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Feedbacks between sea-floor spreading,
trade winds and precipitation in the
Southern Red Sea

Kurt Stüwe 1 , Jörg Robl 2, Syed Ali Turab 3, Pietro Sternai4 &
Finlay M. Stuart5

Feedbacks between climatic and geological processes are highly controversial
and testing them is a key challenge in Earth sciences. The Great Escarpment of
the Arabian Red Sea margin has several features that make it a useful natural
laboratory for studying the effect of surface processes on deep Earth. These
include strong orographic rainfall, convex channel profiles versus concave
swath profiles on the west side of the divide, morphological disequilibrium in
fluvial channels, and systematic morphological changes from north to south
that relate to depth changes of the central Red Sea. Here we show that these
features are well interpreted with a cycle that initiated with the onset of
spreading in the Red Sea and involves feedbacks between orographic pre-
cipitation, tectonic deformation, mid-ocean spreading and coastal magma-
tism. It appears that the feedback is enhanced by the moist easterly trade
winds that initiated largely contemporaneously with sea floor spreading in the
Red Sea.

Feedbacks between geological and surface processes are an intriguing
discovery that often explain persistent issues in Earth sciences1. In
particular the interaction between climatic and tectonic processes has
been in sharp focus in past years2–6. Recent modelling studies have
suggested that feedback can develop between orographic precipita-
tion, mantle melting and rifting processes7,8.

The Red Sea rift system initiated with the emplacement of the
Afar plume underneath northeastern Africa at about 31Ma9. While
this probably caused initial updoming and erosion in the region,
separation of the two plates did not occur until about 25Ma10. Rifting
is likely to have been asymmetric with more surface uplift and a
thinner mantle lithosphere on the eastern (Arabian) side11,12. Never-
theless, on both sides of the Red Sea, rift flank uplift and con-
sequential erosion caused denudation of the entire 1000m thick
Mesozoic sediment pile13 that covered most of the Proterozoic
basement in northern Africa and the Arabian peninsula before the
onset of rifting (Fig. 1). A single Mesozoic sediment outcrop is

preserved at almost 3000m elevation on top of Saudi Arabia’s
highest peak, Mt. Al Soudah (Fig. 1d). It places tight constraints on
the total amount of rock uplift and erosion, at least for the escarp-
ment edge region (Fig. 1d). Although the Arabian plate separated
from Africa at 25Ma10, it was not until later (5 − 13Ma9,11,14) that
oceanic lithosphere formed in the central Red Sea rift (Fig. 1d). Prior
to the formation of oceanic crust, the widening Red Sea was under-
lain by attenuated continental lithosphere of both adjacent plates.
The entire rift history was accompanied by volcanic activity that
occurred almost exclusively on the Arabian side (the Saudi Arabian
Harrats12). This volcanic activity has generally increased in intensity in
the last three million years15,16. East of the Red Sea, the Saudi Arabian
rift flank forms one of the most spectacular escarpments in the
world. The difference in χ either side of the divide17 (Fig. 1b) increases
to the southmost likely indicating increasing erosion rate differences
and a tendency of the divide to migrate east. The edge of the
escarpment forms the continental divide for much of its length and
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separates a flat inland landscape from a kilometer high drop to the
Red Sea. The escarpment elevation increases southward reaching
highest point (3666m) at Yemen’s highest peak Jabal an-Nabi
Shu’ayb. This southern part of the escarpment is characterized by
strongly orographic rainfall pattern with the western, coastal side of
the escarpment receiving almost 300mm/year more than the high
elevation eastern region (Fig. 1c).

Here we show that the climate, geomorphology and geological
history of the Red Sea and the adjacent Arabian margin are
intrinsically linked. We suggest that the feedback between climate
and mantle melting is kept running, at least in part, by the easterly
trade winds and may result in future acceleration of the rifting
process.

Results
Various models have been proposed to explain the evolution of the
passive margin and the formation of the escarpment18,19. However, the
margin shows a series of interesting spatial and temporal correlations
that suggest an interdependency between deep and shallow processes
that have not been recognised to date.

Channel profiles
There is an intriguing difference between those draining east and
those draining west. Variation in steepness index ksn (a measure to
quantify the potential of a river to incise into its bedrock) can be
used as a proxy for the degree of geomorphic equilibration, e.g., ref.
20 (Fig. 2). In general the degree of disequilibrium increases

southward. In the south, where erosion-driven flexural rebound
would be expected in response to the escarpment erosion on the
coastal side of the divide (from swath profiles and geochronological
data, Fig. 3c), channel profiles are largely graded showing only a
broad, low amplitude disequilibrium bulge in ksn (Figs. 1b, and 2 left
column). In contrast, east draining channels show a high amplitude
bulge in ksn some 50–100 km east of the drainage divide suggesting
that they were affected by higher uplift rates in that region (Fig. 2).
Curiously, the shape of the east draining channels is not reflected in
the mean topography, which is concave in profile perpendicular to
the escarpment (Fig. 3c). The nature of the channel disequilibria on
both the east and west side of the divide, separated by 100 km,
suggest separate formation phases.

Mean topography. Curved swath profiles21 with baseline following the
escarpment edge showa systematic topographic change fromnorth to
south along the Saudi Arabian margin (Fig. 3). In the northern and
central part they show a broad convex mountain range (Fig. 3a, b).
However, in the southern part, where topography and orographic
rainfall is highest, mean topography is concave on both sides of the
escarpment (Fig. 3c) so that the continental divide coincides with the
escarpment edge atmost places. This is typical of the shape of a divide
that is caused by scarp retreat or scarp degradation and associated
erosion-driven flexural rebound processes22,23. The concave shape of
the mean topography (Fig. 3c) contrasts the convex buldge in the
channel profiles in particular on the inland (east) side of the
divide (Fig. 2).
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Fig. 1 | Major features of the Saudi Arabian margin. a Topography also showing
the continental divide (yellow line) and the position of the curved swath profiles
shown in Figs. 3 and 4 (white boxes and shaded region along Red Sea center). b χ17

map normalized for precipitation (method35, precipitation data24, DEM data36.

Numbered labels are wadis for which channel profiles are shown in Fig. 2. c Pre-
cipitation averaged over 50 year interval24,25. d Geology (distribution of volcanics
after ref. 15, oceanic lithosphere after ref. 9).
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Fig. 2 | Channel profiles of wadis along the Saudi Arabian Red Seamargin. Blue
for west draining streams (wet side), yellow for east draining streams (dry side).
Note that due to the sinuosity of wadis, the distance along the channels does not
necessarly corresponds to the distance from the coastal margin. Location of wadis
is shown in Fig. 1b and is generally from north (at top) to south (at bottom). Red

shaded regions of channel profiles show geomorphic disequilibrium sections of
wadis. a–f presents geomorphic disequilibrium due to erosion driven Pliocene
flexural rebound in wadi 12, 11, 9, 6, 7a and 8. g–l present geomorphic dis-
equilibrium due toMiocene uplift in response to downbending margin in wadis 16,
15, 14, 13, 3 and 1.
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Fig. 3 | Curved topographic swath profiles21 across the Red Sea margin. Swaths
are for the northern (in a), central (in b) and southern part (in c) of the escarpment
and are derived from the SRTM3_V4 data36. Locations of profiles are shown in
Fig. 1a. The profile for the study region is shown in c and also includes the low

temperature geochronological data of Turab et al. (in review). The shaded region in
this panel shows the total amount of denudation (yellow = Phanerozoic sediments,
grey = basement rocks). Black line is the mean, blue are minimum and maximum
values.

Article https://doi.org/10.1038/s41467-022-32293-1

Nature Communications |         (2022) 13:5405 3



Total denudation. The total denudation since theOligocene across the
divide is spatially heterogeneous. The existence of isolated outcropsof
Mesozoic sediments inland of the divide on both sides of the Red Sea
indicates that the amount of denudation there is comparable to the
former thickness of the sediments and has barely penetrated the
basement (Figs. 1d and 3c). This sediment thickness has been esti-
mated to be of the order of 500–1000m in the region13 and can be
considered as the total amount of rift-related denudation inland of the
divide. In contrast, in the region immediately west of the Arabian
continental divide, denudation rises abruptly to at least four kilo-
meters, as suggested by low temperature thermochronological data19

and by simple geometric analysis of the topography (Fig. 3c).

Topographic relationship to Red Sea depth. Although several hun-
dreds of kilometers apart, the elevation of the Saudi Arabian margin
shows some relationship to the depth of the central Red Sea (Fig. 4). In
particular, there is no significant escarpment developed in the region
where spreading centers are covered and not observed and the con-
tinental divide is located significantly further inland (Fig. 1a). Con-
versely, the escarpment is well developed where spreading centers are
observed. Going south along the escarpment towards Yemen, the
spreading centers in the central Red Sea are located at successively
shallower levels (Fig. 4a, b).

Precipitation. Although much of the Arabian peninsula is dry, less
than 100mm precipitation per year, the coastal region of southern
Saudi Arabia and Yemen has a 50 year average precipitation rate that
exceeds 270mm per year24,25 (Fig. 1c). The region of high precipita-
tion rates correlates closely with the region where the escarpment is
more than 2000 m high and is almost exclusively restricted to its
western side of the escarpment where the prevailing easterly trade
winds reach the coast. In contrast, much of the northern Red Sea
coast is dominated by dry northerly winds26. A comparison with
model predictions for the Pliocene (www.paleoclim.org) shows that
the precipitation pattern was similar, with possibly an even stronger
precipitation contrast across the divide27. The modern wind and
precipitation pattern emerged at about 13Ma (e.g., ref. 28) and hence

contemporaneously with the onset of oceanic lithosphere formation
in the center of the Red Sea.

Low temperature thermochronology. As the total amount of denu-
dation during and post-rifting was only a few kilometers, themain low-
temperature thermochronometric systems do not provide clear tim-
ing of erosional events19. Nevertheless, some rocks from elevations
around 200m below the highest regions of the escarpment were
exhumed through the apatite fission track partial annealing zone
(120–70 °C) at 15Ma and 25Ma19. They clearly record erosion during
rift flank uplift. Two apatite (U-Th)/He ages (He) (recording cooling
through about 80–50 °C) from the same locations record ages of 2Ma
and 3Ma (Fig. 3c). The large age gap is difficult to explain by slow
cooling and exhumation. Based on thermal modelling Turab et al. (in
review) suggest a two phase exhumation history separated by
10–15Myr when little erosion occurred. They suggest that the He ages
record cooling due to an exhumation phase in the Pliocene, which was
characterized by escarpment retreat. This interpretation is supported
by low temperature thermochronology from the Eritrean margin
where a similar, albeit shorter, age gap records scarp retreat in the
younger part of the erosion history18.

Discussion
In the southern Red Sea the surface topography, the cooling history of
the upper crust and the decompression melting of the mantle may be
explained by a process in which rifting is strongly coupled with oro-
graphic precipitation.

We suggest that before the initial formation of oceanic litho-
sphere in the center of the Red Sea, the topography of the margins
evolved as typical rift flank margins. Broad zones of surface uplift on
both sides of the Red Sea formed slightly asymmetricmountain ranges
with the Arabian margin being slightly higher, due to thinner mantle
lithosphere on that side11. Erosion of the uplifted rift flanks initially
caused removal of about one kilometer of the Mesozoic sediments on
both sides of the rift (Fig. 5a)18,19. This first phase of erosion sub-
stantially slowed when the sediments were removed and the erosion-
ally resistant Proterozoic basement rocks reached the surface.
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Fig. 4 | Curved topographic swath profiles21 along the Red Sea margin. Swaths
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Initial formation of oceanic lithosphere (12–13Ma14) caused the
Red Sea to deepen to some 2000m, being the isostatically compen-
sated depth ofmid-ocean ridges (Fig. 5a). This caused downbending of
the continental margin to this depth and consequential additional
flexural updoming of uplifted margin as described by Turcotte et al.29

(Fig. 5a). This updomed bulge bent channel profiles draining inland
(Fig. 2, right column) and also caused final dessication of the climate
east of the divide allowing channels to retain their profile. On the west
side of the divide, the newly created topography caused increased
orographic precipitation resulting in rapid erosion of a crescent-

shaped region (red dashed outline on Fig. 5a) in the Pliocene. This
second phase of erosion involved the formation of the pronounced
escarpment. This caused flexural rebound resulting in further uplift
near and below the escarpment forming a concave mean topography
(Fig. 3c) on the east side23. On the west side, erosion largely compen-
sated the rebound bulge (grey shaded crescent on Fig. 5c) with only a
broad ksn bulge being visible in the channel profiles (Fig. 2 left column).
This second phase of rapid erosion also resulted in the deposition of
substantial sediment sequences that are known to be much younger
than the rifting age30.

The evolution proposed above reflects a strong coupling between
tectonic and climatic processes. We propose that there is a positive
feedback between: (i) The formation of new oceanic lithosphere in the
Red Sea causing renewed rift flank uplift and orographic precipitation
and (ii) orographic precipitation causing asymmetric denudation of
the updomed region, flexural rebound and ultimately accelerated
spreading. Clearly, the former is easily explained: the close spatial
correlation of precipitation with the high topography of the Arabian
rift flank caused by the rifting in connection with the prevailing moist
trade winds coming from the Indian Ocean makes it plausible that
feedback between increasing orographic precipitation and ridgeline
uplift arises.

However, the precipitation has also affected the mechanics of
spreading. We propose two mechanisms allowed the localised rainfall
at rift flanks to influence the formation of mid-ocean spreading in the
central Red Sea: Firstly, precipitation and consequential Pliocene
erosion causes substantialflexural domingof the escarpment edge and
rock uplift in the foreland. This erosion-driven rock uplift also uplifts
the uppermost mantle lithosphere causing decompression melting of
the younger Harrats, for example the <1Ma Al-Birk volcanics15 (Figs. 1d
and 5c). These volcanics have been suggested to have formed at about
70 km depth in equilibrium with Harzburgite inclusions and thus at
about 1200 °C31 and it is known that there is a decrease in melting
depth of the volcanics from east to west32. It is therefore plausible that
the westernmost <1Ma old coastal volcanism is a result of decom-
pression at shallow mantle levels in response to flexural rebound,
rather than in relation to the Afar plume. Such volcanism may cause
thermal weakening of the lithosphere thus aiding the spreading. Sec-
ondly, the flexural rebound of the escarpment caused by erosion
created a mountain range of some 3000m surface elevation (Fig. 4a).
This caused flexural uplift of the mid-ocean spreading centers (e.g.,
south of 20°N, Fig. 4b). The higher elevation of the spreading centers
in this region may have assisted further spreading via their increased
potential energy.

We test the feedback model suggested above with a thermo-
mechanical model that couples a description of surface processes like
erosionwith themechanicsof lithospheric extension7,8.We explore the
mechanical consequences of melting caused by orographic pre-
cipitation in by tracking the lithospheric extension rate. Specifically,
we use an extension rate of 2 cm per year a potential mentle tem-
perature of 1200 °C and a crustal thickness of 35 km (Fig. 6 of Sternai7)
and extract mechanical model results from this simulation for time
steps that pertain to the Red Sea rifting. In particular, we explore how
the extensional strain rate changes in response to increased surface
erosion, rock uplift and mantle melting. Figure 6a shows the mantle
melt volume created by decompression melting in response to
extension for two surface erosion rates characterized by the effective
erosional diffusivity k. The higher erosion rates (red curve) cause
substantially more decompression melting in the mantle than lower
erosion rate. The consequence of these processes to lithospheric
extension are shown in Fig. 6b, c where the vertically averaged second
invariant of the strain rate tensor is plotted as a proxy for mean rifting
rate. Approximately 3Myr after rifting in themodel (we relate rifting in
themodel to the onset of oceanic lithosphere formation in the Red Sea
at 13Ma so that 3Myr in the model run corresponds to about 10Ma in
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Fig. 5 | Major steps in the evolution of the Arabian Red Seamargin. a At or near
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decompressional melting in foreland where flexural bulge is eroded softens litho-
sphere. Flexural lifting of the spreading center occurs.
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the Red Sea), there is comparatively little difference in rifting rate for
low or high surface erosion (red and green curves on Fig. 6b), but that
the vertical redistribution of melt causes significant differences in
extensional strain rate after 8.5Myr (i.e., for the Red Sea in the
Pliocene).

This model explains many of the north-south changes in mor-
phology including escarpment profile (Fig. 3a–c) and the inland
departure of the drainage divide from the escarpment lip north of
about 23°N, where also the spreading centers vanish (Fig. 1a, d). Our
model is consistent with a model that invokes a northwards pro-
pagation of the Red Sea spreading center33,34. In contrast, Augustin
et al.14 have shown that the Red Sea may have spread continuously
along its length with most of the northern part being obscured by
sediments (salt). This conflict can be explained by reflecting upon
the distribution of orographic precipitation in the Red Sea region.
The southern part of the Red Sea is characterized by moist trade

winds, while north of 20°N the wind changes by 180° and is domi-
nated by dry northwesterlies. The increased escarpment elevation
in the south may be related to the direction and moisture of the
trade winds in the southern part of the Red Sea confining the pro-
cesses described here to this region19 (Fig. 1c). In this context it is
interesting to note that a series of recent studies have documented
sudden onset of the Indian Monsoon and thus the trade winds
around 13Ma (e.g., ref. 28), which is roughly contemporaneously
with the proposed onset of formation of oceanic lithosphere in the
central Red Sea.

We propose that the strong connection between orographic
precipitation at the southernRed Sea coast, escarpment elevation, and
mid-ocean spreading, is in line with morphological peculiarities and
the rock cooling history. This requires feedback between the rainfall-
caused erosion on the rifting process via (a) isostatically-driven uplift
of the mantle lithosphere causing decompression melting and
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softeningof the crust; (b)flexural uplifting of the escarpment edge and
the spreading center in the Red Sea, thus adding potential energy to
the rift environment relative to central Saudi Arabia which ultimately
affected rifting rate. In this context, the post-12 Ma basaltic volcanism
in western Saudi Arabia need not be explained by the Afar plume, but
by decompression melting in the mantle lithosphere caused by
erosion-driven flexural uplift.

Methods
Themethods used for this article involved the plotting of topographic
metrics using data and codes listed below and the interpretation of
previously published data as listed in the text. Our thermomechanical
modelling is based on the studies of Sternai7 and Sternai et al.8 who
showed conceptually that orographic precipitation and lithospheric
melting during continental extension may be coupled, using both
analytical and numerical analyses. Here we use their two-dimensional
cross-sectional thermomechanical model coupled with petrological
considerations to track mantle melting in response to extension and
erosion at the surface. The rheologyof themodel lithosphere is a visco-
elasto-plastic rheology based on rockmechanical data and ismodelled
with a power law stress and exponential temperature dependence.
Melting is modelled with a simple model considering solidus and
liquidus temperatures. Surface processes are parameterized through
the effective erosional diffusivity solving the equations of mass and
energy conservation.

Data availability
The results presented here are all derived from freely available digital
elevation models that are for download from https://srtm.csi.cgiar.
org/ and data presented herein. Climate data for Fig. 1c were down-
loaded from https://www.worldclim.org/data/worldclim21.html.

Code availability
Topographic metrics were derived using the generic mapping tool
GMT (https://www.generic-mapping-tools.org) as well as with codes
written by the authors. These codes are available from the authors. The
thermomechanical code used for the mechanical modelling is also
available from the authors.
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