULTS

In the viTamMIN recovery study on parabolic BH capture using non-
spinning BBH approximate IMRPhenomPv2, we did obtain the
posteriors look superficially like a BBH posterior.  The dy._ injections
to produce such posteriors are recorded in Table 5. We calculated the
optimal SNR in each detector, which is defined as

Smax |]’l2(f)| :| 3
opt = 2 d ) 3
2| [ IS )

where A(f) is the Fourier transform of the (time-domain) GW
signal, S, (f) is the one-sided noise spectral density in units of Hz™!,
and fiin <f < fmax correspond to the frequency band of the instrument.
We found that, in the step of adjusting d|. injection, waveforms with
a higher mass ratio produced a detectable SNR to smaller luminosity
distances.

We also conducted parameter estimation using BILBY on one
parabolic capture signal, with the posterior distribution sampled
by pynesTy. ° Both spinning and non-spinning BBH templates

4The posterior probability distribution of a parabolic BH capture that mimics
a BBH determined by viTamin could be seen in Fig. Al. As a comparison,
we also display the viTamIn posterior of a typical high-mass BBH in Fig.
A2.

SThe posterior probability distributions for a parabolic capture signal analysed
by BILBY is shown in Figs A3 and A4 using non-spinning and spinning models,
respectively.

Binary black hole mimics 3851

IMRPhenomPv2 have a high log Bayes factor In K = 134.620%0168,
117.134%09155 against noise, strongly supporting the hypothesis that
the signal is a BBH merger. As a comparison, the reference BBH data
gives a log Bayes factor In K = 157.363%%2%° compared to the noise
hypothesis in the non-spinning BBH analysis. Then we have the
log Bayes factor between spinning and non-spinning BBH templates
InK = 17.486%%2%° which is quite small. This illustrates that it is
very difficult for the Bayes factor to distinguish between the spinning
and non-spinning models in this case. We then generated the signal
corresponding to the median values of each waveform parameter’s
posterior, and compared it with the original signal from Fig. 2, and
we show the whitened waveforms of both the parabolic BH capture
signal and the recovered BBH signal overlayed. Here, we can see the
strong similarity in the merger-ringdown phase.

Furthermore, we might be able to make a case that the resemblance
is more than superficial by reference to a statistic. To do this,
we calculate the JS divergence (Lin 1991) between the posterior
distributions calculated by analysing both injected BBH signals and
injected parabolic capture waveforms. If the posterior distributions
from an injected BBH and an parabolic capture signal are not
statistically distinctive, they will have a small JS divergence, and
we can infer that the use of the incorrect waveform model in the
analysis would not be detected. The JS divergence is a symmetrized
and smoothed measure of the distance between two probability
distributions p(x) and g(x) defined as

1
Dys(p 1 q) = 3 [Dkr(p | $)+ Dxi(q | $)], “

where s = 1/2(p 4+ ¢) and Dk, is the Kullback—Leibler divergence
between the distributions p(x) and g(x) expressed as

Dxu(p | 9) = /P(X)logz (@) dx. (5)
q(x)

JS divergence ranges between [0, 1], a greater value of which
indicates that the posteriors from two signals have a greater difference
therefore they could be well distinguished. The two JS divergences
we considered are:

(1) Djs, noise: the divergence between posteriors of reference BBH
signal with different white noise realizations.

(i) Dys, ref: the divergence between posteriors of parabolic capture
and reference BBH signal, with the same noise realization.

Djs. noise reflects the volatility of the viTamin results when dealing
with different white noise, whereas Djs_ ¢ represents the bias of the
IMRPhenomPv2 template when modelling parabolic BH capture
signals. We expect that Djs f should be obviously greater than the
Djs noise» 1n this case calculating Djs ¢ could be considered as a fast
approach to distinguish BBH and parabolic BH capture events.

We then created mock data for the JS divergence analysis. For each
parabolic BH capture waveform, we reproduced one signal that can
generate a posterior, which is visually similar to one from a BBH.
We analysed 100 noise realizations with the same signal injected
and produced injections at the same sky location. As a result, by
considering the same injection time 7y, the antenna pattern is the
same for each waveform. The injections and corresponding posterior
peaks from the recovery are presented in Table 6. For reference, we
also analysed 100 noise realizations with BBH signals, where the
signal parameters: total mass, right ascension «, declination 8, and
merger time f, are the same as the parabolic BH capture. d;, was
changed in order to scale the BBH signal’s amplitude to be similar
to the parabolic BH capture by visual comparison. Its injections and
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Figure 2. The whitened parabolic BH capture and the whitened recovered BBH signals at detector H1. The waveform with mass ratio ¢ = 1 was injected with
a total mass of 150 Mg at a distance of 5000 Mpc. The parameter estimation was then performed on the signal using non-spinning and spinning BBH model
IMRPhenomPv2 by BILBY. Here, we present the waveform corresponding to the median values of each parameter’s posterior distribution.

Table 6. The injections of mock signals used for JS divergence analysis, including parabolic BH capture, its recovered BBH, and reference BBH.
For parabolic BH capture, we took the average peak value of viTamIn posterior as the recovered injection. The inefficiency and bias introduced by
analysing the parabolic BH capture signal with a non-spinning BBH model IMRPhenomPv2 can be seen clearly, as waveforms with a higher mass
ratio were recovered to a higher total mass and lower luminosity distance with a detectable SNR. NB: ¢ is marginalized in viTamin inference, so
we used Y = 0 for the injection. 6, is not an effective parameter for the parabolic BH capture waveform. We also note that the start time fyar =
1126259642.0, the reference time fref = 1126259642.5 in GPS time, and the merger time fmerger = fref + 0.

Network
Mock signal m; Mg) my Mg)  di, (Mpc) 1o (s) o $ v Oin SNR
Parabolic BH capture m1 75 75 5000 0.22 0.89 —0.94 1.54 - 11.13
Recovered BBH 76 68 1624 0.25 1.69 1.20 - 1.33 10.76
Parabolic BH capture m4 120 30 2000 0.22 0.89 —0.94 1.54 - 7.63
Recovered BBH 88 75 2278 0.26 4.69 1.21 - 1.76 4.38
Parabolic BH capture m8 133.3 16.7 1500 0.22 0.89 —0.94 1.54 - 9.93
Recovered BBH 98 83 1804 0.26 4.66 1.23 - 1.78 6.77
Parabolic BH capture m16 141.2 8.8 500 0.22 0.89 —0.94 1.54 - 13.90
Recovered BBH 104 90 1647 0.26 1.94 1.24 - 1.30 11.86
Reference BBH 78 72 1400 0.22 0.89 —0.94 1.54 1.51 11.27

corresponding posterior peaks from the recovery are also shown in
Table 6.

In this way, we created a situation where two similar-looking GW
events, one BBH and one parabolic capture, were observed. We then
computed the JS divergence between their posteriors to measure
their similarity. We note that while eight parameters can be inferred
for a input signal by viTamin, the three parameters that showed the
greatest JS divergences were the component masses, m;, m, and the
merger time, ;.

Having computed the JS divergence for all 100 pairs of signals,
we looked at the distribution of the divergences in Fig. 3, where
the three subplots represent the JS divergences of the components
masses m,, ny, and the merger time fy. The distribution of Djg_ poise
is generally close to zero, suggesting that the effect of noise on
VITAMIN’S posterior is rather limited as we hope. We calculated Dq,
the 90 per cent confidence interval of p(Djs, noise), and used this as a
threshold. Then the percentage of Djs s, Which is higher than this
threshold, can indicate how far the distribution of Djg ¢ is away
from the noise benchmark. The related result is recorded in Table 7.
The Dy are 0.121, 0.134, and 0.309 for m,, m,, and t, respectively.
Though Dg of t, is noticeably larger than those of the component
masses of high, there is a large gap between distributions of Djs, noise
and Djg_ (s for this parameter, the percentage of which reaches 100
per cent for three waveforms and 97 per cent for the other one. The
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greatest difference between the posteriors comes from the bias of
the BBH approximatant IMRPhenomPv2. For the same injection
to = 0.22 s, a BBH signal is recovered with a peak value of 0.22 s,
but a parabolic BH capture is more likely to be recovered slightly
later with a recovered peak value of 0.25 or 0.26 s (See this in
Table 6). Therefore, this bias can be demonstrated through the the
JS divergence analysis and used to test if a signal is a parabolic BH
capture. Besides, we also find that, for m,, the average percentage of
Dys. rof above Dy is 79.5 per cent, which has a more discriminative
effect than that of m,. Parabolic captures with a mass ratio of 8
and 16 can be distinguished fairly well from BBH signals, and the
lowest percentage of them that is higher than the threshold is also
as high as 85 per cent. This means we could have great confidence
to distinguish the two types of signals when analysing with a BBH
waveform.

However, under a more realistic detection scenario, we have no
access to the true parameters of the signal. Thus, in addition to
calculating Djs ror, we should also compare the posteriors of the
parabolic BH capture and its recovered signal and look for the
evidence of the bias. Therefore, the recovered peak values were taken
the average from 100 samples and used to inject the non-spinning
BBH model IMRPhenomPv2 with the same noise realization. The
injections are recorded in Table 6. The new JS divergence we
introduce is:
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Figure 3. Distributions of the JS divergence between parabolic BH capture and reference BBH Djs_ o shown as the outline histograms and the JS divergence
between reference BBHs with different noise Djs, poise, Shown as the shaded histogram. The JS divergence analysis is performed for four waveforms with mass
ratio ¢ = 1, 4, 8, and 16 and three parameters mp, ma, and o, respectively. We evaluated our distinguishing method in terms of stability and effectiveness. The
former is illustrated by very low distributions of Djs, noise, Which have 90 per cent upper limit, shown as a dashed line, of m, my, and #y at 0.121, 0.134, and
0.309. The latter is demonstrated by a high gap between distributions of Djs, noise and Djs, ref, especially regarding JS divergence of fy. The exact information
about it is presented in Table 7. This demonstrates that our approach works well.

Table 7. The percentage of Djs rer and Djs, recover 18 higher than the noise
threshold for parabolic BH capture waveform with a mass ratio of 1, 4, 8, and
16. The threshold is represented by Djs noise at 90 per cent confidence level,
which is 0.309, 0.121, and 0.134 for 9, m1, and ma, respectively.

(1) Djs, recover: the JS divergence between the posterior of a
parabolic BH capture and its recovered BBH signal injected using
the recovered peak values, with the same noise realization.

Djs. recover describes the effect of recovering parabolic BH capture.

Mass ratio 0 " " If the input signal is actually a BBH merger, its recovered signal

Dys, ref 1 100 % 49 % 11 % should have a very similar posterior probability density distribution.

4 97 % 74 % 52 % In this case, the distribution of Djg_ recover 15 close to zero but slightly

8 100 % 95 % 86 % higher due to the noise, of which the effect can be represented by

16 100 % 100 % 100 % Dis. noise- But for other signals, if the difference between the posteriors

Dys, recover 1 9 % 28 % 24 % of the recovered signal and itself is great, then Djs recover cOuld be
4 46 % 62 % 64 % used as a criterion.

186 189 ‘Zg ;i Z g; Z We plotted the distributions of Djg, recover and compared it with the

noise benchmark in Fig. 4. Three subplots represent JS divergence
of my, my, and fy. However, it almost overlaps with the distributions
of Djs. noise for the three parameters, which suggests a high similarity
between posteriors of parabolic BH capture and the recovered high-
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Figure 4. Distributions of the JS divergence between parabolic BH capture and its recovered BBH Djs recover shown as the outline histograms, and the JS
divergence between reference BBHs with different noise Djs, noise Shown as a shaded histogram. The JS divergence analysis is performed for four waveforms
with mass ratio ¢ = 1, 4, 8, and 16 and three parameters m, m2, and o, respectively. Here, we considered the application of our distinguishing method in more
realistic scenarios and evaluated it in terms of stability and effectiveness. The stability is the same as before with very low distributions of Djs, noise, With the
90 per cent upper limit represented by a dashed line. However, the distributions of Djs noise and Djs, recover almost overlap, which suggests that the two types of
signal cannot be well distinguished in this situation. (More information about this is presented in Table 7.).

mass BBH. We also determined the percentage of Djs_ recover that were
higher than Dg, and recorded them in Table 7. Djs recover has @ much
lower percentage than Djs s above Dgy. Except for the waveform
with mass ratio of 4, the highest percentage of their Djs, recover greater
than the threshold is only 32 per cent. The waveform with mass ratio
of 4 is unusual compared to others, with the average percentage
reaching 57.3 per cent. Since we do not know a priori what the mass
ratio of the waveform is in the real analysis, we must consider all
the waveforms equally, so this value would not be enough to provide
support that the evidence of the bias has been found. In addition,
Djs. ef has a good performance on fy, while Djs recover 1 difficult to
tell apart from Djg yoise as it has an average percentage of 20.5 per cent
above Dy.

Apart from being used for JS divergence analysis, Table 6 also
gives us an inspiration about the patterns on injected and recovered
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parameters. First, for parabolic BH capture waveforms with mass
ratios of 1, 4, 8, and 16, the total mass is recovered as 144, 163,
181, and 194 Mg, respectively. These amount to a tendency for the
rising of the recovered total mass with the mass ratio ¢ increasing,
and the former one is much higher than the injection of 150 Mg
when the mass ratio is greater than 1. We also find that the recovered
mass ratios are 1.12, 1.17, 1.18, and 1.16, respectively, which are all
close to one. For comparison, GW190521 has a mass ratio of 1.29,
and it is basically consistent with the analysis result we got. The
sensitive distance decreases with the increase in the mass ratio ¢. For
equal-mass BH binaries, eccentric sources are thought to be much
closer than BBH sources with a circular orbit in inspiral. Another
discrepancy that could be highlighted is that the recovered merger
times #; are all about 0.04 s behind the injection truth. We suspect that
it is caused by a mathematical fit of the BBH model to the capture
signal, but we will investigate for a deeper pattern in the future.
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5 SUMMARY AND DISCUSSION

In this work, we proposed the possibility that current approaches to
GW analysis could misclassify parabolic BH capture signal asa BBH
signal. We then demonstrated a scenario under which this could occur
and devised for a statistical method to distinguish them. We injected
parabolic BH capture waveforms to produce mock data, using a
tool developed for characterizing burst searches, MINKE, which was
exploited to make injection with the customized distribution. The
main difficulty is that it is impossible to predict how a signal can be
inferred under a biased multiparameter model, and the computational
cost of traditional Bayesian inference is expensive. To overcome this,
we adopted viTamMIN, a neural network based on the BBH model, and
retrained it to fit high-mass BBH signals, which reduced the cost of
each parameter estimation to a very low level. This greatly helped us
to continuously adjust the injection parameters of the parabolic BH
capture and finally obtain the appropriate posterior probability. After
that, we also performed confirmatory parameter estimation using
DYNESTY sampler, of which the result also had a strong statistical
support.

Here, we summarize our main conclusions in more detail.

We have established that there are scenarios in which a parabolic
BH capture could be recovered as a spinning (non-spinning) BBH
signal with high statistical support, a log Bayes factor of InK =
134.6 (111.7), compared to a noise hypothesis. This type of signal
is likely to be mistaken as a high-mass BBH by LIGO and Virgo.
Therefore, it would be valuable to be vigilant to this possibility when
a high-mass BBH system is identified in an analysis, otherwise future
GW events may be misclassified. This should be considered in cases
where the waveform seems to lack a clear inspiral phase.

In this study, we have built a rapid approach to describe the
difference between the posteriors of BBH and parabolic BH capture
signals and distinguish them. This approach is based on neural
network, vITamIN, and compares the distribution of JS divergences
of three parameters m;, m,, and ¢, from two types of GW signals,
with that of noise benchmark Dy. Its validity has been proved by the
JS divergence between the parabolic BH capture and the reference
BBH, Djs, rt, which has 79.5 per cent, 62.3 per cent, and 99.3 per cent
of samples over Dy for m;, my, and #,. However, in a more realistic
detection scenario, our analysis does not yield evidence that two types
of GW events are distinguishable with the current BBH Bayesian
inference. This is a result of the lower value of the JS divergence
between the parabolic BH capture and its recovered BBH Djg_ recovers
containing only 38.5 percent, 35.5 percent, and 20.5 percent of
samples located above Dy for m;, my, and fy. The result of our
analysis would not therefore allow us to make an identification of a
GW190521-like signal. As a result, the parabolic BH capture could
not be distinguished from a BBH by the current quasi-circular BBH
analysis, which highlights the importance of a good BH capture
approximant in the future.

We have identified the patterns on injected and recovered param-
eters. For four waveforms, there is a tendency for the recovered total
mass to rise as the mass ratio increases; only one from the equal-mass
system has a recovered total mass close to the injection of 150 M,
and the total masses of the others are recovered with much higher
values. The recovered mass ratios are all close to one, which we also
see on GW190521 with a mass ratio of 1.29. In contrast to the pattern
observed with the total mass, the sensitive distance decreases as the
mass ratio increases. We also note that that the recovered merger
times are all offset by around 0.04 s compared to the injected value.

The research in this paper constitutes a comparatively novel use
of deep learning in GW data analysis. A typical Bayesian approach
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to analyses used in this study takes 8—14 h while the neural network
requires around 50 s. For each waveform, there were about four
iterations on average before determining the appropriate d. injection,
and each turn gave 100 Bayesian posteriors corresponding to the
combinations of sky location. A total of 1600 inferences were
performed in this stage. Once the posteriors that mimic BBH were
obtained, we selected one signal from each waveform and analysed
it with 100 noise realizations, as well as the reference BBH signal,
for the construction of JS divergence distribution, of which the stage
contained 500 inferences. BBH signals injected from the recovered
peaks of the BH capture signals were then inferred with the same
noise realization sets. This last step required 400 inferences and
constructed the distribution of Djg recover t0 finally describe the
difference between BBH and BH capture signals. Overall, the use of
a neural network saved around 2.7 x 10* h when performing 2500
parameter estimation analyses.

Because of computational cost limitations in training, the vITAMIN
network has not been trained to take into account the spins of the
BBH model. One promising signature of the BH binary formation
environment is the angular distribution of BH spins (Farr et al. 2017).
Binaries formed through dynamical interactions are expected to have
isotropic spin orientations (Sigurdsson & Hernquist 1993; Portegies
Zwart & McMillan 2000; Rodriguez et al. 2015; Rodriguez et al.
2016; Stone, Metzger & Haiman 2017) whereas systems formed from
pairs of stars born together are more likely to have spins preferentially
aligned with the binary orbital angular momentum (Belczynski et al.
2016; Mandel & de Mink 2016; Marchant et al. 2016; Stevenson
et al. 2017). When modelling the BH capture data, the six additional
parameters of spins, as intrinsic properties of a binary, are expected to
play an important role in distinguishing binary formation channels,
allowing a further precise search that has been done in the real data
analysis. We will return to this subject in future work.

The component mass prior range of viTaMIN can be expanded and
the sampling rate can be raised to cover more BH capture samples.
These events are principally from low-frequency sources, making
them ideal candidates for both Einstein Telescope (Sathyaprakash
etal. 2012, 2013), which aims to achieve much greater low-frequency
sensitivity than current detectors, but also for Deci-Hz detectors, such
as DECIGO (Kawamura et al. 2006, 2021). The misclassification
is expected to be eliminated with their ability to observe at much
lower frequencies, removing the ambiguity between unobserved low-
frequency inspiral cycles and a total lack of inspiral. The detection
rate of BH captures is dependent on the initial mass function of stars
in galactic nuclei and the mass of the most massive BHs. Therefore
future observations can constrain both the average star formation
properties and upper mass of BHs in galactic nuclei (O’Leary et al.
2009).
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APPENDIX A: FULL vITAMIN AND BILBY
POSTERIORS

In this appendix, we present corner plots for the posterior distri-
butions produced by analysing a parabolic BH capture with both
viTamiN (Fig. Al) and BILBY with a non-spinning BBH model
(Fig. A3), a BBH merger injection with vitamin (Fig. A2), and
BILBY with a spinning BBH model (Fig. A4).
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Figure A1. The posterior probability density distribution for a BH capture, recovered using a non-spinning BBH model and viTaMIn.
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Figure A2. The posterior probability density distribution for a BBH, recovered using a non-spinning BBH model and viTamIn.
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Figure A3. The posterior probability density distribution for a BH capture, recovered using a non-spinning BBH model and the pyNESTY sampler.
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Figure A4. The posterior probability density distribution for a parabolic BH capture, recovered using a spinning BBH model and the pynesTy sampler. Here,
we show the posterior for the main parameters and omit six spins.
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