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Iterated Hopf Ore extensions in positive characteristic

Kenneth A. Brown and James J. Zhang

Abstract. Iterated Hopf Ore extensions (IHOEs) over an algebraically closed base field k of posit-
ive characteristic p are studied. We show that every IHOE over k satisfies a polynomial identity (PI),
with PI-degree a power of p, and that it is a filtered deformation of a commutative polynomial ring.
We classify all 2-step IHOEs over k, thus generalising the classification of 2-dimensional connected
unipotent algebraic groups over k. Further properties of 2-step IHOEs are described: for example
their simple modules are classified, and every 2-step IHOE is shown to possess a large Hopf center
and hence an analog of the restricted enveloping algebra of a Lie k-algebra. As one of a number of
questions listed, we propose that such a restricted Hopf algebra may exist for every IHOE over k.

1. Introduction

1.1. First main result

Let p be a prime and let k be an algebraically closed field of characteristic p. A famous
result of Jacobson [20] states that the enveloping algebra U.g/ of a finite dimensional Lie
algebra g over k is a finitely generated module over its center, denoted by Z.g/. In fact,
it is easy to see from Jacobson’s proof that the PI-degree d of U.g/ is a power of p (the
PI-degree being by definition the square root of dimQ.Z.g//Q.U.g//, where Q.U.g// is
the central simple quotient division ring of U.g/).

Our first aim is to extend Jacobson’s result to certain connected Hopf k-algebras, as
follows. Hopf Ore extensions AŒxI �; ı� were defined and studied by Panov [40] in 2003.
His definition was refined and extended in [7], and then in [17], to iterated Hopf Ore
extensions (IHOEs) over a field F . (The field F may have characteristic zero.) An n-step
IHOE over F is a Hopf F -algebra H with a finite chain of Hopf subalgebras

F D H0 � � � � � Hn D H;

such that, for i D 1; : : : ; n, Hi D Hi�1Œxi I �i ; ıi �, for an algebra automorphism �i and
a �i -derivation ıi . See Definition 2.1 for details, and recall that every IHOE is connec-
ted, meaning that its coradical is F , by [7, Proposition 2.5]. Our first main result is the
following theorem.
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Theorem 1.1. Let p and k be as above, and let H be an n-step k-IHOE.

(1) (Corollary 3.4) H is a finitely generated module over its center Z.H/, which is a
finitely generated normal k-algebra.

(2) (Theorem 4.3) The PI-degree of H is a power of p.

(3) (Theorem 4.8) The order of the antipode ofH divides 4pn�1, and the order of the
Nakayama automorphism of H divides 2pn.

The proofs of (1) and (2) of the theorem in Sections 3 and 4 make use of results of
[10, 11, 27] on Ore extensions satisfying a polynomial identity (PI), and ultimately hinge
on fundamental results of Kharchenko [23]; some aspects of the argument may have rel-
evance for the study of general Ore extensions, that is, beyond the realm of Hopf algebras.

A number of important homological consequences follow by routine arguments from
Theorem 1.1, with details included in Corollary 3.4—namely,H has global and Gel’fand–
Kirillov dimensions equal to n, and is a homologically homogeneous maximal order, and
hence is skew Calabi–Yau.

1.2. Filtrations on an IHOE

By contrast with Theorem 1.1 (1), an IHOE over a field F of characteristic 0 does not
satisfy a PI unless it is commutative [7, Theorem 5.4]. Our second main result, however,
generalises an aspect of Lie theory where there is no such dichotomy between charac-
teristic 0 and positive characteristic: namely, it is of course fundamental to the study of
enveloping algebras that if g is a Lie algebra of finite dimension n over a fieldF , thenU.g/
has an ascending filtration whose associated graded algebra is the commutative polyno-
mial algebra in n variables over F . Zhuang proved in [61, Theorem 6.10] that the same
conclusion holds for a connected Hopf F -algebra of finite Gel’fand–Kirillov dimension n,
when F is algebraically closed of characteristic 0. Zhuang’s result does not extend to pos-
itive characteristic—for example, the group algebra over k of the cyclic group of order p
is a connected Hopf algebra. Nevertheless, we prove here the following theorem.

Theorem 1.2 (Theorem 5.3). Let p and k be as in Theorem 1.1, and let H be an n-step
k-IHOE. Then positive integer degrees can be assigned to the defining variables of H so
that the corresponding filtration has associated graded algebra which is the commutative
polynomial k-algebra on n variables.

One can succinctly state this result as follows: every H as in the theorem is a filtered
deformation of a polynomial algebra. Etingof asks in [13, Question 1.1] whether every
filtered deformation of a commutative domain in positive characteristic has to satisfy a
PI. Taken together, Theorems 1.1 and 1.2 give some support for a positive answer to this
question.
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1.3. A classification of 2-step IHOEs

In Section 6, we classify IHOEs in the lowest dimensions. As noted in Lemma 6.1, there is
only one 1-step IHOE, whatever the characteristic of the field, namely kŒx� with x primit-
ive. But in dimension two the contrast between characteristic 0 and positive characteristic
is stark. Zhuang showed in [61, Proposition 7.6] that in characteristic 0, there are only two
connected Hopf algebras of Gel’fand–Kirillov dimension two, and both are cocommut-
ative IHOEs: namely kŒx; y� with x and y primitive, and the enveloping algebra of the
2-dimensional non-abelian Lie algebra. In positive characteristic, however, it is a different
story, as we now explain.

Let ds D ¹dsºs�0, bs D ¹bsºs�0, and cs;t D ¹cs;tº0�s<t be sequences of scalars in k
with only finitely many nonzero elements. Let H.ds; bs; cs;t/ denote the Ore extension
kŒX1�ŒX2I Id; ı� where

ı.X1/ D
X
s�0

dsX
ps

1 : (1.2.1)

Define maps �, ", and S on ¹X1; X2º by setting

�.X1/ D X1 ˝ 1C 1˝X1;

�.X2/ D X2 ˝ 1C 1˝X2 C w;

".X1/ D ".X2/ D 0;

S.X1/ D �X1;

S.X2/ D �X2 �m.Id˝ S/.w/;

where m denotes the multiplication operator, and

w D
X
s�0

bs

� p�1X
iD1

.p � 1/Š

i Š.p � i/Š
.X

ps

1 /
i
˝ .X

ps

1 /
p�i

�
C

X
0�s<t

cs;t .X
ps

1 ˝X
pt

1 �X
pt

1 ˝X
ps

1 /: (1.2.2)

Theorem 1.3 (Propositions 6.6 and 6.11). Let p and k be as in Theorem 1.1. Let H be a
2-step IHOE over k, soH D kŒX1�ŒX2I�;ı� for � 2Autk-alg.kŒX1�/ and a � -derivation ı.

(1) (Proposition 6.6 (1)) For all choices of the scalars ds; bs; cs;t, H.ds; bs; cs;t/ is a
Hopf algebra.

(2) (Proposition 6.6 (2)) H is isomorphic to H.ds;bs; cs;t/ for some choice of scalars
¹dsºs�0, ¹bsºs�0, and ¹cs;tº0�s<t .

(3) (Proposition 6.11) Two such H.ds; bs; cs;t/ and H.d0s; b0s; c0s;t/ are isomorphic as
Hopf algebras if and only if there are nonzero scalars ˛; ˇ in k such that, for all
the sequences of scalars,

d 0s D ds˛
ps�1ˇ�1; b0s D bs˛

psC1ˇ�1; c0s;t D cs;t˛
psCptˇ�1: (1.3.1)
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If (1.3.1) holds, there is a Hopf algebra isomorphism

� W H.ds;bs; cs;t/! H.d0s;b
0
s; c
0
s;t/

such that
�.X1/ D ˛X1 and �.X2/ D ˇX2:

Restricting the above result to the cases whereH is commutative, that is where dsD 0,
yields the classification of connected unipotent algebraic groups over k of dimension 2.
This is discussed in Section 7.4.

1.4. Other properties of 2-step IHOEs

We study further properties of the 2-step IHOEs over k in Section 9. Thus we describe
their antipodes, determine the Calabi–Yau members of the family in Proposition 9.1, and
examine the finite dimensional representation theory of all the 2-step k-IHOEs in Propos-
ition 9.2, specifying the Azumaya locus, and determining all the simple modules and the
extensions between them.

The final subsection, Section 9.3, is inspired by another seminal paper of Jacobson
[19], where he showed that every restricted Lie algebra g of finite dimension n has a
restricted enveloping algebra u.g/, a Hopf algebra of dimension pn which is a Hopf factor
of U.g/. We show that a similar phenomenon occurs for the 2-step IHOEs. The following
is an abbreviated version of Theorem 9.8 and Propositions 9.9 and 9.10 together.

Theorem 1.4. LetH DH.ds;bs; cs;t/ be a 2-step IHOE over k and assume thatH is not
commutative.

(1) H contains a unique maximal central Hopf subalgebra C.H/, and H is a free
C.H/-module of rank p2 when b0 D 0, and rank p3 otherwise.

(2) Let C.H/C denote the augmentation ideal of C.H/. The resulting Hopf algebras
H=C.H/CH , of dimensions p2 or p3, are classified.

Finite dimensional connected Hopf k-algebras have as dimension a power of p [31,
Proposition 1.1 (1)]. Those of dimension at most p3 have been classified, in a series of
papers [37, 38, 54, 55] by Xingting Wang and colleagues. We explain in Section 9.3 how
the Hopf algebras of Theorem 1.4 fit into their classification.

1.5. Comments

There have been a number of recent papers on infinite dimensional connected Hopf algeb-
ras of finite Gel’fand–Kirillov dimension, starting with [61] and including the aforemen-
tioned [7, 17], but also, for example, [4, 9, 52, 60]. Much of this work has focused on the
characteristic 0 setting (although not, notably, [17], on which we rely heavily). Thus the
present paper can be viewed as taking some further steps to open the topic in positive
characteristic. As befits a gathering of first steps, the paper contains a number of open
questions, scattered throughout. We can also point out here an open question of a more
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general, less precise type. Namely, it is possible that many or even all of the results proved
here for positive characteristic IHOEs are valid, when rephrased appropriately, in the wider
context of connected Hopf domains over k of finite Gel’fand–Kirillov dimension.

1.6. Organization

The paper is organized as follows. Section 2 contains some definitions and preliminaries,
leading to Proposition 2.2, where it is shown that the automorphisms used to construct a
positive characteristic IHOE have finite order, a key ingredient in the proof of Theorem
1.1. In Section 3, we use the Frobenius map and Noether’s theorem on the finite gener-
ation of invariants to obtain the characterisation (Theorem 3.3) of when an iterated Ore
extension in positive characteristic satisfies a PI. From this, it is easy to invoke Proposition
2.2 to deduce Theorem 1.1 (1) (Corollary 3.4). Theorem 1.2 is proved in Section 4, using
results of Chuang and Lee [11], depending ultimately on the work of Kharchenko in [23]
to obtain the needed information on the PI-degree of an iterated Ore extension which is
known to satisfy a PI. In Section 5, we show that every IHOE has a filtration such that the
associated graded ring is isomorphic to the commutative polynomial algebra. The classi-
fication of 2-step IHOEs is given in Section 6, including an analysis of their automorphism
groups. A list of comments and questions are collected in Section 7. A description of the
Hopf center of all 2-step IHOEs is obtained in Section 9, enabling the construction and
classification of their restricted Hopf algebra factors. The description of the Hopf center
requires a special case of the noncommutative binomial theorem of Jacobson, which we
recall in Section 8.

2. Preliminaries

2.1. Definitions and their consequences

Throughout the paper, we shall use the standard notation �, �, ", and S for the comulti-
plication, multiplication, counit, and antipode of a Hopf algebraH , with�.h/D h1 ˝ h2
for h 2 H . Unexplained Hopf algebra terminology can be found in [36], for example.
All Hopf algebras appearing in this paper will be (factors of) noetherian domains, so S is
necessarily bijective by [46, Theorem A (ii)]. For an algebra A, Z.A/ will denote the cen-
ter of A, and if a group G acts on A as automorphisms, AG will denote the fixed subring
of this action; when G D h�i generated by a single element � , Ah�i will be abbreviated
to A� .

The following definition of the algebras in the paper’s title is—on the face of it—
significantly weaker than the original definition given in [40, Definition 1.0] and the
modified definition in [7, Definition 2.1]. The improvement here is due to recent work
of Huang [17], as we explain after the definitions. Recall that, given an F -algebra auto-
morphism � of an F -algebra R, a � -derivation ı of R is an F -linear endomorphism of R
such that ı.ab/ D �.a/ı.b/C ı.a/b for all a; b 2 R.
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Definition 2.1. Let F be a field of any characteristic.

(1) Let R be a Hopf F -algebra. A Hopf Ore extension (abbreviated to HOE) of R is
an algebra H such that

(1a) H is a Hopf F -algebra with Hopf subalgebra R;

(1b) there exist an algebra automorphism � of R and a � -derivation ı of R such
that H D RŒxI �; ı�.

(2) An (n-step) iterated Hopf Ore extension ofF (abbreviated to (n-step) IHOE (ofF))
is a Hopf algebra

H D F ŒX1�ŒX2I �2; ı2� � � � ŒXnI �n; ın�; (2.1.1)

where

(2a) H is a Hopf algebra;

(2b) H.i/ WD F hX1; : : : ; Xi i is a Hopf subalgebra of H for i D 1; : : : ; n;

(2c) �i is an algebra automorphism ofH.i�1/, and ıi is a �i -derivation ofH.i�1/,
for i D 2; : : : ; n.

Throughout the paper, whenever H is an HOE (respectively, an n-step IHOE), we
assume that H satisfies the conditions of Definition 2.1 (1) (respectively, (2)), with the
same notation.

The definition of an HOE in [7, Definition 2.1] is required, in addition to Definition
2.1 (1a), (1b), that

(1c) there are a; b 2 R and v;w 2 R˝R such that

�.x/ D a˝ x C x ˝ b C v.x ˝ x/C w: (2.1.2)

However, by Huang’s theorem [17, Theorem 1.3], if R � T are noetherian F -algebras
satisfying hypotheses (1a) and (1b) of Definition 2.1 (1), and R˝R is a domain, then, up
to a change of variable,

(1d) there are a 2 R and w 2 R˝R such that

�.x/ D a˝ x C x ˝ 1C w: (2.1.3)

This means that under the conditions in [17, Theorem 1.3], namely that R ˝ R is a
noetherian domain, Definition 2.1 (1) is equivalent to [7, Definition 2.1]. In turn, this yields
the following consequences for IHOEs. Recall that a Hopf F -algebra is connected if its
coradical is F ; see e.g. [36, Definition 5.1.5].

Proposition 2.2. Let H be an IHOE of F .

(1) H is noetherian and H ˝H is a domain.

(2) After a change of variables (but not of the subalgebras H.i/),

�.Xi / D 1˝Xi CXi ˝ 1C wi (2.2.1)

for some wi 2 H.i�1/ ˝H.i�1/, for i D 1; : : : ; n.
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(3) H is a connected Hopf algebra.

(4) For i D 1; : : : ; n, there is a character �i of H.i�1/ such that

�i D �
`
�i
D � r�i

is a (left and right) winding automorphism of H.i�1/. In particular, for each j
with j < i , there exists aj i 2 H.j�1/ such that

�i .Xj / D Xj C aj i :

Proof. (1) This follows by induction on n using [33, Theorem 1.2.9].
(2) Fix i , 1 � i � n (where we takeH.0/ D F , �1 D idF , and ı1 D 0). By (1),H.i�1/

is noetherian and H.i�1/ ˝H.i�1/ is a domain. Hence, by [17, Theorem 1.3],

�.Xi / D ai ˝Xi CXi ˝ 1C wi

for a group-like element of ai of H.i�1/ and wi 2 H.i�1/ ˝H.i�1/. But H has no non-
trivial invertible elements. Therefore, noting that � ı ." ˝ id/ ı � D idH.i�1/ , ai D 1,
yielding (2.2.1).

(3) This is proved in [7, Proposition 2.5].
(4) That the map �i is a (left and right) winding automorphism (with the same charac-

ter) ofH.i�1/ is proved in [7, Theorem 1.2] and its improvement [17, Theorem 1.3]. From
(2.1.3) applied to Xj we see that

aj i D �i .Xj /C
X

wj .1/�i .wj .2// 2 H.j�1/: (2.2.2)

Since it is needed for the proof of Theorem 1.1, we recall a result in classical invariant
theory due to E. Noether [39], and also see [35, Theorem 1.1] and [47, Theorem 2.3.1].

Theorem 2.3. Let A be an affine commutative algebra over F and let G be a finite sub-
group of AutF -alg.A/. Then the fixed subring AG is affine over F and A is a finitely
generated module over AG .

2.2. Positive characteristic aspects

Given Proposition 2.2, the following result is key to our main results.

Proposition 2.4. Suppose that k has positive characteristic p. Let d be a positive integer.

(1) Let R be a Hopf k-algebra such that the order of every left or right winding
automorphism of R divides d . Suppose thatH WD RŒx; �; ı� is an HOE of R such
that

�.x/ D 1˝ x C x ˝ 1C w (2.4.1)

for some w 2 R˝R. Then the order of every left or right winding automorphism
of H divides dp.

(2) Let H be an n-step IHOE of k. Then every left or right winding automorphism of
H has order dividing pn.



K. A. Brown and J. J. Zhang 794

Proof. We prove the results for left winding automorphisms.
(1) Let � W H ! k be an algebra map and let „l� be the corresponding left winding

automorphism ofH , so„l�.h/D �.h1/h2 for h 2H . Since R is a Hopf subalgebra ofH
and �jR is a character of R, then„l� restricted to R, still denoted by„l� , is a left winding
automorphism of R. By assumption, .„l�/

d is the identity of R. It remains to show that
.„l�/

dp is the identity when applied to x. Using (2.4.1),

„l�.x/ D x C �.x/C � ı .� ˝ 1/.w/ D x C s;

where s D �.x/C � ı .� ˝ 1/.w/ 2 R. Then

.„l�/
d .x/ D x C t

for some t 2R. Note that .„l�/
d .t/D t as the order of„l� restricted toR divides d . Then

.„l�/
dp.x/ D

�
.„l�/

d
�p
.x/ D x C pt D x:

Therefore, .„l�/
dp is the identity map on H as required.

(2) This follows from part (1), Proposition 2.2 (2), and induction on n.

Note that there is an anti-monomorphism of groups from the character group X.H/
of H (that is, the algebra homomorphisms from H to k) to the group of left winding
automorphisms of H , [8, Section 2.5]. Hence, viewing H in dual language, as a quantum
group, Proposition 2.4 (2) can be interpreted as giving a bound on the exponent of the
maximal classical subgroup of H , which is a unipotent algebraic group.

3. Proof of Theorem 1.1

3.1. HOEs and IHOEs in positive characteristic

If C is a commutative k-algebra, where k has positive characteristic p, we denote the
Frobenius map c 7! cp on C by F . In this section, we always assume the following.

Convention 3.1. When k is a field of positive characteristic and C is a commutative k-
algebra, we use F.C/ to denote the k-subalgebra of C generated by the image of C . Thus,
in general, F.C/ is larger than the image of C under F .

Given an automorphism � and a � -derivation ı of an algebra A, a subspace E of A is
called .�; ı/-trivial if �.e/ D e and ı.e/ D 0 for all e 2 E.

Lemma 3.2. Let B be an Ore extension AŒxI �; ı� of an affine k-algebra A.

(1) Suppose that no nonzero element ofZ.A/ is a zero divisor onA, and thatZ.A/� ¨
Z.A/. Then

zx D xz

for all z 2 Z.A/� . As a consequence, B contains the commutative subalgebra
Z.A/� Œx�.
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(2) Suppose that Z.A/ D Z.A/� and char k D p > 0. Then

zpx D xzp

for all z 2 Z.A/. As a consequence, B contains the commutative subalgebra
F.Z.A//Œx�.

(3) Suppose that

(a) A is a prime ring that is a finitely generated module over Z.A/;

(b) Z.A/ is an affine k-algebra;

(c) � jZ.A/ has finite order;

(d) char k D p > 0.

Then B is a prime noetherian algebra satisfying a PI, and A is a finite module
over a .�; ı/-trivial subalgebra of its center.

(4) Suppose, in addition to hypotheses (3)(a)–(3)(d), that

(e) A is a maximal order.

Then B is a maximal order and is a finitely generated module over Z.B/, which
is an affine normal k-algebra.

Proof. (1) Let z 2 Z.A/� . Then xz D zx C ı.z/, so we only need to show that ı.z/ D 0
for all z 2 Z.A/� . Pick any element y 2 Z.A/ n Z.A/� . Then zy D yz. Applying ı to
this equation we have

ı.z/y C �.z/ı.y/ D ı.y/z C �.y/ı.z/:

Since z 2 Z.A/� , we have �.z/ı.y/ D zı.y/ D ı.y/z, which implies that

ı.z/y D �.y/ı.z/:

Hence, since �.y/ 2 Z.A/,
ı.z/

�
y � �.y/

�
D 0:

But y � �.y/ 2Z.A/ n ¹0º and is thus, by hypothesis, not a zero divisor inA. So ı.z/D 0
as required, and hence Z.A/� Œx� is commutative.

(2) Suppose that Z.A/ D Z.A/� . Then, for every z 2 Z.A/,

xz D �.z/x C ı.z/ D zx C ı.z/:

By induction on n and since z 2 Z.A/, we have, for all n � 1,

xzn D znx C nzn�1ı.z/:

The assertion follows because pzp�1ı.z/ D 0. Once again, the consequence is clear.
(3) It is clear from [33, Theorem 1.2.9] and hypotheses (a) and (b) thatB is noetherian,

and it is prime by [33, Theorem 1.2.9 (iii)]. By Theorem 2.3, and hypotheses (a) and (c),



K. A. Brown and J. J. Zhang 796

A is a finitely generated Z.A/� -module. When Z.A/ ¤ Z.A/� , B is a finitely generated
left module over its commutative affine subalgebra Z.A/� Œx� by part (1). When Z.A/ D
Z.A/� , B is a finitely generated left module over its commutative affine subalgebra
F.Z.A//Œx� by part (2). In both cases, B thus satisfies a PI by [33, Corollary 13.4.9 (i)].
The second claim in the final sentence of (3) is clear from (1), (2), and Theorem 2.3.

(4) Suppose thatA satisfies hypothesis (e). ThenB is also a maximal order by [32, Pro-
position V.2.5]. Therefore, since it is a prime noetherian PI ring by part (3), B equals its
own trace ring and is thus a finite module over its affine normal center by [33, Proposi-
tions 13.9.8(i) and 13.9.11(ii)].

Theorem 1.1 is a corollary of the following more general result applying to iterated
Ore extensions in positive characteristic.

Theorem 3.3. Suppose k has positive characteristic p, let n be a non-negative integer,
and let R be an n-step iterated Ore extension,

R D kŒX1�ŒX2I �2; ı2� � � � ŒXnI �n; ın�: (3.3.1)

For i D 1; : : : ; n � 1, denote khX1; : : : ; Xi i by R.i/.

(1) R satisfies a PI if and only if �i jZ.R.i�1// has finite order for all i D 2; : : : ; n.

(2) Suppose thatR satisfies a PI. Then it is a finitely generated module over its center,
which is a normal k-affine domain. Moreover, R is a homologically homogeneous
and GK-Cohen–Macaulay domain, with

gldimR D GKdimR D n:

Proof. (1) Suppose that R satisfies a PI. Then so also does R.i/ D R.i�1/ŒXi I �i ; ıi � for
i D 2; : : : ; n. For each such i , since R.i�1/ is a domain satisfying a PI, [27, Theorem 2.7]
then requires that j�i jZ.R.i�1//j <1, as claimed.

Conversely, assume that each �i jZ.R.i�1// has finite order. By induction on n we may
assume that A WD R.n�1/ satisfies a PI, and that part (2) of the theorem has been proved
for A. In particular, A is a finitely generated Z.A/-module. Since A is an iterated Ore
extension of a field, it is a domain. By our induction hypothesis and since �njZ.A/ has
finite order, hypotheses (3) (a)–(d) of Lemma 3.2 are satisfied. By [32, Proposition V.2.5],
A is a maximal order, so (e) of Lemma 3.2 (4) holds. Therefore, by Lemma 3.2 (4), R is a
finitely generated Z.R/-module and Z.R/ is an affine normal domain.

(2) The statements in the second sentence have already been proved in (1). The prop-
erties listed in the last sentence are also proved by induction on n. By the induction
hypothesis, gldimA D n� 1, so gldimR is n� 1 or n by [33, Theorem 7.5.3 (i)]. Thanks
to [33, Corollary 7.1.14], there is a simple (left) A-module V with projdim V D n � 1.
Choose a maximal left ideal I of A with V Š A=I . Let W be a simple R-module which
is a factor of the nonzero cyclic R-module R=RI Š R ˝A V , so W Š R=L for a left
ideal L of R containing RI . Since R is a noetherian affine k-algebra satisfying a PI, by
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part (1), dimk W <1 by Kaplansky’s theorem [33, Theorem 13.10.3 (i)]. In particular,
W is a finitely generated A-module, and L \ A D I by maximality of I . Thus V is an
A-submodule of W . Hence, choosing an A-module X such that Extn�1A .V; X/ ¤ 0, the
long exact sequence of Ext yields

Extn�1A .W;X/! Extn�1A .V;X/! 0;

so that projdimAW D n � 1. Therefore, gldimR D n by [33, Corollary 7.9.18].
Since A is homologically homogeneous, so isR, by [59, Theorem 2.3], noting that the

hypotheses of Yi’s theorem are satisfied in view of Lemma 3.2 (1), (2), which guarantee
that A is a finite module over a central subalgebra which is .�n; ın/-trivial. Finally R,
being a homologically homogeneous algebra which is a finite module over an affine central
domain, is GK-Cohen–Macaulay by [6, Corollary 5.4 and Theorem 4.8].

Theorem 1.1 is now an immediate consequence of the above theorem combined with
Proposition 2.4 (2) as follows:

Corollary 3.4. Suppose that k has positive characteristic p and let n be a non-negative
integer. Then every n-step IHOE H of k is a finitely generated module over its center
Z.H/ andZ.H/ is a normal k-affine domain. Moreover,H is a homologically homogen-
eous and GK-Cohen–Macaulay algebra with

gldimH D GKdimH D n:

3.2. First questions around Theorem 1.1

We briefly consider two possible improvements of Theorem 1.1.

Remarks 3.5. (1) As a large family of examples to which Corollary 3.4 applies, let g be
a finite dimensional completely solvable Lie algebra over a field k of positive character-
istic p. (That is, g has a full flag of ideals.) Thus the enveloping algebra U.g/ is an IHOE,
so Corollary 3.4 tells us that U.g/ is a finite module over its center. This is a special case
of a fundamental result due to Jacobson [20]:

Let g be a finite dimensional Lie algebra over k. Then U.g/ contains a central
Hopf subalgebra over which U.g/ is a free module of finite rank equal to a power
of p.

Note that Jacobson’s theorem does not require g to be restricted. In language not then
available to Jacobson, his result implies that the PI-degree of U.g/ is a power of p,
prefiguring Theorem 4.3 below. Moreover, the Lie algebra case thus suggests a possible
strengthened version of Corollary 3.4:

Question 3.6. Is every IHOE over a field of positive characteristic a finite module over a
central Hopf subalgebra?
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(2) Since the enveloping algebra of a finite dimensional Lie algebra g is not an IHOE
when g contains a non-abelian (classical) simple subalgebra1 other than sl.2; k/, one
might wonder, in the light of Jacobson’s theorem discussed in (1), whether every connec-
ted affine Hopf algebra of finite Gel’fand–Kirillov dimension is finite over its center, or
even finite over a central Hopf subalgebra, when k has positive characteristic. As a first
test case for this, consider an affine connected graded Hopf algebra H , meaning that

H D
M
i�0

Hi (3.6.1)

is connected graded as both an algebra and as a coalgebra. Two recent papers, [4, 60],
study such Hopf algebras. (In [4] the possibly weaker hypothesis thatH is only connected
graded as an algebra is also treated, but we do not discuss that here.) Theorem A of
[60] states that if k has characteristic 0 and H is an affine connected graded Hopf k-
algebra, thenH is an n-step IHOE, where n is the Gel’fand–Kirillov dimension ofH . The
hypothesis on k is necessary here—consider H D kŒx�=hxpi where k has characteristic
p. Nevertheless, Corollary 3.4 and [60, Theorem A] prompt the following question.

Question 3.7. Suppose that H is an affine connected graded Hopf k-algebra of finite
Gel’fand–Kirillov dimension, where k has positive characteristic. Is Z.H/ affine, and is
H a finite Z.H/-module?

4. The PI-degree and other invariants

4.1. PI-degree

Theorem 4.3, the main result of this subsection, gives information on the PI-degree of an
n-step IHOE in characteristic p. Recall that the PI-degree of a prime PI ring R is denoted
by PIdegR and defined to be d , where d2 is the dimension over the field Z.Q.R// of the
central simple quotient ring Q.R/; see [33, Sections 13.3.6 and 13.6.7] and [5, p. 115].
When R is in addition an affine k-algebra with the field k algebraically closed, PIdegR
equals the maximum dimension over k of the simple R-modules [33, Theorem 13.10.3],
[5, Theorem 1.13.5 (2)]. To prove Theorem 4.3, we need the following definitions and
theorem, adapted from [11]. Note that the definitions in [11] are expressed in terms of
the left Martindale quotient ring of a ring R, but when R is a prime PI ring, as here, this
coincides with the total quotient ring Q.R/ D RŒZ.R/ n ¹0º��1, as follows easily from
the definition of the Martindale quotient ring and Posner’s theorem [33, Section 10.3.5
and Theorem 13.6.5].

Definition 4.1 ([11]). Let R be a prime algebra satisfying a PI, � 2 Autk-alg.R/, and ı
a � -derivation of R. Let Q be the total quotient ring of R.

1See [7, Example 3.1 (iv)], where the characteristic 0 hypothesis is not necessary.
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(1) � is called X-inner if its extension to Q is inner, that is, there exists a unit b of Q
such that

�.x/ D b�1xb

for all x 2 Q. Otherwise, � is called X-outer.

(2) � is called quasi-inner if there exists an integer n � 1 such that �n is X-inner. The
least such integer n is called the outer degree of � and is denoted by Outdeg � .

(3) ı is called X-inner if its extension to Q is inner, that is, there exists b 2 Q such
that

ı.x/ D bx � �.x/b

for all x 2 Q. Otherwise, ı is called X-outer.

(4) ı is called quasi-algebraic if there exist a positive integer n, an automorphism g

of Q, and b1; : : : ; bn�1; b 2 Q such that for all x 2 R,

ın.x/C b1ı
n�1.x/C � � � C bn�1ı.x/ D bx � g.x/b:

The least such integer n is called the quasi-algebraic degree or the outer degree of
the � -derivation ı and is denoted by Outdeg ı. In particular, Outdeg ı D 1 if and
only if ı is X-inner.

The main result of Chuang–Lee [11] is the following.

Theorem 4.2 ([11, Theorem 2.5]). Let R be a prime PI algebra, � 2 Autk-alg.R/, and ı
a � -derivation of R. Then RŒxI �; ı� is a PI ring if and only if ı is quasi-algebraic and �
is quasi-inner. In this case,

(a) if ı is X-outer, then PIdegRŒxI �; ı� D PIdegR � Outdeg ı;

(b) if ı is X-inner, then PIdegRŒxI �; ı� D PIdegR � Outdeg � .

We can now deduce our second main theorem from Corollary 3.4 and Theorem 4.2:

Theorem 4.3. Suppose that k is a field of characteristic p > 0, and let H be an IHOE
over k. Then PIdegH is a power of p.

Proof. We argue by induction on n, whereH is an n-step IHOE. When n D 1,H D kŒx�
and the result is clear. For the induction step, write B for H.n�1/, so, by the induction
hypothesis,

PIdegB D pt ; (4.3.1)

for some t � 0. After relabeling, H D BŒxI �; ı� for � 2 Autk-alg.B/ and a � -derivation
ı of B . By Proposition 2.2 (1) and Corollary 3.4, B and H are both prime PI-algebras.
Thus, by Theorem 4.2, � is quasi-inner and ı is quasi-algebraic, and there are two cases
to consider.

Case (a). ı is X-outer. Then, since B is a prime PI ring, a result of Kharchenko, see
[10, Lemmas 5 and 6], guarantees the existence of a unit u of the quotient ring Q.B/ and
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an X-outer derivation d of Q.B/ such that, for all b 2 B ,

�.b/ D ubu�1 and ı D ud:

Note that � and ı extend, respectively, to an automorphism and a � -derivation of Q.B/.
Then, by [11, Lemma 1.3 (2)],

Q.B/ŒxI �; ı� Š Q.B/ŒxI d�: (4.3.2)

Now
PIdegB D PIdegQ.B/ (4.3.3)

and
PIdegH D PIdegQ.B/ŒxI �; ı�: (4.3.4)

To prove the induction step in Case (a) it is therefore enough, by (4.3.1), (4.3.2), (4.3.3),
and (4.3.4), to prove that

PIdegQ.B/ŒxI d� D PIdegB � p` (4.3.5)

for some ` � 0. But (4.3.5) follows immediately from Theorem 4.2 (a) and a theorem of
Kharchenko, stated and proved as [10, Theorem, p. 60].

Case (b). ı is X-inner. Now Theorem 4.2 (b) applies. But clearly, from the definition,

Outdeg � j j� j:

Moreover, by [17, Theorem 1.3 (ii)] and Proposition 2.4 (2),

j� j j pn:

Therefore, (4.3.1) is proved in this case also, and so the theorem follows.

Remarks 4.4. (1) A second proof of Theorem 4.3 will be given Section 5, where we
obtain it as a corollary of Theorem 5.3 together with a result of Etingof [13] on filtered
deformations of commutative domains in positive characteristic.

(2) Faced with Theorem 4.3, it is natural to ask the following question:

Question 4.5. What is the power of p occurring in Theorem 4.3?

This is a delicate matter, as can be seen from the case of enveloping algebras. Assume
that k is algebraically closed of characteristic p > 0, and let g be a finite dimensional Lie
k-algebra. For f 2 g� define

stabg.f / WD
®
x 2 g j f

�
Œx;��

�
D 0

¯
;

and set
ind g WD min

®
dimk stabg.f / j f 2 g�

¯
:
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The first Kac–Weisfeiler conjecture [57] proposed that when g is restricted,

PIdegU.g/ D p
1
2 .dim g�ind g/: (4.5.1)

This was already known, due to Rudakov [43], when g is the Lie algebra of a reduct-
ive group (in this case ind g is the rank of g); and Strade [48] proved the conjecture
for g solvable in 1978, extending the completely solvable case done in [57]. Premet and
Skryabin [41] confirmed the conjecture for all restricted g admitting a toral stabilizer, and
also showed that p

1
2 .dim g�ind g/ is a lower bound for the PI-degree for all restricted g. The

general case, however, remains open, although it has recently been confirmed in [30] for
all restricted subalgebras g of gln.k/, for p � 0. Note, however, that the conjecture is
not true if the hypothesis that g is restricted is omitted—Topley [50] exhibits pairs of Lie
k-algebras g1 and g2, both solvable, with g1 © g2 and indeed ind g1 ¤ ind g2, but with
U.g1/ Š U.g2/.

It might be easier to approach Question 4.5 by first seeking an upper bound:

Question 4.6. Is the PI-degree of an n-step IHOE over a field k of characteristic p
bounded above by p

n
2 ?

We show in Section 9.2 that this is true when n � 2.
(3) As recalled at the start of Section 4.1, when k is algebraically closed the PI-degree

is the maximum dimension of a simple H -module, so Question 4.5 leads one to the
broader issue of the possible dimensions of all the simple H -modules, when H is an
n-step IHOE over an algebraically closed field of characteristic p. One might hope that
every simple module has dimension a power of p, and we confirm that this is the case for
all 2-step IHOEs in Proposition 9.2. Further positive evidence is provided by the envelop-
ing algebras of completely solvable Lie algebras. Such a Lie algebra g of dimension n has
a chain of nC 1 ideals from ¹0º to g, so that U.g/ is an n-step IHOE. Kac and Weisfeler
showed in [57] that the dimension of every simple U.g/-module is a power of p. But the
naive hope fails for sl.2;k/ when k has characteristic p > 2, since U.sl.2;k// is a 3-step
IHOE [7, Example 3.1(iv)], and Rudakov and Shafarevitch showed [44] that the dimen-
sions of the simple U.sl.2;k//-modules are 1; : : : ; p. These examples and results suggest
the following possibility:

Question 4.7. Suppose that k is an algebraically closed field of characteristic p > 0. Let
H be an n-step IHOE over k, which has a chain of Hopf subalgebras as in (2.1.1) with
each �i being the identity. Is the dimension of every simple H -module a power of p?

The above question has a positive answer for all 2-step IHOEs—see Proposition 9.2.

4.2. The antipode and Nakayama automorphism

The antipode S of a Hopf algebra that is a finite module over its center has finite order
up to inner automorphisms by [8, Corollary 0.6 (c)]. In the case of IHOEs in positive
characteristic, we can easily obtain information about the order, as we show below. The
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Nakayama automorphism � of an AS-Gorenstein Hopf algebra provides the twist in its
rigid dualizing complex; see [8, Sections 0.2 and 0.3] for details. It is defined up to an
inner automorphism. The Nakayama order, that is the lowest power ` such that �` is
inner, is finite in the current setting thanks to [8, Corollary 0.6 (c)]. Again, more can be
said about its precise value.

Theorem 4.8. Let n � 1 and let H be an n-step IHOE over a field k of characteristic
p > 0.

(1) The order of the antipode S divides 4pn�1.

(2) The Nakayama order of H divides 2pn.

Proof. Note that every invertible element in H is in k, so the Nakayama order of H
coincides with the (well-defined) order of the Nakayama automorphism � of H .

(1) The proof of part (1) is similar to the proof of Proposition 2.4 (2). We use induction
on n to show that the order of S4 divides pn�1. The assertion holds trivially for n D 1.
Now assume that the assertion holds for .n � 1/-step IHOEs. Let H be an n-step IHOE
and write it as BŒxI �; ı�, where B is an .n � 1/-step IHOE. Suppose that the order of S4

restricted to B is pt for some t � n � 2.
Let � WH ! k be the right character of the left homological integral ofH [29]. Let„l�

(respectively, „r�) be the corresponding left (respectively, right) winding automorphism
of H . By [8, Theorem 0.6] and the fact that H has no non-trivial inner automorphism,
S4 D „l� ı .„

r
�/
�1. Since B is a Hopf subalgebra of H and �jB is a character of B ,

then„l� (respectively,„r�) restricted to B , still denoted by„l� (respectively,„r�), is a left
(respectively, right) winding automorphism of B . By the induction hypothesis, .S4/p

t
is

the identity of B . It remains to show that .S4/p
tC1

is the identity when applied to x. By
Proposition 2.2 (2), we may assume that (2.4.1) holds, so that

„l�.x/ D x C �.x/C � ı .�˝ 1/.w/ D x C s;

where s D �.x/C � ı .�˝ 1/.w/ 2 B . Similarly,

.„r�/
�1.x/ D x C s0

for some s0 2 B . These imply that

.S4/p
t

.x/ D
�
„l�.„

r
�/
�1
�pt
.x/ D x C s00

for some s00 2 B . Note that .S4/p
t
.s00/ D s00 as the order of S4 restricted to B is pt . Then

.S4/p
tC1

.x/ D
�
.S4/p

t �p
.x/ D x C ps00 D x:

Therefore, .S4/p
tC1

is the identity map on H as required.
(2) By [8, Theorem 0.3], the Nakayama automorphism ofH is of the form S2 ı„r� D

„r� ı S
2. The order of S2 divides 2pn�1 by part (1) and the order of „r� divides pn by

Proposition 2.4 (2). Then the assertion follows.
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Remark 4.9. Recall that � is the right character of the left integral of H . With a slightly
more careful analysis along the above lines, combined also with Proposition 9.1, one can
show that the order of S divides max¹1; 4pn�tº, where

t WD max¹2; n0º and n0 WD #
®
i j „l�.wi / D „

r
�.wi /

¯
;

where wi is as in (2.2.1).

5. Associated graded algebra of an IHOE

The main result in this section is Theorem 5.3. In this section, we do not assume that
char k > 0 though we keep using k as the base field.

5.1. Construction of a filtration

Recall that, by [61, Theorem 6.9], if H is an affine connected Hopf algebra of finite
Gel’fand–Kirillov dimension n over an algebraically closed field k of characteristic 0, then
the associated graded algebra ofH with respect to the coradical filtration is a commutative
polynomial algebra in n variables. This result does not extend to positive characteristic—
in the first place there are non-trivial finite dimensional connected Hopf algebras in char-
acteristic p, for example kŒx�=hxpi; and, second, the coradical filtration is typically much
coarser in this setting. Thus, for instance, there is often an infinite dimensional space of
primitive elements, as in kŒx� for example. At least for IHOEs there is nevertheless an
analogue of Zhuang’s result, provided one uses a more suitable filtration. We begin by
describing such a filtration and proving its required properties.

Let H be an n-step IHOE with notation as in Definition 2.1. The ordered monomials
x
m1
1 � � �x

mn
n withmi 2Z�0 constitute a k-basis B.H/ ofH , which we call its PBW basis.

(This holds true for all iterated Ore extensions, not just for Hopf algebras.) For ˛ 2 H ,
call the presentation of ˛ in terms of the PBW basis the PBW expression of ˛, and let

PBWsupp.˛/ WD
®
m 2 B.H/ j m occurs in the PBW expression for ˛

¯
:

We proceed now to define a degree function deg W H ! Z�0. Recall from Proposition
2.2 (4) the elements aj i 2 H.j�1/ for i; j D 1; : : : ; n with i > j , such that

�i .xj / D xj C aj i ;

where aj i is given as in (2.2.2). Moreover, we can define elements cj i 2H.i�1/ such that,
for all i; j D 1; : : : ; n with i > j ,

ıi .xj / D cj i :

Thus the defining relations of H are

xixj D xjxi C aj ixi C cj i ; .1 � j < i � n/: (5.0.1)
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Recall that wi is defined in (2.2.1); fix an expression

wi D
X

wi.1/ ˝ wi.2/;

where wi.1/, wi.2/ are in H.i�1/ \ ker ". For each ` > i , let �` be the character of H.`�1/
such that �` D � r�` as given in Proposition 2.2 (4). Then by (2.2.2),

ai` D �`.xi /C
X

wi.1/�`.wi.2// 2 H.i�1/:

Define the degree deg.�/ WD 0 for � 2 k, and inductively define the degree deg.xi / WD
di 2 Z>0 and deg.˛/ for ˛ 2 H.i/, as follows:

• d1 D 1;

• suppose that i > 1 and that d1; : : : ; di�1 have been defined. For each PBW basis
monomial m D xm11 x

m2
2 � � � x

mi�1
i�1 , set

deg.m/ WD
i�1X
jD1

mjdj I (5.0.2)

• for ˛ 2 H.i�1/ define

deg.˛/ WD max
®

deg.m/ j m 2 PBWsupp.˛/
¯
I (5.0.3)

• since deg is defined on H.i�1/, let

D.wi / D max
i.1/

®
deg.wi.1//

¯
which is only dependent on i . Then we have

D.wi / � max
`>i

®
deg.ai`/

¯
:

Now set di 2 Z>0 such that

di > D.wi /
�
� max

`>i

®
deg.ai`/

¯�
; (5.0.4)

and such that
di � max

j<i

®
deg.cj i /

¯
: (5.0.5)

Finally, after the above steps are completed up to i D n, extend (5.0.2) (resp. (5.0.3)) to
all PBW basis monomials (resp. every element) of H . Clearly, this procedure yields a
well-defined degree for all ˛ 2 H . We define a filtration C WD ¹Ciºi�0 by setting, for all
i � 0,

Ci WD
®
˛ 2 H j deg.˛/ � i

¯
:

It is clear that C0 D k.
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Lemma 5.1. Keep the above notation.

(1) For 1 � j < i � n,

xixj D xjxi C .lower degree terms/:

(2) For 1 � j < i � n,
deg.xixj / D deg.xjxi /:

(3) For all monomials m D xt1i1x
t2
i2
� � �x

tm
im

, where i` 2 ¹1; : : : ; nº and t` 2 Z�0 for all
` D 1; : : : ; m,

deg.m/ D
mX
`D1

t`di` : (5.1.1)

Proof. (1) Let j < i . In the relation (5.0.1) aj i 2 H.j�1/ and cj i 2 H.i�1/. Thus

deg.aj ixi C cj i / D max
®

deg.aj ixi /; deg.cj i /
¯
< dj C di D deg.xjxi /;

where the first equality follows from (5.0.3) and the fact that there is empty intersection
between the PBW expressions for aj ixi and cj i , so that no cancellation can occur, and the
inequality follows from (5.0.4) and (5.0.5), since aj ixi is already in PBW form.

(2) This follows from part (1) and the definition of the degree of elements of H .
(3) Define the weight of a not necessarily PBW-ordered monomial mDxt1i1 � � �x

tm
im

to be

wt.m/ WD
mX
`D1

t`di` :

Suppose that assertion (3) is false, and choose a counterexample m of minimal weight,
say wt.m/ D d > 0. Then m cannot be an ordered monomial by the definition (5.0.2).
So amongst counterexamples to assertion (3) of weight d , choose m to be one with the
minimal number ! of badly ordered pairs—that is, pairs of generators occurring in m as
m D � � � xr � � � xs � � � with r > s. Clearly, there must be an adjacent bad pair in m. That is,
there exist s; r with 1 � s < r � n, with

m D xi1 � � � xrxs � � � xim
D xi1 � � � .xsxr C asrxr C csr / � � � xim

D .xi1 � � � xsxr � � � xim/C .xi1 � � � asrxr � � � xim/C .xi1 � � � csr � � � xim/:

Here, the first monomial on the right side has fewer than ! badly ordered pairs, so asser-
tion (3) is true for it by choice of m. The second and third brackets on the right consist of
monomials of weight strictly less than d , by (5.0.4) and (5.0.5). So, again by choice of m,
assertion (3) holds for all the monomials in the second and third brackets on the right; in
particular, their degree is strictly less than the degree of xi1 � � � xsxr � � � xim . Thus

deg.m/ D deg.xi1 � � � xsxr � � � xim/ D
mX
`D1

t`di` ;

and m is not a counterexample. This proves (3).
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Lemma 5.2. Continue with the above notation.

(1) The filtration C defined before Lemma 5.1 is an algebra filtration of H .

(2) The associated graded algebra grCH is a factor ring of the commutative polyno-
mial ring kŒ Nx1; : : : ; Nxn� where Nxi is the principal symbol of xi .

Proof. (1) We need to prove that, for all r; s 2 Z�0,

CrCs � CrCs :

For this it is enough to show that if r, s are ordered monomials in Cr and Cs , respectively,
then deg.rs/ � r C s. This is immediate from Lemma 5.1 (3).

(2) It is clear from the definitions that 0 ¤ Nxi 2 grCH for all i D 1; : : : ; n. From this
and (5.1.1), one sees immediately that grCH is generated by ¹ NxiºniD1.

Commutativity of grCH follows from Lemma 5.1 (1). Therefore, there is an algebra
epimorphism � from the commutative polynomial ring kŒ Nx1; : : : ; Nxn� to grCH .

5.2. The associated graded algebra

We can now prove the main result of this section.

Theorem 5.3. Let k be an algebraically closed field, and letH be an n-step IHOE over k.
Then positive integer degrees can be assigned to the defining variables of H so that the
corresponding filtration, constructed from this assignment by using the PBW basis as
above, has associated graded algebra which is the commutative polynomial k-algebra on
n variables.

Proof. Let H be given by Definition 2.1 and define its filtration C by the recipe given
in Section 5.1. By Lemma 5.2, grCH is a factor of the polynomial k-algebra on n gen-
erators. On the other hand, GKdim.H/ D n by Corollary 3.4. Since C is discrete and
finite, it follows from [25, Proposition 6.6] that grCH grows at the same rate; that is,
GKdim.grCH/ D n. Since proper factors of the polynomial algebra on n generators have
GKdimension strictly less than n, the result follows.

Remarks 5.4. (1) An alternative proof that grCH is a polynomial algebra uses the PBW
basis directly. Namely, by the definition of C , H and grCH have the same PBW basis,
which agrees with the PBW basis of kŒ Nx1; : : : ; Nxn�. Therefore, the map � from the proof
of Lemma 5.2 (2) is an isomorphism.

(2) A theorem of Etingof, [13, Corollary 3.2 (ii)], states that if k is a field of charac-
teristic p > 0 and A is any k-algebra with filtration C D ¹Ci W i � 0º such that A satisfies
a PI and grCA is a commutative domain, then the PI-degree of A is a power of p. In view
of Corollary 3.4 and Theorem 5.3, these hypotheses both are satisfied by any IHOE over
the field k, yielding a second proof of Theorem 4.3.

(3) Etingof asks in [13, Question 1.1] whether every filtered deformation of an affine
commutative domain in positive characteristic has to satisfy a PI. Theorem 5.3 coupled
with Corollary 3.4 provide some evidence in favour of a positive answer.
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(4) Theorem 5.3 can be restated as follows: every n-step IHOE over the field k is
a PBW-deformation of the polynomial ring in n variables over k in the sense of [3, Sec-
tion 3]. It follows from Zhuang’s theorem [61, Theorem 6.9] that a connected Hopf algebra
over a field k of characteristic zero is a PBW-deformation of the polynomial ring in n vari-
ables if n D GKdimH <1. Given these facts, together with the classical PBW theorem
for enveloping algebras of finite dimensional Lie algebras, and the fact that the under-
lying variety of every connected unipotent group of dimension n is affine n-space over
k, [45, Chapter VII, Section 6, Corollary and Remark 1, p. 170], it is natural to ask the
following question:

Question 5.5. Is every connected Hopf k-algebra domain of finite Gel’fand–Kirillov
dimension a PBW-deformation of a polynomial algebra over k?

(5) An1-step IHOE is defined to be

lim
n!1

Hn

if there is an infinite sequence of n-step IHOEs

k D H0 � H1 � H2 � � � � � Hn � � � �

such that each Hn satisfies the conditions in Definition 2.1 (2). If ¹diºi�1 is a strictly
increasing sequence of integers defined by using the process given before Lemma 5.1,
then we can define a locally finite filtration C ofH such that the associated graded algebra
grCH is isomorphic to kŒ Nx1; Nx2; : : : ; Nxn; : : : �—the polynomial ring of infinitely many
variables.

(6) Let � be a character ofH . Then the right winding automorphism � r� ofH preserves
the filtration C constructed in Section 5.1. It follows that the winding automorphism � r�
induces an automorphism of grCH , which one can show to be the identity map.

6. Classification of 1- and 2-step IHOEs in positive characteristic

For the rest of the paper, we would like to take the first steps in a project to classify
the Hopf algebra domains of Gel’fand–Kirillov dimension at most two in positive char-
acteristic. In characteristic 0 considerable progress has already been made towards this
classification, as we shall briefly recall at the start of Section 6.2. First, we deal with the
well-known case of Gel’fand–Kirillov dimension one.

6.1. Hopf domains of GKdimension one

Recall that the only connected algebraic groups of dimension 1 over an algebraically
closed field k are the additive and multiplicative groups of k [18, Theorem 20.5]. It is
easy to remove the hypothesis of commutativity from this result, as follows. Let k� denote
k n ¹0º.
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Lemma 6.1. Let k be any algebraically closed field. The only affine Hopf k-algebra
domains of Gel’fand–Kirillov dimension one are the coordinate rings kŒX� and kŒX˙1�
of .k;C/ and .k�;�/, respectively. In particular, the only 1-step IHOE over k is kŒX�
with X primitive.

Proof. By [29, Corollary 7.8 (a))(b)],H is commutative. Therefore,H is the coordinate
ring of an affine connected algebraic group over k, and the result follows from [18, The-
orem 20.5].

By [14, Proposition 2.1], in characteristic 0 the hypothesis that the Hopf algebra is
affine can be removed from Lemma 6.1, at the cost of adding the group algebras of non-
cyclic subgroups of Q to the list. But the proof of [14, Proposition 2.1] does not work in
positive characteristic. We refer to a recent survey paper [9] for some facts about the prime
Hopf algebras of GKdimension one and two.

6.2. Hopf domains of GKdimension two

When k has characteristic 0, the classification of affine Hopf k-algebra domains H of
Gel’fand–Kirillov dimension 2 was achieved in [14, 15] with the imposition of the extra
hypothesis that Ext1H .k; k/ ¤ 0 (or equivalently, that the quantum group H contains a
non-trivial classical subgroup). Then, in [51], a family of dimension two k-affine Hopf PI
domains is constructed which fail to satisfy the extra hypothesis, but it is not yet known
whether, with the addition of this family, the list is complete. Staying with k of character-
istic 0, if one restricts attention to connected Hopf k-algebras of finite Gel’fand–Kirillov
dimension, then they are all affine by [61, Theorem 6.9], and the classification is complete
up dimension at most four [52, 61]. In all these classification results in characteristic 0,
the outcome takes a similar form—namely, there is a finite number of families in each list,
with each family being given by a finite set of discrete or continuously varying parameters.

Turning now to positive characteristic, and restricting attention to 2-step IHOEs, we
find that even in this very confined setting the situation is completely different from
that pertaining in characteristic 0. This is shown by the main result of this subsection,
Proposition 6.6, which lists all the two-step IHOEs in characteristic p. Together with
Proposition 6.11 in Section 6.3, which describes the isomorphisms and automorphisms
between these algebras, this classifies 2-step IHOEs in positive characteristic. It transpires
that their description entails an infinite dimensional space of parameters. The contrast
with characteristic 0 could not be starker—when k has characteristic 0, a result of Zhuang
[61, Proposition 7.4 (III)] shows that there are only two connected Hopf k-algebras of
Gel’fand–Kirillov dimension 2, namely the enveloping algebras of the two 2-dimensional
Lie algebras, both of which are obviously IHOEs. Conversely, by [7, Theorem 1.3], every
IHOE is connected, so that [61, Proposition 7.4 (III)] provides a list of the (two) 2-step
IHOEs in characteristic 0.

To understand 2-step IHOEs kŒX1�ŒX2I �; ı� in positive characteristic, we employ the
primitive cohomology studied in [53], from which we first recall some definitions. Let
.C;�/ be a coalgebra with a fixed grouplike element 1C . Let T .C / be the tensor algebra
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over the vector space C in cohomological degree 1 with differential @ determined by

@.x/ D �1C ˝ x C�.x/ � x ˝ 1C 2 C ˝ C (6.1.1)

for all x 2C . Then @ can uniquely be extended to a derivation of T .C / such that .T .C /;@/
is a differential graded algebra. Let B i .C / be the image of @n�1 W C˝.n�1/ ! C˝n and
let Zn.C / be the kernel of @n W C˝n ! C˝.nC1/. By [53, Definition 1.2 (1)], the nth
primitive cohomology of C (associated to g D h D 1C ) is defined to be

Pn
1C ;1C

.C / D Hn
�
T .C /; @

�
D ker @n= im @n�1 D Zn.C /=Bn.C /:

If C is N-graded locally finite, then T .C / is Z2-graded and locally finite. As a con-
sequence, each Pn

1C ;1C
.C / is N-graded and locally finite. We will use the following

lemma in the computation of primitive cohomology.

Lemma 6.2. Let C be a connected N-graded coalgebra and let A be the graded dual
algebra of C , namely, Ai D Homk.Ci ; k/ for all i � 0. Then A is a connected graded
algebra with trivial graded module k and

dim Pn
1C ;1C

.C /i D dim ExtnA.k;k/i

for all n and i .

Proof. After we identify dim ExtnA.k;k/i with dim TorAn .k;k/�i for all i , the assertion is
a consequence of [53, Lemma 3.6 (2)].

For the rest of this section, we assume that k has positive characteristic p. We are
now ready to compute the primitive cohomology of the coalgebra kŒX1� from Lemma 6.1.
The divided power Hopf algebra (of one variable) was introduced in [49]; also see [12,
Example 5 in Section 4.3]. By definition, the divided power Hopf algebra T is a k-vector
space with basis ¹tnºn�0 and with its bialgebra structure determined by

�.tn/ D

nX
iD0

ti ˝ tn�i ; ".tn/ D ı0;n; and tntm D

�
nCm

n

�
tnCm (6.2.1)

for all n;m � 0. By comparing the structure coefficients of the multiplications and comul-
tiplications of T and kŒX1� (as in Lemma 6.1) respectively, one can easily see that T is
the graded k-linear dual of kŒX1�, giving part (1) of Proposition 6.4.

Convention 6.3. Since we are using various different algebra and/or coalgebra structures
on the same or similar spaces, it is convenient to fix some notation.

(1) LetA denote the algebra T obtained by forgetting the coalgebra structure; namely,
A D

L
d�0 ktd is the divided power algebra of one variable with multiplication

determined by td te D
�
dCe
d

�
tdCe for all d; e � 0.

(2) Let C be the graded coalgebra kŒX1� given in Lemma 6.1 by forgetting its algebra
structure.
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Proposition 6.4. Retain the above notation.

(1) A is isomorphic to the graded dual algebra of the coalgebra C .

(2) As a graded algebra A is generated by ¹tps j s � 0º subject to the relations

.tps /
p
D 0 and tps tpt D tpt tps

for all s < t . As a consequence,

dim Ext1A.k;k/i D

´
1 i D ps for all s � 0;

0 otherwise;

dim Ext2A.k;k/i D

8̂̂<̂
:̂
1 i D psC1 for all s � 0;

1 i D ps C pt for all 0 � s < t;

0 otherwise:

(3) Consider C as a graded coalgebra with 1C being the identity of kŒX1�. Then

dim P1
1C ;1C

.C /i D

´
1 i D ps for all s � 0;

0 otherwise;

dim P2
1C ;1C

.C /i D

8̂̂<̂
:̂
1 i D psC1 for all s � 0;

1 i D ps C pt for all 0 � s < t;

0 otherwise:

(4) The following elements in C ˝ C generate a k-linear basis of P2
1C ;1C

.C /:

Zs WD

p�1X
iD1

.p � 1/Š

i Š.p � i/Š
.X

ps

1 /
i
˝ .X

ps

1 /
p�i (6.4.1)

for each s � 0, and

Ys;t WD X
ps

1 ˝X
pt

1 �X
pt

1 ˝X
ps

1 (6.4.2)

for all s < t .

Proof. (2) The assertion follows from the fact that Ext1A.k; k/ can be identified with a
minimal set of generators and Ext2A.k;k/ can be identified with a minimal set of relations.

(3) This follows from Lemma 6.2 and parts (1), (2).
(4) By part (3), it suffices to show that elements Zs and Ys;t are in Z2.C / but not in

B2.C /, which can be verified by some straightforward computations.

In the next lemma, Zs and Ys;t are as given in (6.4.1)–(6.4.2).
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Lemma 6.5. Let H be a 2-step IHOE generated by X1 and X2 as in Definition 2.1 (2);
that is, H D kŒX1�ŒX2I �; ı�. Retain the notation introduced in Proposition 6.4 (4). Then
the following hold.

(1) �.X1/ D X1 ˝ 1C 1˝X1 and �.X2/ D X2 ˝ 1C 1˝X2 C w, where

w D
X
s�0

bsZs C
X
s<t

cs;tYs;t (6.5.1)

for some scalars bs; cs;t 2 k.

(2) �.X1/ D X1 C �, where � 2 k.

(3) ı is a � -derivation of kŒX1� such that

�
�
ı.X1/

�
D ı.X1/˝ 1C 1˝ ı.X1/ � �w;

where w is given in (6.5.1).

(4) �w D 0.

(5) ı.X1/ D
P
s�0 dsX

ps

1 for some ds 2 k.

Proof. Recall that C is the coalgebra kŒX1� and 1C is the identity 1 in kŒX1�.
(1) Let w be @.X2/ WD �.X2/ � .X2 ˝ 1 C 1 ˝ X2/. By [17, Theorem 1.3 (iii)] or

[7, Theorem 2.4 (i)(f)], w 2 kŒX1�˝ kŒX1� and

w ˝ 1C .�˝ Id/.w/ D 1˝ w C .Id˝�/.w/:

This means thatw is a 2-cocycle inZ2.C /. Up to a change of variableX2, one can assume
that w is an element in P2

1C ;1C
.C /. By Proposition 6.4 (3), (4), we can assume that w is

of the form (6.5.1).
(2) This follows from [7, Theorem 2.4 (i)(d)].
(3) This follows from the fact that kŒX1� is commutative and by taking r D X1 in

[7, Theorem 2.4 (i)(d)].
(4) Let @ be the differential of the differential graded algebra T .C / as in (6.1.1), so @

is determined by
@.f / D �.f / � f ˝ 1 � 1˝ f

for all f 2 C D kŒX1�. By part (3), @.ı.X1// D ��w. This means that �w D 0 in
P2
1C ;1C

.C /. By (6.5.1) and the fact that ¹Zsºs�0[¹Ys;tº.s<t/ form a basis of P2
1C ;1C

.C /,
it follows that �w D 0.

(5) By parts (3) and (4), ı.X1/ is primitive. It is well known that every primitive
element in kŒX1� is of the form

P
s�0 dsX

ps

1 for some ds 2 k. This is also a consequence
of Proposition 6.4 (3).

Recall now the construction of 2-step IHOEs from the introduction. Namely, let ds D

¹dsºs�0, bsD¹bsºs�0, and cs;tD¹cs;tº0�s<t be sequences of scalars in k with only finitely
many nonzero elements. Let H.ds; bs; cs;t/ denote the Ore extension kŒX1�ŒX2I Id; ı�,
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where
ı.X1/ D

X
s�0

dsX
ps

1 :

Moreover, the comultiplication � W H.ds; bs; cs;t/ ! H.ds; bs; cs;t/ ˝ H.ds; bs; cs;t/ is
determined by

�.X1/ D X1 ˝ 1C 1˝X1;

�.X2/ D X2 ˝ 1C 1˝X2 C w;

where

w D
X
s�0

bs

� p�1X
iD1

.p � 1/Š

i Š.p � i/Š
.X

ps

1 /
i
˝ .X

ps

1 /
p�i

�
C

X
0�s<t

cs;t .X
ps

1 ˝X
pt

1 �X
pt

1 ˝X
ps

1 /:

Similarly, define maps " and S from ¹X1; X2º to k and H.ds;bs; cs;t/, respectively, by

".X1/ D ".X2/ D 0;

S.X1/ D �X1;

S.X2/ D �X2 �m.Id˝ S/.w/:

Now we are ready to prove Theorem 1.3 (1), (2).

Proposition 6.6. Retain the above definitions and notation.

(1) The definitions above of �, ", and S extend uniquely to H.ds;bs; cs;t/ so that it is
a Hopf algebra.

(2) Let H WD kŒX1�ŒX2I �; ı� be a 2-step IHOE generated by X1 and X2 as in Defin-
ition 2.1 .2/. Then H is isomorphic to H.ds; bs; cs;t/, for a suitable choice of
scalars.

Proof. (1) This follows from [7, Theorem 2.4 (ii)] and an easy computation (similar to the
proof of Lemma 6.5).

(2) Let � be the scalar given in Lemma 6.5 (2). Up to a change of variable, we can
assume that � is either 0 or 1.

Case 1. � D 0. The assertion follows from Lemma 6.5 (1), (5).

Case 2. � D 1. In this case �.X1/ D X1 C 1 by Lemma 6.5 (2). By Lemma 6.5 (4),
w D 0. By Lemma 6.5 (1), both X1 and X2 are primitive. Since �.X1/ D X1 C 1, we
have a relation

X2X1 D X1X2 CX2 C
X
s�0

dsX
ps

1 :
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ReplacingX2 by the new primitive generator cX2 WDX2CPs�0 dsX
ps

1 , the above relation
becomes cX2X1 D X1cX2 CcX2:
Exchanging X1 and cX2 and changing the sign of X1, one now sees that H is isomorphic
as a Hopf algebra to H.ds; 0; 0/, where ds D ¹d0 D 1; ds D 0 W s � 0º. This completes
the proof.

We shall see in the next subsection that Proposition 6.6 implies that there is an im-
mense zoo of isomorphism classes of 2-step IHOEs in positive characteristic. But, in
contrast to this plethora, the classification up to birational equivalence is very simple.
In fact, it exactly parallels the story in characteristic 0, where—in the light of Zhuang’s
result [61, Proposition 7.4 (III)], there are 2 birational equivalence classes, with the quo-
tient division rings of the field of rational functions k.X1; X2/ and the quotient division
ring Q.A1.k// of the first Weyl algebra in the commutative and noncommutative cases,
respectively.

Corollary 6.7. Let k be algebraically closed of positive characteristic and let H be a
2-step IHOE over k. If H is not commutative, that is if ds ¤ 0, then the quotient division
ring of H is isomorphic to Q.A1.k//, the first Weyl skew field over k.

Proof. By Proposition 6.6 (2),H �H.ds;bs;cs;t/ for some choice of the parameters, with
ds ¤ 0 since H is by assumption not commutative. Thus H D khX1; X2i with

ŒX2; X1� D ı.X1/ D
X
s�0

dsX
ps

1 :

The quotient division ring Q of H is, therefore, generated by X2.ı.X1//�1 and X1, and
these generators satisfy the defining relation of the Weyl skew field, as required.

6.3. Classification of 2-step IHOEs: Isomorphisms and automorphisms

This subsection has two interconnected purposes: we complete the classification begun in
Proposition 6.6 by determining when any two of the algebras listed there are isomorphic;
and in so doing we describe all the automorphisms of these Hopf algebras. The proof of
the main result requires three preliminary lemmas.

Lemma 6.8. Let H D H.0; bs; cs;t/ be a commutative 2-step IHOE as described in Pro-
position 6.6, so

�.X1/ D X1 ˝ 1C 1˝X1;

�.X2/ D X2 ˝ 1C 1˝X2 C w;

where w is given in (1.2.2). Let P.H/ denote its subspace of primitive elements.

(1) If w D 0, that is if bs D cs;t D 0, then P.H/ has k-basis ¹Xp
i

1 ; X
pj

2 W i; j � 0º,
so that khP.H/i D H .

(2) If w ¤ 0, then P.H/ has k-basis ¹Xp
i

1 W i � 0º, and khP.H/i D kŒX1�.
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Proof. Let f WD
Pn
iD0 fiX

i
2 2 P.H/, where fi 2 kŒX1�. If nD 0, then f D f0 2 kŒX1�.

It then follows from a direct computation that f is of the form
P
s�0 ˛sX

ps

1 for some
finite sequence of scalars ˛s . (This fact is also well known.)

Next assume that the X2-degree of f is n, with n � 1, and consider the equation

f ˝ 1C 1˝ f D �.f / D

nX
iD0

�.fi /�.X2/
i : (6.8.1)

For i D ps , then using commutativity of H and the fact that char k D p,

�.X2/
ps
D X

ps

2 ˝ 1C 1˝X
ps

2 C w
ps ; (6.8.2)

where wp
s
2 kŒX1�˝ kŒX1�.

On the other hand, if i � n and i ¤ ps , then the expansion of �.X i2/ has at least one
nonzero term of the form cX

j
2 ˝ X

i�j
2 , where 0 < j < i and 0 ¤ c 2 k. Suppose that

fi ¤ 0 for such an integer i . Since H ˝H is a domain, this implies that the expansion
of �.f / has a nonzero term of the form �.fi /cX

j
2 ˝ X

i�j
2 , where 0 < j < i and 0 ¤

c 2 k. The total degree in X2 of this term is i , so it cannot cancel with any other term
in f ˝1C1˝f (D�.f /). This contradicts the hypothesis that f is primitive. Therefore,
f D f0 C

P
s�0 gsX

ps

2 for some f0; gs 2 kŒX1�. Since f is primitive, (6.8.1) and (6.8.2)
imply that

f ˝ 1C 1˝ f D �.f0/C
X
s�0

�.gs/ŒX
ps

2 ˝ 1C 1˝X
ps

2 C w
ps �;

and hence �.gs/ D 1 ˝ gs D gs ˝ 1 for all s. The counital Hopf algebra axiom now
forces ˇs WD gs 2 k for all s.

(1) If w D 0, then
P
s�0 ˇsX

ps

2 is clearly primitive. Hence f0 is primitive, f0 DP
s�0 ˛sX

ps

1 for some ˛s 2 k, and the claims follow.
(2) If w ¤ 0, then it is of the form (1.2.2). Since char k D p, for every s � 0, wp

s
is

also of the form of (1.2.2), but of higher X1-degree. If ˇs ¤ 0 for some s, by counting the
X1-degree one sees that

P
s�0 ˇsw

ps is another nonzero element of the form (1.2.2). In
particular, the class of

P
s�0 ˇsw

ps in P2
1;1.kŒX1�/ is nonzero, by Proposition 6.4 (4).

Recall that f D f0 C
P
i�1 fiX

i
2 D f0 C

P
s�0 ˇsX

ps

2 . By (6.8.2),

0 D �.f / � 1˝ f � f ˝ 1

D
�
�.f0/ � 1˝ f0 � f0 ˝ 1

�
C

X
s�0

ˇsw
ps

D @.f0/C
X
s�0

ˇsw
ps :

This implies that the class
P
s�0 ˇsw

ps in P2
1;1.kŒX1�/ is equal to the class of �@.f0/,

which is zero by definition. This yields a contradiction. Therefore, all ˇs D 0 and the result
follows.
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Lemma 6.9. LetH DH.ds;bs; cs;t/ be a noncommutative 2-step IHOE as in Proposition
6.6. That is, ı.X1/ ¤ 0, equivalently ds ¤ 0.

(1) The commutator ideal ŒH;H� is a nonzero Hopf ideal of H .

(2) Let K denote the Hopf algebra kŒt �, so t is primitive. Suppose that � W H!K is
a Hopf algebra epimorphism. Then ker� is the principal ideal generated by X1.

(3) For any Hopf algebra epimorphism, � W H ! K, H coK is the Hopf subalgebra
kŒX1� of H .

Proof. (1) It is well known that the commutator ideal is a Hopf ideal [14, Lemma 3.7].
Since H is noncommutative, ŒH;H� ¤ 0.

(2) Let f .X1/ denote the polynomial ı.X1/2kŒX1�. Then f .X1/ is a nonzero element
in ŒH;H�. Since im � is commutative, ŒH;H� is a subspace of ker �, so �.f .X1// D 0.
We claim that �.X1/D 0. Suppose not, and let y D �.X1/. Since X1 is primitive, so is y.
Then 0 ¤ y D

P
s�0 ˛st

ps for a finite sequence of scalars ˛s , so that

�
�
f .X1/

�
D f

�
�.X1/

�
D f .y/ D f

�X
s�0

˛st
ps
�

which is nonzero. This yields a contradiction. Thus y D 0 as required.
(3) As

.Id˝ �/ ı�.X1/ D X1 ˝ �.1/;

X1 2 H
coK and so kŒX1� � H coK . To prove the reverse inclusion, let g.X1; X2/ be any

element in H coK . Since �.X1/ D 0 by part (2) and � is an epimorphism, �.X2/ is an
algebra generator of K. Now

g.X1 ˝ 1;X2 ˝ 1/ D g.X1; X2/˝ 1

D .Id˝ �/�g.X1; X2/

D g
�
.Id˝ �/�.X1/; .Id˝ �/�.X2/

�
D g

�
X1 ˝ 1;X2 ˝ 1C 1˝ �.X2/ �

X
t>0

c0;tX
pt

1 ˝ 1
�
:

This implies that X2-degree of g is zero, so g 2 kŒX1� as required.

Lemma 6.10. LetH D khX1;X2i andH 0 D khX 01;X
0
2i be two 2-step IHOEs as listed in

Proposition 6.6. Let � W H ! H 0 be a Hopf algebra isomorphism such that �.kŒX1�/ D
kŒX 01�. Then �.X2/ D cX 02 C v.X

0
1/ for some 0 ¤ c 2 k and v.X 01/ 2 kŒX 01�.

Proof. We will not need any Hopf algebra structure for this proof. So up to a change of
variable, we can assume that �.X1/ D X 01.

Let a be the X 02-degree of �.X2/ and let b be the X2-degree of ��1.X 02/. Since
�.X1/ D X

0
1 and both H and H 0 are Ore extensions, it is easy to see that ab D 1. This

forces aD b D 1. Write �.X2/D c.X 01/X
0
2C v.X

0
1/ and ��1.X 02/D d.X1/X2C u.X1/.

Then c.X 01/d.X
0
1/ D 1, so 0 ¤ c WD c.X 01/ 2 k is a nonzero scalar in k.



K. A. Brown and J. J. Zhang 816

We can now describe the Hopf algebra isomorphisms and automorphisms between
2-step IHOEs. In what follows, we shall use the adjective trivial to specify the IHOE
H.0; 0; 0/—in other words, the trivial 2-step IHOE is the coordinate ring of .k;C/ �
.k;C/. To describe Aut.H.0; 0; 0//, let F denote the automorphism of .k;C/ which
maps � 2 k to �p . Thus F and k n ¹0º are in Aut..k;C//, where elements of k n ¹0º
act by left multiplication, and together they generate in End..k;C// the skew polynomial
subalgebra A WD kŒF I ��, where �.�/ D ��p for � 2 k.

In the next proposition, let H and khX1; X2i denote H.ds; bs; cs;t/ and let H 0 and
khX 01; X

0
2i denote H.d0s;b0s; c0s;t/ as listed in Proposition 6.6.

Proposition 6.11. Retain the above notation.

(1) Let � W H ! H 0 be a Hopf algebra isomorphism. Then there are nonzero scalars
˛; ˇ in k such that, for all s � 0, s < t ,

d 0s D ds˛
ps�1ˇ�1; b0s D bs˛

psC1ˇ�1; c0s;t D cs;t˛
psCptˇ�1: (6.11.1)

Conversely, if ˛ and ˇ are nonzero scalars such that (6.11.1) holds, then there is
a Hopf algebra isomorphism � W H ! H 0 such that

�.X1/ D ˛X
0
1 and �.X2/ D ˇX

0
2:

(2) Suppose that H is not trivial. Then every Hopf algebra isomorphism from H to
H 0 has the form

�.X1/ D ˛X
0
1 and �.X2/ D ˇX

0
2 C

X
s�0

esX
0ps

1 ;

for an arbitrary finite sequence of scalars ¹es W s � 0º, and nonzero scalars ˛ and
ˇ satisfying (6.11.1).

(3) If H is not trivial, then every Hopf algebra automorphism of H is of the form

�.X1/ D ˛X1;

�.X2/ D ˇX2 C
X
s�0

esX
ps

1 ;

where ¹es W s � 0º is an arbitrary finite sequence of scalars, and ˛; ˇ are nonzero
scalars satisfying

ds D ds˛
ps�1ˇ�1; bs D bs˛

psC1ˇ�1; cs;t D cs;t˛
psCptˇ�1I (6.11.2)

equivalently,

ˇ D

8̂̂<̂
:̂
˛p

s�1 if ds ¤ 0;

˛p
sC1

if bs ¤ 0;

˛p
sCpt if cs;t ¤ 0:
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(4) Suppose that H is trivial, so H Š O..k;C/2/. Then, in the notation introduced
before the proposition,

Aut.H/ Š GL2.A/:

Proof. (1) If both H and H 0 are trivial, then the assertions are obvious. Now we assume
that H is not trivial.

If H is noncommutative, then H 0 is noncommutative, and so H 0 is not trivial. If H is
commutative, then w ¤ 0 and, by Lemma 6.8,H 0 is not trivial. Thus, in both cases,H 0 is
not trivial.

By Lemma 6.8 (2) and Lemma 6.9 (3), the Hopf algebra isomorphism � W H ! H 0

maps kŒX1� to kŒX 01�. In particular, kŒX 01� D kŒ�.X1/�, so �.X1/ D ˛X 01 C a0 for a
nonzero scalar ˛ and a scalar a0. Since X1 is primitive, a0 D 0 and �.X1/ D ˛X 01. By
Lemma 6.10, �.X2/ D ˇX 02 C v.X

0
1/, where ˇ is a nonzero scalar and v.X 01/ 2 kŒX 01�.

Applying � to the defining relation of H , namely

X2X1 �X1X2 D ı.X1/ D
X
s�0

dsX
ps

1 ;

we obtain the following equation in H 0:

˛ˇ.X 02X
0
1 �X

0
1X
0
2/ D

X
s�0

ds˛
psX

0ps

1 ;

which must agree with

X 02X
0
1 �X

0
1X
0
2 D ı

0.X 01/ D
X
s�0

d 0sX
0ps

1 :

Therefore, d 0s D ds˛
ps�1ˇ�1 for all s.

Recall that @ denotes the map defined in (6.1.1). Applying � ˝ � to the following
equation in H ˝H ,

�.X2/ D X2 ˝ 1C 1˝X2 C w;

we obtain an equation in H 0 ˝H 0, namely

ˇ�.X 02/C @
�
v.X 01/

�
D ˇ.X 02 ˝ 1C 1˝X

0
2/C .� ˝ �/.w/:

With the obvious notation w0 WD @.X 02/, the above equation must agree with

�.X 02/ D X
0
2 ˝ 1C 1˝X

0
2 C w

0:

Using the explicit form of .� ˝ �/.w/, one can show that @.v.X 01// D 0 and w0 D
ˇ�1.� ˝ �/.w/. The former implies that v.X 01/ 2 kŒX 01� � H

0 is primitive and the latter
implies that

b0s D bs˛
psC1ˇ�1; c0s;t D cs;t˛

psCptˇ�1

for all s < t . Therefore, (6.11.1) holds.
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The converse is clear.
(2) By the proof of part (1), �.X1/ D ˛X 01 and �.X2/ D ˇX 02 C v.X

0
1/, with v.X 01/

primitive. Since every primitive element in kŒX1� is of the form
P
s�0 esX

ps

1 , the assertion
follows.

(3) This is a special case of part (2).
(4) Suppose that H D H.0; 0; 0/ is trivial. That Aut.H/ Š GL2.A/ is an immediate

consequence of the equivalence of categories between the category of unipotent algebraic
groups over k which are subgroups of .k;C/r for some r , and the category of finitely
generated A-modules, under which .k;C/ corresponds to the free A-module of rank 1,
[34, Theorem 14.46 and Example 14.40].

7. Comments and questions

We gather here a number of observations related to the classification results in Section 6.3.

7.1. Algebraic groups

To recast Sections 6.2 and 6.3 in the language of affine algebraic k-groups, first consider
the overuse in this context of the word “connected”: a Hopf algebra H is by definition
connected if its coradical H0 is k, equivalently if it has a unique simple comodule [36,
Definition 5.1.5]; an affine algebraic k-group G is unipotent if and only if its coordinate
ring H D O.G/ is a connected Hopf algebra [34, Theorem 14.5]; and an affine algeb-
raic k-group G is connected if and only if it equals Gı, its connected component of 1G .
Equivalently, G is connected if and only if O.G/ is a domain2. In characteristic 0, every
unipotent group U is connected—that is, O.U / is always a domain; but the cyclic group
of order p shows that this is false in characteristic p.

The key part (2))(1) of the following fundamental result is due to Lazard [26]; a short
proof valid in all characteristics can be found in [24, Section 4]. For the full statement of
the theorem, see for example [22, Section 8].

Theorem 7.1. Let k be an algebraically closed field of arbitrary characteristic, let G
be an affine algebraic k-group, and let n be a positive integer. Then the following are
equivalent.

(1) G is a connected unipotent group over k of dimension n.

(2) O.G/ Š kŒX1; : : : ; Xn� as k-algebras.

(3) O.G/ is an affine connected Hopf domain of Gel’fand–Kirillov dimension n.

(4) O.G/ is an n-step IHOE.

(5) G has a subnormal series of length n with factors isomorphic to .k;C/.

(6) G has a central series of length n with factors isomorphic to .k;C/.

2In the algebraic groups literature, this confusion is sometimes avoided by using coconnected for the
first of these usages.
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7.2. Classification of connected unipotent groups of dimension two

Revert to our usual hypothesis that the base field is k, algebraically closed of characteristic
p > 0. The coordinate ring of every 2-dimensional connected unipotent group over k is a
2-step IHOE, by (1),(4) of Theorem 7.1, so the classification of Section 6.3 incorporates
a classification of these groups. Clearly, in the notation of Section 6.2, H.ds; bs; cs;t/ is
commutative if and only if ds D 0, so the 2-dimensional connected unipotent k-groups are
classified by

H.0;bs; cs;t/=�;

where the equivalence is provided by the isomorphisms of Proposition 6.11 (1), (2). A
version of the same classification, over an arbitrary field, in group-theoretic language, is
given (“rather formal” in the words of the authors) at [22, Section 3.7].

It is easy to write down the group G such that H.0; bs; cs;t/ Š O.G/. Namely, G D
A2.k/, and for .a; e/ and .f; g/ in G

.a; e/ � .f; g/

D

�
aC f; e C g C

X
s�0

bs

� p�1X
iD1

�ia
ipse.p�i/p

s

�
C

X
0�s<t

cs;t .a
psep

t

� ap
t

ep
s

/

�
:

(7.1.1)

From this, it is easy to see that

• G is abelian, cs;t D 0 or p D 2,

• G has exponent p, bs D 0.

Combining these two statements yields the conclusion that the only abelian connected 2-
dimensional unipotent group of exponent p is .k;C/2, a special case of a result valid for
all dimensions (see [45, Proposition VII.11] and [22, Lemma 1.7.1]).

7.3. Ore extensions of dimension two

The Ore extensions of the polynomial ring kŒX1� are classified in [2], so one can view
Proposition 6.6 as determining which of these Ore extensions admit Hopf algebra struc-
tures. Notice that Propositions 6.6 and 6.11 together show that, for every Ore extension
R D kŒX1�ŒX2I �; ı�, the number of distinct Hopf structures which R can carry is either 0
or1. This is in stark contrast to the situation in characteristic 0, as noted in the opening
sentence of Section 6.2.

A second noteworthy feature is this: every such R admitting a Hopf algebra struc-
ture can be presented with � D IdkŒX1�. (The enveloping algebra of the non-abelian 2-
dimensional Lie algebra can be presented in 2 distinct ways as an Ore extension, only one
of which can be written as an Ore extension with � D IdkŒX1�.) But this does not extend
to higher dimensions: U.sl.2; k// is a 3-step IHOE [7, Section 3.1, Examples (iii)], but
cannot be so presented without using automorphisms.
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Another case to consider is HOE kŒX˙11 �ŒX2; �; ı�, where X1 is a grouplike element.
Let C D kŒX˙11 �. By [17, Theorem 1.3 (i)], there is a grouplike element ˛ DXa1 2 C such
that

�.X2/ D ˛ ˝X2 CX2 ˝ 1C w;

where w is an element in C ˝ C . By [53, Lemma 2.3 (1)], w is an .˛; 1/-2-cocycle. Since
C is cosemisimple, it has primitive cohomology dimension 0 and

P2
˛;1.C / D 0:

This implies that w is an .˛; 1/-2-coboundary. Up to a change of variable X2, we can
assume that w D 0 by [53, Lemma 2.3 (3)]. By [17, Theorem 1.3 (ii)], there is a nonzero
c 2 k such that �.X1/ D cX1. Let ı.X1/ D

P
n bnX

n
1 . By [17, Theorem 1.3 (iii)], we

have X
n

bnX
n
1 ˝X

n
1 �

�X
n

bnX
n
1

�
˝X1 �X

aC1
1 ˝

�X
n

bnX
n
1

�
D 0

which implies that
ı.X1/ D b1.X1 �X

aC1
1 /:

In summary, we have the following family of Hopf algebras:

K.a; b; c/ WD kŒX˙11 �ŒX2I �; ı�;

where �.X1/D cX1 for some nonzero c 2 k and ı.X1/D b.X1 �XaC11 / for some b 2 k,
a 2 Z, and the coalgebra structure of K.a; b; c/ is determined by

�.X1/ D X1 ˝X1; ".X1/ D 0;

and
�.X2/ D X

a
1 ˝X2 C 1˝X2; ".X2/ D 0:

The following lemma is clear.

Lemma 7.2. Retain the above notation. ThenK.a; b; c/ is commutative if and only if b D
0 and c D 1. In this case, there is a unique Hopf ideal I such that K.a; 0; 1/=I Š kŒX2�.

7.4. Classification of connected algebraic groups of dimension two

The following is a well-known classification of connected algebraic groups of dimension
two. Assume that k is algebraically closed and that G is a connected algebraic group of
dimension two. Since no quotient group ofG can be semisimple,G is solvable. LetGu be
the unipotent radical of G. Then Gu is normal and unipotent, with G=Gu connected and
with no unipotent elements. By [18, Section 19.1], Gu is connected, and there is a short
exact sequence

1! Gu ! G ! T ! 1; (7.2.1)

where T is a torus. There are three cases to consider.
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Case 1: dimGu D 0. Then G D T is a torus and O.G/ D kŒX˙11 ; X˙12 �.
Case 2: dimGu D 2. Then G is unipotent, so G is classified in (7.1.1).
Case 3: dimGu D 1. By (7.2.1), G is a semidirect product .k;C/ Ì .k n ¹0º;�/. Dual

to (7.2.1), there is a short exact sequence of commutative Hopf algebras

k! kŒX˙11 �! O.G/! kŒX2�! k:

Then O.G/ is one of the Hopf algebras K.a; 0; 1/ given in the last section.

7.5. Connected affine Hopf algebra domains of GKdimension 2

We do not know whether Propositions 6.6 and 6.11 give a classification of all connected
affine Hopf k-algebra domains of Gel’fand–Kirillov dimension 2. More precisely, one can
ask the following question:

Question 7.3. If k has positive characteristic, is every affine connected Hopf k-algebra
domain H of Gel’fand–Kirillov dimension 2 an IHOE?

The answer is “yes” when H is commutative, and not only in dimension 2—this fol-
lows from the structure of connected unipotent groups, Theorem 7.1. If one drops the
restriction to dimension 2 in Question 7.3, then the answer is “no”—for example the
enveloping algebra of sl.3; k/ endowed with its standard cocommutative coproduct is
not an IHOE, since sl.3;k/ does not contain a full flag of Lie subalgebras.

7.6. Automorphism groups of 2-step IHOEs

From Proposition 6.11 (3), one can easily read off the structure of the group Aut.H/ of
Hopf algebra automorphisms of H WD H.ds; bs; cs;t/, for each non-trivial H . Namely,
define subgroups T and N of Aut.H/ by

T D
®
� 2 Aut.H/ j �.X1/ D ˛X1; �.X2/ D ˇX2

¯
;

where ˛; ˇ 2 .k;�/ satisfy (6.11.2); and

N D
°
� 2 Aut.H/ j �.X1/ D X1; �.X2/ D X2 C

X
s�0

esX
ps

1

±
;

for an arbitrary sequence .es/ 2 kN with only finitely many nonzero entries. Thus N is
a normal subgroup of Aut.H/ with N Š .k;C/N . The constraints (6.11.2) mean that
T Š .k;�/ if H has only one nonzero parameter, while T is a finite (possibly trivial)
subgroup of .k;�/ if there are two or more defining parameters for H . It is clear from
Proposition 6.11 that Aut.H/ is the semidirect product of N by T .

8. Noncommutative binomial theorem in characteristic p

In this short section, we derive a corollary of an important theorem due to Jacobson, which
is needed in Section 9. Stated in our notation, Jacobson’s theorem is as follows:
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Theorem 8.1 ([21, pp. 186–187]). Let F be a field of characteristic p > 0 and let R be
an F -algebra. For elements a; b of R,

.aC b/p D ap C bp C

p�1X
iD1

si .a; b/;

where, for i D 1; : : : ; p � 1 and � 2 F n ¹0º, si .a; b/ is the coefficient of 1
i
�i�1 in

adp�1
.�aCb/

.a/.

Here is the required corollary.

Corollary 8.2. In the situation of the theorem, suppose that the elements adib.a/ of R
commute with a for i D 1; : : : ; p � 1. Then

.aC b/p D ap C bp C adp�1
b

.a/:

Proof. The extra hypothesis of the corollary ensures that, for j > 0, �j does not occur in
the expansion of adp�1

.�aCb/
.a/. So Theorem 8.1 states that only s1.a;b/ is nonzero; namely,

s1.a; b/ D adp�1
b

.a/;

as claimed.

9. Properties of 2-step IHOEs

9.1. The antipode, the center, and the Calabi–Yau property

In this subsection, we study properties of the Hopf algebras listed in Proposition 6.6. The
definition and relevant properties of the PI-degree are recalled in Section 4.1; regarding
the Nakayama automorphism and the skew Calabi–Yau property, see Section 4.2 and [8].

Proposition 9.1. Let H be a 2-step IHOE H.ds;bs; cs;t/ as in Proposition 6.6.

(1) S2 is the identity of H .

(2) H is commutative if and only if ds D 0.

(3) H is cocommutative if and only if cs;t D 0 or p D 2.

(4) Suppose thatH is not commutative. Then the center ofH is kŒXp1 ;X
p
2 �d

p�1
0 X2�.

Hence the PI-degree of H is p.

(5) The Nakayama automorphism � of H is determined by

�.X1/ D X1 and �.X2/ D X2 C d0:

Hence, H is Calabi–Yau if and only if d0 D 0.

(6) The left homological integral
R l
H

of H is the 1-dimensional H -bimodule which is

trivial as left module and with
R l
H
Š H=.X1; X2 � d0/ as right module.
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Proof. (1) Using the comultiplication formula of H.ds; bs; cs;t/ or the definition given
before Theorem 1.3, one finds that

S.X1/ D �X1 and S.X2/ D �X2 C f .X1/

for some polynomial f . It is clear that S2.X1/ D X1. If p D 2, then

S2.X2/ D X2 C 2f .X1/ D X2

which implies that S2 is the identity. (In fact, when pD 2, S.X2/DX2C
P
s�0 bsX

2sC1

1 .)
Suppose now that p � 3. Again by the comultiplication formula,

S.X2/ D �X2 �m
�
.S ˝ Id/.w/

�
;

where w is defined in (6.5.1) and m denotes multiplication in H . Since p is odd,

m
�
.S ˝ Id/.Zs/

�
D 0 and m

�
.S ˝ Id/.Ys;t /

�
D 0:

Therefore, S.X2/ D �X2 and S2 is the identity.
(2) This is clear from (1.2.1).
(3) This is clear from (1.2.2).
(4) Since � D Id, ı is a derivation of kŒX1�. Thus ı.Xp1 / D pX

p�1
1 ı.X1/ D 0. This

implies that X2X
p
1 D X

p
1 X2, so that Xp1 is central.

One easily checks by induction that

ın.X1/ D d
n�1
0 ı.X1/ (9.1.1)

for all n � 2. Write the derivation ı D ŒX2;�� of kŒX1� as �X2 � �X2 where the symbols
�X2 (resp. �X2 ) denote left (resp. right) multiplication by X2 in H . Note that these linear
maps commute in Endk.H/, so one has

.�X2 � �X2/
p
D �

p
X2
� �

p
X2
:

In other words,
ıp D ŒX

p
2 ;��; (9.1.2)

so that
X
p
2 X1 D X1X

p
2 C ı

p.X1/ D X1X
p
2 C d

p�1
0 ı.X1/:

Combining this with the relation

X2X1 D X1X2 C ı.X1/;

it follows thatXp2 � d
p�1
0 X2 is central. ThusH is a free module of rank p2 over the cent-

ral polynomial subalgebra Z0 WD kŒXp1 ; X
p
2 � d

p�1
0 X2�. Hence, using Q.�/ to denote

quotient division algebras,
dimQ.Z0/Q.H/ D p

2:
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But dimQ.Z.H//Q.H/ is an even power of p, by Theorem 4.3 and the discussion at the
start of Section 4.1. Therefore, since H is not commutative, the PI-degree of H is p and
Q.Z.H// D Q.Z0/. However, Z.H/ is a finite module over Z0 by noetherianity of H
as a Z0-module, and Z.H/ is contained in Q.Z0/. Since Z0 is normal, it follows that
Z.H/ D Z0. That the PI-degree of H is p is now clear.

(5) By [28, Theorem 4.2], �.X1/ D X1 and

�.X2/ D X2 C
d

dX1

�
ı.X1/

�
D X2 C d0:

The consequence is clear (and it also follows from [28, Corollary 4.3]).
(6) By [8, Theorem 0.3], �D S2 ı„l� , where � is the right character of the left homo-

logical integral
R l of H and „l� is the corresponding left winding automorphism. By (1),

S2 D Id, so that � D „l� . Thus (5) implies (6).

9.2. Representation theory of 2-step IHOEs

In this subsection, we describe the simple representations of the 2-step IHOEs H WD
H.ds;bs;cs;t/. Recall that if k is any algebraically closed field andA is an affine k-algebra
which is a finite module over its center Z, then Z is also affine by the Artin–Tate lemma
[33, Lemma 13.9.10], and a version of Schur’s lemma applies [33, Theorem 13.10.3]:
namely, if V is a simple A-module, then EndA.V / D k, and so V is annihilated by a
maximal ideal m of Z, so that V is a (necessarily finite dimensional) simple module
over the finite dimensional algebra H=mH . If A is prime (as in the current setting, when
A D H.ds; bs; cs;t/ is a domain), with PIdeg.A/ D d , then for m in a non-empty (and
hence dense) open subset A.A/ of maxspec.A/,

A=mA ŠMd .k/:

The set A.A/ is called the Azumaya locus of A. For convenience, we shall denote the non-
Azumaya locus by N A.A/; that is, N A.A/ WDmaxspec.Z/ nA.A/, a proper closed sub-
set of maxspec.Z/. If the simpleA-module V has AnnZ.V /2N A.A/, then dimk.V /<d .
For more details on this circle of ideas, see for example [5, Part III].

Suppose now that H WD H.ds;bs; cs;t/ D kŒX1�ŒX2I ı�, so that

Z WD Z.H/ D kŒXp1 ; X
p
2 � d

p�1
0 X2�

by Theorem 9.1 (4). In view of the discussion in the previous paragraph, our task is to
describe the algebras

H˛;ˇ WD H=m˛;ˇH;

where m˛;ˇ denotes the maximal ideal hXp1 � ˛; X
p
2 � d

p�1
0 X2 � ˇi of Z and .˛; ˇ/

ranges through A2.k/. Notice that, by the PBW theorem for H ,

dimk.H˛;ˇ / D p
2
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for all .˛; ˇ/ 2 A2.k/. Therefore, the maximal dimension of a simple H -module V is p,
and this value is attained by V if and only if V is the (unique) simple H=m˛;ˇH -module
for some .˛; ˇ/ 2 A.H/.

Recall from (1.2.1) that ı.X1/ D d0X1 C
P
s�1 dsX

ps

1 . It is convenient to define a
polynomial d.x/ D

P
s�1 dsx

ps�1 , so that

ı.X1/
p
D d

p
0 X

p
1 C

�X
s�1

dsX
ps

1

�p
D d

p
0 X

p
1 C d.X

p
1 /
p:

Proposition 9.2. Suppose that k is algebraically closed of characteristic p > 0. Let H
be a 2-step IHOE as given in Proposition 6.6, and fix the notation as above. Suppose that
H is not commutative, that is ds ¤ 0.

(1) The defining ideal of N A.H/ in Z is
q
hd
p
0 X

p
1 C d.X

p
1 /
pi. That is,

H˛;ˇ ŠMp.k/, d
p
0 ˛ C d.˛/

p
¤ 0:

(2) Suppose that d0 D 0. Let m˛;ˇ 2 N A.H/; that is, dp0 ˛ C d.˛/
p D 0, or equi-

valently,
d.˛/ D 0:

Then
H˛;ˇ Š kŒX; Y �=hXp; Y pi:

Thus H˛;ˇ has a unique simple module, of dimension 1.

(3) Suppose that d0 ¤ 0. Let m˛;ˇ 2 N A.H/, so dp0 ˛ C d.˛/
p D 0. Then there are

elements u;w 2 H˛;ˇ such that H˛;ˇ D khu;wi, with relations

up D 0; wu � uw D u; wp � w C ˛ˇd.˛/�p D 0: (9.2.1)

In particular, H˛;ˇ has a single block of p simple modules, each of dimension 1.

(4) The non-Azumaya locus N A.H/ is the disjoint union of r copies of A1.k/, the
affine line, where r is the number of distinct roots of the equationX

s�0

dps x
ps
D 0:

Note that in the setting of part (3) the third equation in (9.2.1) is equivalent to

wp � w D ˇd
�p
0 :

Proof. (1), (2), (3) Let .˛; ˇ/ 2 A2.k/. The defining relation of H WD H.ds; bs; cs;t/,
namely ŒX2; X1� D ı.X1/, yields in H˛;ˇ the relation

X2X1 �X1X2 D ı.X1/ D d0X1 C
X
s�1

ds˛
ps�1
D d0X1 C d.˛/: (9.2.2)
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Suppose first that dp0 ˛C d.˛/
p ¤ 0. If d0 D 0, then (9.2.2) yields the defining relation for

the Weyl algebra. Thus H˛;ˇ is a factor of the first Weyl algebra over k, of dimension p2.
But the Weyl k-algebra is Azumaya of PI-degree p by [42, Theorem 2], so each of its
p2-dimensional factors, in particular H˛;ˇ , is isomorphic to Mp.k/.

Next consider the case where dp0 ˛ C d.˛/
p ¤ 0 and d0 ¤ 0. Let u and w denote the

images in H˛;ˇ of d0X1 C d.˛/ and d�10 X2, respectively. These satisfy the following
relations in H˛;ˇ :

wu � uw D u; up D d
p
0 ˛ C d.˛/

p; wp � w D d
�p
0 ˇ:

The second of these relations shows that u is a unit, so post-multiplying the first relation
by u�1 again yields the defining relation of the first Weyl algebra. As before, we find that
H˛;ˇ Š Mp.k/. We have therefore shown that N A.H/ is contained in the subvariety of
maxspec.Z/ defined by dp0 X

p
1 C d.X

p
1 /
p .

Now assume that dp0 ˛C d.˛/
p D 0. Suppose first that d0D 0. ThenZ D kŒXp1 ; X

p
2 �,

and so the images in H˛;ˇ of X1 � ˛
1
p and X2 � ˇ

1
p are mutually commuting nilpotent

elements, which together generate H˛;ˇ and have index of nilpotency p. Therefore, H˛;ˇ
is the local algebra kŒX; Y �=hXp; Y pi in this case.

Finally, suppose that dp0 ˛ C d.˛/
p D 0, with d0 ¤ 0. Let u and w denote the images

in H˛;ˇ of d0X1 C d.˛/ and d�10 X2, respectively. Then we obtain the three relations in
(9.2.1). The first two relations of (9.2.1) now show that u is a nilpotent normal element,
with index of nilpotency at most p. Now H˛;ˇ=uH˛;ˇ D khwi, and the third relation of
(9.2.1) has the form f .w/ D 0, where f .x/ is a polynomial with f 0.x/ D �1. Hence
f .w/ D 0 has no repeated roots (or f .w/ D 0 has root w;w C 1; : : : ; w C p � 1 when
one root w is chosen), so that

H˛;ˇ=uH˛;ˇ Š k˚p:

Since dimkH˛;ˇ D p
2, this shows that up D 0¤ up�1. Moreover, the second relation of

(9.2.1) shows that the p distinct 1-dimensional simpleH˛;ˇ -modules form a single block,
with the Ext-quiver being a circle. This completes the proof of parts (1), (2), and (3).

(4) From the above proof, we see that a maximal ideal m˛;ˇ of Z is in N A.H/ if and
only if ˛ is a root of the equation dp0 x C d.x/

p D 0, that is of the equation

d
p
0 x C

X
s�1

dps x
ps
D 0:

This proves (4).

9.3. The Hopf center and restricted Hopf algebras

Recall the following definition, due to Andruskiewitsch [1, Definition 2.2.3].

Definition 9.3. LetH be a Hopf algebra. The Hopf center ofH , denoted by C.H/, is the
unique largest central Hopf subalgebra of H .
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It is easy to see that C.H/ exists for any Hopf algebra H . As already discussed
in Remark 3.5 (1), when k has positive characteristic p and g is an n-dimensional Lie
algebra over k, C.U.g// exists and is a polynomial algebra in n variables, with U.g/ a
free C.U.g//-module of rank a power of p. In general, even when H is a finite mod-
ule over its center, C.H/ can be very small—consider, for instance, the group algebra
H D FG over any field F of the dihedral group

G D ha; b W b2 D 1; bab D a�1i;

where C.H/ D F . Nevertheless, current evidence suggests that when H is a connected
Hopf k-algebra, C.H/ may always be large, and Question 3.7 proposes that this may be
the case for IHOEs over k. We shall show in this subsection that this is indeed the case for
all 2-step k-IHOEs. First, however, we show that whenever a k-IHOE is a finite module
over its Hopf center, some of the desirable features of the Lie algebra case immediately
follow. In this subsection, we denote the augmentation ideal of a Hopf algebra T by TC.

Proposition 9.4. Let k be algebraically closed of characteristic p > 0, let n be a positive
integer, and let H be a noncommutative n-step IHOE over k. Suppose that H is a finite
C.H/-module. Then C.H/ is a polynomial algebra in n variables, andH is a free C.H/-
module of rank p` for some ` � 2.

Proof. By [7, Proposition 2.5], H is connected as a Hopf algebra, so C.H/ is also con-
nected. Moreover, C.H/ is affine of Gel’fand–Kirillov dimension n, by the Artin–Tate
lemma and Corollary 3.4. By Theorem 7.1 ((3))(2)), C.H/ is a commutative poly-
nomial ring kŒX1; : : : ; Xn�. By [58, Theorem 0.3], H is a finitely generated projective
module over C.H/. Hence H is a free module over C.H/ of finite rank. Let r denote the
rank of H over C.H/. By definition, C.H/ is central in H , then xH WD H=.C.H//CH
is a Hopf algebra of dimension r . By [36, Corollary 5.3.5], xH is connected. Since xH is
finite dimensional and connected, its dimension is of the form p` for some ` > 0 [54, Pro-
position 2.2 (7)].

Since H is prime, the rank H as a Z.H/-module is a square of some integer. This
implies that r is not a prime number. Therefore, ` � 2.

Observe that, in the setting of the proposition, the factor algebra

xH WD H=C.H/CH

is a connected Hopf algebra of dimension p`. It seems reasonable to call xH the restricted
Hopf algebra of H .

In the rest of this subsection, we confirm that the hypotheses of the proposition are
satisfied by all noncommutative 2-step IHOEs, with ` equal to 2 or 3 in all cases, and
we determine their restricted Hopf algebras. The following notation will remain in force
throughout the rest of Section 9.3.
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Notation 9.5. The field k is algebraically closed of characteristic p > 0, and H denotes
a 2-step IHOE H.ds; bs; cs;t/ D khX1; X2i as defined in Proposition 6.6; see also Sec-
tion 1.3. The element Xp2 � d

p�1
0 X2 of H , which is central by Proposition 9.1 (4), will

be denoted by z.
We will always denote the element ofH ˝H defined in (1.2.2) by w, so that, writing

�i for .p�1/Š
iŠ.p�i/Š

.1 � i � p � 1/,

w D
X
s�0

bs

� p�1X
iD1

�i .X
ps

1 /
i
˝ .X

ps

1 /
p�i

�
C

X
0�s<t

cs;t .X
ps

1 ˝X
pt

1 �X
pt

1 ˝X
ps

1 /:

We denote the element X2 ˝ 1C 1˝X2 of H ˝H by b.
Let s be a positive integer divisible by p, and let �s denote equality of elements of

H ˝H modulo the subspace X s1H ˝H CH ˝X
p
1 H . Since this subspace is preserved

by adb , it follows that, for elements f and g of H ˝H ,

f �s g) adb.f / �s adb.g/: (9.5.1)

Using the fact that
adX2.X

i
1/ D iX

i�1
1 ı.X1/

for all i � 1, one can check that

adb.w/

D
�
ı.X1/˝1

��
b0
®
.X1˝1C1˝X1/

p�1
�X

p�1
1 ˝1

¯
C

X
t>0

c0;t1˝X
pt

1

�
C
�
1˝ı.X1/

��
b0
®
.X1˝1C1˝X1/

p�1
� 1˝X

p�1
1

¯
�

X
t>0

c0;tX
pt

1 ˝1
�
: (9.5.2)

Lemma 9.6. Retain Notation 9.5.

(1) �.z/ D z ˝ 1 C 1 ˝ z C wp � d
p�1
0 w C ad

p�1

b
.w/. Moreover, the element

wp � d
p�1
0 w C ad

p�1

b
.w/ of H ˝H is in kŒX1�˝ kŒX1�.

(2) The subalgebra kŒXp1 ; z� of H is a Hopf subalgebra if and only if

�d
p�1
0 w C ad

p�1

b
.w/ 2 kŒXp1 �˝ kŒXp1 �:

(3) If b0 D 0, then kŒXp1 ; z� is a Hopf subalgebra of H .

Proof. (1) First of all, for every i � 0, ad i
b
.w/ 2 kŒX1� ˝ kŒX1�. Hence ¹ad i

b
.w/ºi�0

are in a commutative subalgebra of H ˝H . Thus all the hypotheses of Corollary 8.2 are
satisfied. Therefore, by that corollary and the definitions of H and z,

�.z/ D �.X
p
2 / � d

p�1
0 �.X2/

D
�
�.X2/

�p
� d

p�1
0 �.X2/

D .w C b/p � d
p�1
0 .w C b/
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D wp C bp C ad
p�1

b
.w/ � d

p�1
0 .w C b/

D wp C .X2 ˝ 1C 1˝X2/
p
C ad

p�1

b
.w/ � d

p�1
0 .X2 ˝ 1C 1˝X2 C w/

D wp C .X2 ˝ 1/
p
C .1˝X2/

p
C ad

p�1

b
.w/ � d

p�1
0 .X2 ˝ 1C 1˝X2 C w/

D z ˝ 1C 1˝ z C wp � d
p�1
0 w C ad

p�1

b
.w/:

That wp � dp�10 w C ad
p�1

b
.w/ is in kŒX1�˝ kŒX1� is clear from the definition of w.

(2) Denote kŒXp1 ; z� by Z. Since a connected bialgebra is a Hopf algebra by [16,
Corollary 3.5.4 (a)], it is enough to check when �.Z/ � Z ˝Z. As Xp1 is primitive, this
amounts to checking whether �.z/ 2 Z ˝ Z. The result now follows from part (1) and
the fact that wp 2 kŒXp1 �˝ kŒXp1 �.

(3) If b0 D 0, then, by (9.5.2),

adb.w/ D
�
ı.X1/˝ 1

��X
t>0

c0;t1˝X
pt

1

�
C
�
1˝ ı.X1/

��
�

X
t>0

c0;tX
pt

1 ˝ 1
�
:

By (9.1.1) and the fact that adX2.X
pi
1 / D 0 for all i � 0, we have that

adnb .w/ D
�
dn�10 ı.X1/˝ 1

��X
t>0

c0;t1˝X
pt

1

�
C
�
1˝ dn�10 ı.X1/

��
�

X
t>0

c0;tX
pt

1 ˝ 1
�

for all n � 1. Then

ad
p�1

b
.w/ D d

p�2
0

°�
ı.X1/˝1

��X
t>0

c0;t1˝X
pt

1

�
�
�
1˝ı.X1/

��X
t>0

c0;tX
pt

1 ˝1
�±

D d
p�1
0

°X
t>0

c0;t .X1 ˝X
pt

1 �X
pt

1 ˝X1/
±
C T1;

where T1 2 kŒXp1 �˝ kŒXp1 �. On the other hand, by definition,

d
p�1
0 w D d

p�1
0

²X
t>0

c0;t .X1 ˝X
pt

1 �X
pt

1 ˝X1/

³
C T2;

where T2 2 kŒXp1 �˝ kŒXp1 �. Hence

�d
p�1
0 w C ad

p�1

b
.w/ 2 kŒXp1 �˝ kŒXp1 �:

The assertion follows from part (2).

Lemma 9.7. Retain Notation 9.5.

(1) For all i > 0,
ad ib.w/ �p 0: (9.7.1)
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(2) Suppose that b0 ¤ 0 and d0 ¤ 0. Then

�d
p�1
0 w C ad

p�1

b
.w/ 62 kŒXp1 �˝ kŒXp1 �:

Hence kŒXp1 ; z� is not a Hopf subalgebra of H .

(3) Suppose that d0 D 0, that b0 ¤ 0, and that ı.X1/ ¤ 0. Then kŒXp1 ; z� is not a
Hopf subalgebra of H .

Proof. (1) Using (9.5.2),

adb.w/ �p
�
ı.X1/˝ 1

�
b0
®
.X1 ˝ 1C 1˝X1/

p�1
�X

p�1
1 ˝ 1

¯
C
�
1˝ ı.X1/

�
b0
®
.X1 ˝ 1C 1˝X1/

p�1
� 1˝X

p�1
1

¯
�p d0b0.X1 ˝ 1/

®
.X1 ˝ 1C 1˝X1/

p�1
�X

p�1
1 ˝ 1

¯
C d0b0.1˝X1/

®
.X1 ˝ 1C 1˝X1/

p�1
� 1˝X

p�1
1

¯
�p d0b0.X1 ˝ 1C 1˝X1/

p
� d0b0.X

p
1 ˝ 1/ � d0b0.1˝X

p
1 /

�p 0:

This proves (9.7.1) for i D 1, and the general case follows from (9.5.1).
(2) Assume that d0 and b0 are nonzero. Then, using (9.7.1),

�d
p�1
0 w C ad

p�1

b
.w/ �p �d

p�1
0 w

�p �d
p�1
0 b0

� p�1X
iD1

�iX
i
1 ˝X

p�i
1

�
:

This implies that
�d

p�1
0 w C ad

p�1

b
.w/ 62 kŒXp1 �˝ kŒXp1 �:

The second claim now follows from Lemma 9.6 (2).
(3) Using (9.5.2) and the hypothesis d0 D 0, we obtain

adb.w/ D
�
ı.X1/˝ 1

��
b0
®
.X1 ˝ 1C 1˝X1/

p�1
�X

p�1
1 ˝ 1

¯�
C
�
1˝ ı.X1/

��
b0
®
.X1 ˝ 1C 1˝X1/

p�1
� 1˝X

p�1
1

¯�
C T ;

where T 2 kŒXp1 �˝kŒXp1 �. Since d0D 0, ı.X1/ 2 kŒXp1 � and hence is central. Therefore,
by induction, we can show that

ad
p�1

b
.w/ D b0.p � 1/Š

�
ı.X1/˝ 1

�®�
ı.X1/˝ 1C1˝ ı.X1/

�p�2
.X1 ˝ 1C 1˝X1/

�
�
ı.X1/˝ 1

�p�2
.X1 ˝ 1/

¯
C b0.p � 1/Š

�
1˝ı.X1/

�®�
ı.X1/˝1C 1˝ı.X1/

�p�2
.X1˝1C 1˝X1/

�
�
1˝ ı.X1/

�p�2
.1˝X1/

¯
C ı2;char kT

D b0.p � 1/Š
��
ı.X1/˝ 1C 1˝ ı.X1/

�p�1
.X1 ˝ 1C 1˝X1/

�
�
ı.X1/˝ 1

�p�1
.X1 ˝ 1/ �

�
1˝ ı.X1/

�p�1
.1˝X1/

�
C ı2;char kT :
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Observe that this element is not a member of kŒXp1 �˝kŒXp1 �. Since d0 D 0, dp�10 wD 0.
Therefore,

�d
p�1
0 w C ad

p�1

b
.w/ 62 kŒXp1 �˝ kŒXp1 �:

The assertion thus follows from Lemma 9.6 (2).

Lemmas 9.6 and 9.7 can now be applied to determine C.H/ for all 2-step IHOEs:

Theorem 9.8. Retain Notation 9.5. Assume that H is not commutative.

(1) The subalgebra kŒXp1 ; z
p� is a central Hopf subalgebra of H .

(2) The Hopf center C.H/ of H is either kŒXp1 ; z
p� or kŒXp1 ; z�.

(3) C.H/ D kŒXp1 ; z� if and only if b0 D 0.

Proof. (1) SinceH is connected, it is enough to show that kŒXp1 ; z
p� is a bialgebra. First,

X
p
1 is primitive. To see that

�.zp/ 2 kŒXp1 ; z
p�˝ kŒXp1 ; z

p�;

note that z is central and apply Lemma 9.6 (1) to determine �.z/p .
(2) In view of part (1) and Proposition 9.1 (4),

kŒXp1 ; z
p� � C.H/ � kŒXp1 ; z�:

Moreover, H is a free module over each of these subalgebras, with the ranks over the
outer two algebras being p3 and p2. But the rank of H over C.H/ is also a power of p
by Proposition 9.4. Thus equality must hold at some point in the chain of inclusions.

(3) The assertion follows from Lemmas 9.6 (3) and 9.7 (2), (3).

The following two propositions examine the restricted Hopf algebra of H in each of
the two cases distinguished by Theorem 9.8.

Proposition 9.9. Retain Notation 9.5. Assume that H is not commutative. Suppose that
b0 D 0. In parts (2) and (3), let xH denote the quotient Hopf algebra H=ZCH .

(1) The center Z WD kŒXp1 ; z� is a Hopf subalgebra of H .

(2) Suppose that d0 D 0. Then xH is

H0;0 Š kŒx; y�=hxp; ypi;

a commutative and cocommutative Hopf algebra of dimension p2, with x and y
primitive.

(3) Suppose that d0 ¤ 0. Then xH is

H0;0 Š k
˝
x; y W Œy; x� � x; xp; yp � y

˛
;

a cocommutative Hopf algebra of dimension p2 with x and y primitive, which is
the restricted enveloping algebra of the 2-dimensional non-abelian restricted Lie
algebra.
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Proof. The center Z is as stated, by Proposition 9.1 (4).
(1) This is Theorem 9.8 (3).
(2) By Proposition 9.2 (2),

H=ZCH D H0;0 Š kŒx; y�=hxp; ypi;

where x and y are the images of X1 and X2, respectively. Since X1 is primitive so is x,
and y is also primitive under the hypotheses.

(3) Assume that d0 ¤ 0. Then Proposition 9.2 (3) applies, yielding

H=ZCH D H0;0 Š k
˝
x; y W xp; yp � y; Œy; x� D x

˛
;

where x and y are, respectively, the images of X1 and d�10 X2. As in (2), x and y are both
primitive since b0 D 0.

Proposition 9.10. Retain Notation 9.5. Assume that H is not commutative. Suppose that
b0 ¤ 0. In parts (2) and (3), let xH denote the quotient Hopf algebra H=CCH .

(1) The center kŒXp1 ; z� is not a Hopf subalgebra ofH and the unique largest central
Hopf subalgebra of H is C WD kŒXp1 ; z

p�.

(2) Suppose that d0 D 0. Then

xH Š kŒx; y�=.xp; yp
2

/

with x primitive and

�.y/ D y ˝ 1C 1˝ y C

p�1X
iD1

�ix
i
˝ xp�i :

This is a commutative and cocommutative Hopf algebra of dimension p3.

(3) Suppose that d0 ¤ 0. Then the quotient Hopf algebra xH is khx; y; zi, with rela-
tions

Œy; x� D x; z D yp � y; Œy; z� D Œx; z� D 0; xp D zp D 0:

This is noncommutative and cocommutative of dimension p3, with x primitive and

�.y/ D y ˝ 1C 1˝ y C b0d
�1
0

p�1X
iD1

�ix
i
˝ xp�i ;

�.z/ D z ˝ 1C 1˝ z � b0d
�1
0

p�1X
iD1

�ix
i
˝ xp�i :

Proof. (1) This follows from Theorem 9.8 (2), (3).
(2) Assume that d0 D 0. Let x be the image of X1 and y the image of b�10 X2. The

result follows by direct computation.
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(3) Assume that d0 ¤ 0. Let x be the image of X1, y the image of b�10 X2, and z the
image of .d�10 X2/

p � .d�10 X2/. Most of the assertions follow by routine computations.
For example, it is not hard to check that

�.y/ D y ˝ 1C 1˝ y C eu;

where uD
Pp�1
iD1 �ix

i ˝ xp�i and e WD b0d�10 . Here we only prove the formula for�.z/.
Repeating the computation in Lemma 9.6 (1), we have, for adb WD ady˝1C1˝y ,

�.z/ D z ˝ 1C 1˝ z C .eu/p � euC ad
p�1

b
.eu/

D z ˝ 1C 1˝ z � euC ad
p�1

b
.eu/;

where the last equation follows from the fact that up D 0 inH=CCH . Similarly to (9.5.2),
one checks that

adb.u/ D .x ˝ 1/
�
.x ˝ 1C 1˝ x/p�1 � xp�1 ˝ 1

�
C .1˝ x/

�
.x ˝ 1C 1˝ x/p�1 � 1˝ xp�1

�
D .x ˝ 1/.x ˝ 1C 1˝ x/p�1 � xp ˝ 1

C .1˝ x/.x ˝ 1C 1˝ x/p�1 � 1˝ xp

D .x ˝ 1C 1˝ x/p � xp ˝ 1 � 1˝ xp

D xp ˝ 1C 1˝ xp � xp ˝ 1 � 1˝ xp

D 0:

Therefore, �.z/ D z ˝ 1C 1˝ z � eu. This finishes the proof.

Remarks 9.11. (1) In the light of Propositions 9.9–9.10 and the known situation for envel-
oping algebras of finite dimensional Lie algebras over k, we conjecture that the following
question has a positive answer:

Question 9.12. Let k be of positive characteristic p. Does every n-step k-IHOE H have
a Hopf center C.H/ over which H is a finite module?

(2) For an algebraically closed field k of positive characteristic p, the connected Hopf
k-algebras of dimension pn for p > 2 and n � 3 have been classified in a series of papers
by Nguyen, L. Wang, and X. Wang [37, 54, 55], culminating in [38]. The Hopf algebra
xH in Proposition 9.9 (2) is the one in [54, Theorem 7.4 (1)], and the Hopf algebra xH in

Proposition 9.9 (3) is isomorphic to the one in [54, Theorem 7.4 (5)]. The Hopf algebra
xH in Proposition 9.10 (2) is isomorphic to the one listed in [38, Table 5 with type T1

in the third case, p. 858]. The Hopf algebra xH in Proposition 9.10 (3) can be written as
khX; Y;Zi (where X D y C z, Y D x, and Z D �b�10 d0z), with relations

ŒX; Y � D Y; ŒX;Z� D 0; ŒY;Z� D 0

and
Xp D X; Y p D 0; Zp D 0;
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with X; Y being primitive and

�.Z/ D Z ˝ 1C 1˝Z C

p�1X
iD1

�iY
i
˝ Y p�i :

Hence this Hopf algebra is isomorphic to the one in [37, Theorem 1.3 (B1)].
The following questions are thus very natural:

Question 9.13. (a) Which finite dimensional connected Hopf k-algebras can be realised
as factors of IHOEs over k?

(b) If Question 9.12 has a positive answer, then which connected Hopf k-algebras can
be realised as the restricted Hopf algebras H=C.H/CH of k-IHOEs H?

Regarding (a), note that a finite dimensional Hopf algebra T which can be realised
as a factor of an IHOE necessarily has some rather strict structural constraints: namely, it
will have a chain of Hopf subalgebras Ti , for i D 1; : : : ; t such that T1 D k and TiC1 D
khTi ; xiC1i for elements x2; : : : ; xn, with a corresponding “PBW-structure”. It is thus
clear that not all finite dimensional connected Hopf k-algebras can be so realised—for
example, the restricted enveloping algebra of sl.3;k/ presumably cannot be presented as
a factor of an IHOE. Conversely, however, Xingting Wang has informed us [56] that he
has checked case by case that all connected Hopf k-algebras of dimension at most p3 can
be realised as Hopf factors of IHOEs over k, at least when p > 2.

(3) All of the speculations in remarks (1) and (2) can be reformulated with IHOEs over
k replaced by all connected Hopf k-algebras of finite Gel’fand–Kirillov dimension.
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