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Abstract 

Accurate credit risk prediction can help companies avoid bankruptcies and make 
adjustments ahead of time. There is a tendency in corporate credit risk prediction that more and 
more features are considered in the prediction system. However, this often brings redundant 
and irrelevant information which greatly impairs the performance of prediction algorithms. 
Therefore, this study proposes an HDNN algorithm that is an improved deep neural network 
(DNN) algorithm and can be used for high dimensional prediction of corporate credit risk. We 
firstly theoretically proved that there was no regularization effect when L1 regularization was 
added to the batch normalization layer of the DNN, which was a hidden rule in the industrial 
implementation but never been proved. In addition, we proved that adding L2 constraints on a 
single L1 regularization can solve the issue. Finally, this study analyzed a case study of credit 
data with supply chain and network data to show the superiority of the HDNN algorithm in the 
scenario of a high dimensional dataset. 
Keywords 
High dimensional data, Credit risk, Deep neural network, Prediction, L1 regularization 
 

1. Introduction 

Under the influence of Corona Virus Disease 2019, companies in the supply chain have 
been facing fierce pressure such as increased costs, shortage of inventory, and logistics 
disruption (Chowdhury et al., 2021; Moosavi et al., 2022; Singh et al., 2021). When a company 
is suffering from supply chain challenges, other related companies may also take a hit because 
of the bullwhip effect (Agca et al., 2021; Roukny et al., 2018). Besides, negative news and 
comments also deteriorate the credit of a company constantly (Bonsall IV et al., 2018; Kiesel, 
2021). Therefore, researchers are trying to collect all the possible factors that affect the 
corporate credit risk (CCR) to avoid prediction inaccuracy. As a result, the dataset dimension 
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will become unacceptably high for the ordinary CCR prediction models, which is prone to 
causing dimension disaster (Arias-Castro et al., 2018; Fernández-Martínez et al., 2020).  

Generally, classical machine learning algorithms such as Support Vector Machine (SVM), 
Neural Network (NN), and Logistic regression (LR) have shown a good predictive ability for 
common credit risk datasets (Barboza et al., 2017; Chen et al., 2020b; Han et al., 2020). But for 
high dimensional datasets, researchers hardly resort to a proper solution in that although adding 
more related information about the same object can improve the prediction accuracy (Wu et al., 
2022; Zhang et al., 2022), this usually introduces a large amount of redundant and irrelevant 
information, causing poor performance of machine learning algorithms (Ayesha et al., 2020; 
Danenas et al., 2015; Tan et al., 2014). Therefore, it is necessary to select truly relevant features 
through feature selection to improve the model accuracy. The most common approach is human 
selection operated by experienced supply chain experts, but it will lose objectivity. So, some 
researchers use regularization to diminish redundant parameters during training, thus promoting 
network sparsity (Emmert-Streib et al., 2019; Ghaddar et al., 2018; Salehi et al., 2019). In CCR 
prediction, deep neural network (DNN) algorithms have attracted much attention because they 
can mine the latent features of the data as much as possible (Bouwmans et al., 2019; Kim et al., 
2017; Liu et al., 2017b). Besides, the DNN algorithm can automatically extract features to 
pursue objectivity that may suffer from manually selected features (Chen et al., 2020a; 
Suryanarayana et al., 2018). However, DNN algorithms rarely use regularization largely 
because L1 regularization cannot produce sparsity in the DNN algorithm (Van Laarhoven, 
2017). However, there is a lack of theoretical proof of the phenomenon and a solution to the 
issue. Although Liu et al. (2017a) affirmed that the DNN algorithm has advantages in 
processing high dimensional data, they only combined it with the greedy algorithm to obtain 
the optimal solution. In other words, the advantages of L1 regularization for high dimensional 
data cannot be fully exploited in DNN algorithms. 

To address the above problems, this study considers the influence of network information 
and supply chain information on CCR and proposes an HDNN algorithm that is an improved 
DNN algorithm for high dimensional CCR datasets. We firstly theoretically prove that there is 
no regularization effect when L1 regularization is combined with normalization, which means 
that L1 regularization will fail in the DNN algorithm. Besides, we propose to add L2 constraints 
on a single L1 regularization for high dimensional feature selection. This not only allows the 
DNN algorithm to perform feature selection through L1 regularization but also adds L2 norm 
to prevent overfitting.  

The rest of this study is structured as follows. Section 2 reviews the related literature. 
Section 3 presents the data and methods of this study. Section 4 introduces the HDNN algorithm 
of this study and presents the algorithm results. Section 5 discusses the effectiveness of the 
HDNN algorithm compared to other algorithms. Finally, the conclusion and possible future 
research directions are presented in Section 6. 
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2. Literature Review 

This section will review past CCR studies as well as high dimensional feature selection 
studies to demonstrate the research trends. The details are as follows. 

2.1 Corporate credit risk prediction 
CCR prediction shows the advantages of responding to the corporate credit crisis in 

advance, which has attracted much attention from researchers and practitioners (Basturk et al., 
2021; Chen et al., 2021; Mansi et al., 2011). Earlier researchers mainly used financial data 
directly related to companies to predict credit risk (Chang et al., 2018; Trustorff et al., 2011). 
For example, Chang et al. (2018) used 16 indicators such as asset-liability ratio, net profit ratio, 
and solvency to help companies assess credit risk and improve loan business efficiency. 
However, these public financial data are often released on a quarterly or annual basis, and the 
timely credibility has been questioned (Cisi et al., 2020; Lev, 2018). To address this issue, 
researchers turn to online news and comments to capture crisis information quickly (Bonsall 
IV et al., 2018; Kiesel, 2021; Wei et al., 2019). Furthermore, many studies have shown that 
Corona Virus Disease 2019 caused great damage to the global supply chain, and companies in 
the supply chain are often mutually influenced (Chowdhury et al., 2021; Moosavi et al., 2022; 
Singh et al., 2021). Once a company has a credit crisis, other companies in the supply chain 
will deeply suffer too (Agca et al., 2021; Roukny et al., 2018). Therefore, adding more 
information about supply chain and news is important to the existing CCR prediction system. 

Linear discriminant analysis and linear relationship analysis based on statistical methods 
are considered to be the most classical methods of traditional CCR prediction (Mylonakis et al., 
2010; Psillaki et al., 2010; Ryu et al., 2005). However, these models are suitable for scenarios 
with few features and potentially linear relationships. If the features are increased, the poor 
performance of the prediction will occur (Albu et al., 2019; Hassani et al., 2020). Therefore, 
machine learning algorithms that are good at processing complex data structures, are used for 
CCR prediction more frequently (Bhatore et al., 2020; Lappas et al., 2021; Ma et al., 2019). In 
addition, compared to statistical methods based on assumptions about the data distribution, 
machine learning algorithms allow machines to automatically learn useful knowledge from 
massive amounts of data (Borlea et al., 2021; Chiang et al., 2014; Ni et al., 2020). 

Commonly used machine learning algorithms in CCR prediction include neural NN, SVM, 
LR, and ensemble algorithms (Bhatore et al., 2020; Lappas & Yannacopoulos, 2021; Ma & Lv, 
2019; Yang et al., 2022). Take NN as an example. The earliest literature using NN to predict 
corporate credit risk can trace back to 1988 when Dutta et al. (1988) used NN to predict CCR. 
The results showed that the prediction accuracy of NN was 18.6% higher than that of traditional 
linear methods. With the increase of features that affect CCR, SVM tends to attract researchers' 
attention due to its outstanding advantages in high dimensional prediction (Erfani et al., 2016; 
Upadhyay et al., 2020). Because SVM can map the dataset features to a high dimensional space 
and directly classify the training samples in the high dimensional space, the curse of 
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dimensionality can be avoided cleverly (Erfani et al., 2016). Zhang et al. (2015b) used the SVM 
algorithm to calculate a corporate credit risk dataset with 31 indicators, proving that the model 
can accurately classify the credit status of SMEs. In addition to traditional machine learning 
algorithms such as NN and SVM, deep learning has also attracted much attention because it 
can mine the potential features of data as much as possible. It has been widely used in speech 
recognition, natural language processing, and image recognition (Bouwmans et al., 2019; Kim 
et al., 2017; Liu et al., 2017b). 

In the field of credit risk prediction, researchers mainly use variants of deep learning such 
as Deep Belief Network (DBN), Long Short-Term Memory Network (LSTM), and DNN. For 
example, Luo et al. (2017) applied DBN to corporate credit scoring and found that the model's 
classification performance outperformed traditional algorithms such as LR, NN, and SVM. 
Shen et al. (2021) proposed an LSTM classification model for credit risk assessment which is 
also more competitive than other traditional algorithms. In addition to the advantages of 
prediction, deep learning has also shown significant advantages in mining the feature. Liu et al. 
(2022) based on the DNN algorithm to transform original features with a nonlinear relationship 
into more separable features. (Guo et al., 2022) used deep learning methods to analyze local 
government debt risk by mining hidden government sentiment in different texts. In general, 
when predicting CCR, DNN algorithms tend to achieve better prediction performance than 
traditional single-classifier methods and are good at mining more information. 

2.2 High dimensional feature selection 

 Researchers often store large amounts of information for a more comprehensive 
analysis record during big data analysis (Mansi et al., 2011; Salkuti, 2020). While this massive 
amount of information can provide some benefits for optimal decision-making, it also 
complicates the dataset. Generally, as the feature dimension increases, a large amount of 
redundant and irrelevant information is usually introduced, which causes the poor performance 
of the machine learning algorithm (Ayesha et al., 2020; Danenas & Garsva, 2015; Tan et al., 
2014). To date, there are two main methods for high dimensional data processing: feature 
extraction and feature selection. The former mainly combines different attributes to obtain new 
attributes, thus changing the original feature space (Guyon et al., 2008; Kuncheva et al., 2013), 
such as principal component analysis (Bro et al., 2014) and fuzzy sets (Hedrea et al., 2021). In 
contrast to the feature extraction, feature selection selects subsets from the original feature 
dataset without changing the original feature space (Chandrashekar et al., 2014; Li et al., 2017), 
and the commonly used feature selection methods are the screening method, encapsulation 
method, and embedding method (Li et al., 2017). The screening method is independent of the 
classifier used by the subsequent algorithm and is prone to deviation from the subsequent 
learning algorithm (Wang et al., 2019). The encapsulation method can obtain a higher 
classification accuracy when filtering parameters, but the selected features rely too much on the 
algorithm classifier, which easily leads to overfitting (Perez-Riverol et al., 2017). Compared 
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with the former two methods the most commonly used feature selection method actually is the 
regularization-based Embedding method which incorporates feature selection into the 
algorithm optimization process to learn the most important properties in a given situation 
(Emmert-Streib & Dehmer, 2019; Ghaddar & Naoum-Sawaya, 2018; Salehi et al., 2019). For 
example, Tan et al. (2010) proposed the L1 sparse SVM algorithm for ultra-high-dimensional 
datasets, and proved that the algorithm were better than other competing algorithms; Pappu et 
al. (2015) added L1 regularization to the algorithm and removed more than 98% of the features 
of high dimensional datasets without affecting the performance of the algorithm. In addition, 
deep learning algorithms have also been applied to high dimensional feature mining. Erfani et 
al. (2016) used the DBN algorithm to convert high dimensional features into low-dimensional 
feature sets. Liu et al. (2017a) also pointed out that DNN algorithms have outstanding 
advantages when dealing with high dimensional data. However, L1 regularization is rarely used 
in DNN algorithms. The fundamental reason is that regularization cannot obtain regularization 
effect in DNN algorithm. For example, although Liu et al. (2017a) use the DNN algorithm 
when dealing with high dimensional data, it is only combined with the greedy algorithm to 
obtain the optimal solution. In other words, the advantages of L1 regularization for high 
dimensional data cannot be exploited in DNN algorithms. 

According to the literature review, it can be seen that previous work has considered 
financial information closely related to companies to predict CCR, but they ignored the fact 
that non-financial information may also have an impact on CCR prediction results. Or worse, 
although the DNN algorithm shows excellent ability in CCR, it does not take advantage of L1 
regularization in high dimensional feature selection. Therefore, this study introduces network 
information and supply chain information into CCR prediction, and proposes an improved 
DNN algorithm for high dimensional CCR dataset prediction. 

3. Materials and methods 

In this section, we introduce the data sources of this study and the prediction method for 
the high dimensional CCR dataset. The details are as follows. 

3.1 Data sources 
The data used in this study are from multiple sources such as Compustat and Bloomberg 

to form a high dimensional CCR prediction dataset. The data span from January 1, 2009 to 
December 31, 2019. In addition to corporate credit rating data, we also employ corporate 
financial data and non-financial data such as supply chain data and network data. Specific 
variables are shown as follows. 

(1) Credit rating data. The credit risk data are mainly from the Compustat global database. 
The database is a comprehensive financial database with more than 5,000 accounting-adjusted 
items covering more than 50,000 listed companies worldwide. In total, this study collected 
1,440 rating campaigns from 441 companies. 

(2) Corporate financial data. Financial data for target companies are also collected from 
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the Compustat global database. The data collected in this study involves the financial data 
published by these companies, including 19 data indicators such as working capital ratio, debt-
equity ratio, retained earnings ratio, and weekly average daily return of bonds. These data can 
reflect changes in the company's policies and strategies for the entire market, as well as show 
the impact of financial performance on the company's operations. 

(3) Network data. Online activity data such as search trends and website visits provide 
the latest information and are viewed as a complement to slower financial reporting (Fondeur 
et al., 2013; Phillips et al., 2018; Sousa-Pinto et al., 2020). The news data collected for this 
study comes from 10 indicators from the Wikipedia database, Google Trends database, and 
Facebook homepage text. These three databases have high visibility around the world and are 
often the first choice for people to search (Moat et al., 2016; Weng et al., 2017). 

(4) Supply Chain Data. Supply chain data were primarily from the Bloomberg Supply 
Chain Database which contains more than 20,000 pieces of quantified supply chain data. Based 
on the data, this study can trace the upstream of the supply chain to locate suppliers throughout 
the supply chain, and also can trace the downstream to locate all customers of the main 
company. Data categories use each company's data for a total of 29 indicators. 

To sum up, this study introduces network information and supply chain information on 
the basis of company financial information. Out of a total of 88 indicators, 87 indicators are 
used for prediction. Compared with the traditional CCR prediction dataset with at most 20 
indicators (Wang et al., 2011; Zhang et al., 2021), this dataset has a higher dimension, which 
may lead to the curse of dimensionality. 

3.2 DNN algorithm 
Inspired by artificial NN (Liu et al., 2017b; Reagen et al., 2016), the DNN algorithm aims 

to enable computer programs to think like humans (Ni et al., 2021; Zheng et al., 2017). 
Although artificial neural networks have been widely used in various prediction tasks (Abiodun 
et al., 2019; Albu et al., 2019; Wang, 2003). the prediction performance of the artificial 
algorithm largely depends on the quality of the input features. Oppositely, the DNN algorithm 
can handle more complex situations by increasing the depth of the network, so it is widely used 
in image recognition, machine translation and other fields (Bouwmans et al., 2019; Shewalkar, 
2019; Zhang et al., 2015a). Besides, the DNN algorithm can automatically extract features to 
pursue the objectivity of prediction results that may suffer from manually selected features 
(Chen et al., 2020a; Suryanarayana et al., 2018). In addition, (Liu et al., 2017a) also confirmed 
the advantages of DNN algorithms in dealing with high dimensional data. Therefore, this study 
uses DNN as the base algorithm to construct a prediction model. The basic framework is shown 
in Figure 1. 
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Figure 1 Basic structure of the DNN algorithm 

As shown in Figure 1, the neural network layers inside DNN are divided into the input 
layer, hidden layer, and output layer. The layers are fully connected, that is, any neuron in the 
i layer must be connected to any neuron in the i+1 layer. It is supposed the DNN has L layers 
where {𝑥𝑥1,𝑥𝑥2, … . . , 𝑥𝑥𝑛𝑛}   is the input layer data, {𝑦𝑦1, 𝑦𝑦2, … . . ,𝑦𝑦𝑚𝑚}  is the output layer data, 

{ℎ1
(𝑙𝑙),ℎ2

(𝑙𝑙), ℎ3
(𝑙𝑙), … . . , ℎ𝑛𝑛𝑙𝑙

(𝑙𝑙)} is the output data of the l layer. 𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙) is the weight from the j neuron in 

the l-1 layer to the i neuron in the l layer. 𝑏𝑏𝑖𝑖
(𝑙𝑙) is the bias of the i neuron in the I layer. f (·) is 

the activation function. This study uses the sigmoid and swish functions to enhance the learning 
ability of the neural network. Therefore, the i neuron 𝑦𝑦𝑖𝑖 in the I layer is shown below.  

 𝑦𝑦𝑖𝑖 = 𝑓𝑓 ��𝑤𝑤𝑖𝑖𝑖𝑖
(𝑙𝑙)ℎ𝑗𝑗

(𝑙𝑙−1) + 𝑏𝑏𝑖𝑖
(𝑙𝑙)

𝑠𝑠𝐿𝐿−1

𝑗𝑗=1

� (1) 

At the same time, we also set up a dropout layer to prevent the model from over-reliance 
on local features. Batch Normalization is used to normalize the input to avoid deepening the 
number of the NN layers and making the model difficult to train. Subsequently, the Stochastic 
gradient descent algorithm is used to update the model parameters. Finally, the algorithm results 
are as close to the real credit degradation probability as possible. The specific values of DNN 
parameters are shown in Table 2. 

Table 2 The DNN algorithm parameter settings 

Number Parameters Value 
1 Full connection layer 3 
2 Learning rate 0.001 
3 Dropout 0.5 
4 Epoch 10000 
5 Batch size 1024 
6 Adam Stochastic Gradient Descent 

4. Results 

For high dimensional datasets, this study process by improving the DNN algorithm. We 
propose to incorporate L2 constraints into a single L1 regularization for high dimensional 
feature selection. This not only allows the DNN algorithm to perform feature selection via L1 
regularization, but also increases the L2 norm to prevent overfitting. The specific content and 
calculation results are as follows. 
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4.1 DNN for high dimensional datasets 
High-dimensional datasets contain much decision-making information, but also contain 

many irrelevant or redundant features for a target task (Ayesha et al., 2020; Danenas & Garsva, 
2015; Tan et al., 2014). Therefore, it is necessary to select truly relevant features through feature 
selection to improve the prediction accuracy, and L1 regularization is widely used to produce 
sparse models. However, L1 regularization is rarely used in DNN algorithms. The fundamental 
reason is that the combination of regularization and normalization will not produce 
regularization after adding L1 regularization to the DNN algorithm (Van Laarhoven, 2017), 
and L1 regularization will fail in the DNN. This means that the advantages of L1 regularization 
in dealing with high dimensional data cannot be exploited in DNN algorithms. The specific 
proof is as follows. 

(1) L1 regularization failure proof 
Assuming that the first fully connected layer of the model 𝐹𝐹𝐹𝐹1 is denoted as ℱ, the batch 

normalization layer 𝐵𝐵𝐵𝐵1is denoted as 𝒢𝒢. The composite function of the subsequent layers is 
denoted as ℋ , then the model 𝐹𝐹 = ℋ ∘ 𝒢𝒢 ∘ ℱ . Let the weight matrix of 𝐹𝐹𝐹𝐹1 is: 𝑊𝑊 =
(𝜔𝜔1,𝜔𝜔2, … ,𝜔𝜔𝑚𝑚)′. Among them, m is the number of neurons in the fully connected layer, the 
bias vector is 𝑏𝑏 , and the input matrix is 𝑋𝑋, then the output matrix of the fully connected 
layer ℱ(𝑥𝑥) is 𝑊𝑊𝑊𝑊. 

Let the input mean and variance of each batch of input be 𝑥̅𝑥 and 𝐷𝐷, then the mean and 
the variance of  ℱ(𝑥𝑥)  are 𝑊𝑊𝑥̅𝑥  and 𝑊𝑊′𝐷𝐷𝐷𝐷 , respectively. Let 𝑦𝑦 = 𝐵𝐵𝐵𝐵1�ℱ(𝑥𝑥)�, then the 𝑖𝑖 
component of the y layer is 𝑦𝑦𝑖𝑖 = �(𝑥𝑥 − 𝑥̅𝑥)′𝑊𝑊′(𝑊𝑊′𝐷𝐷𝐷𝐷)−1𝑊𝑊(𝑥𝑥 − 𝑥̅𝑥)�

𝑖𝑖
1/2. Let 𝐹𝐹𝐹𝐹1 layer has an L1 

regularization penalty, and the penalty coefficient is 𝜆𝜆. Then the optimization objective of the 
model is: 

 𝑧𝑧 = min
𝑊𝑊,𝑏𝑏,𝜔𝜔

[𝐿𝐿(𝐹𝐹) + 𝜆𝜆‖𝑊𝑊‖1] （2） 

Where, 𝐹𝐹 = ℋ ∘ 𝒢𝒢 ∘ ℱ, 𝐿𝐿(𝐹𝐹) is the loss function of the algorithm. 

 𝐿𝐿(𝐹𝐹) = −��𝑟𝑟𝑖𝑖 log�𝐹𝐹(𝑥𝑥𝑖𝑖)�+ (1− 𝑟𝑟𝑖𝑖) log�1− 𝐹𝐹(𝑥𝑥𝑖𝑖)��
𝑚𝑚

𝑖𝑖=1

 （3） 

𝑚𝑚 are the number of training samples. When the first 𝑖𝑖 a training sample degradation 𝑟𝑟𝑖𝑖 
take 1, otherwise 𝑟𝑟𝑖𝑖 take 0. 𝑥𝑥𝑖𝑖 is the independent variable vector of the i training sample, and 
𝐹𝐹(𝑥𝑥𝑖𝑖)  is the degradation probability of the i training sample. 𝜆𝜆‖𝑊𝑊‖1  is the given 
regularization penalty, and 𝑊𝑊 and 𝑏𝑏 are the weight matrix and bias coefficient vector of the 
full connection layer ℱ respectively, and 𝜔𝜔 are other coefficients of the algorithm. Given the 
weight matrix 𝑊𝑊1 = 𝑊𝑊∗, for any real number 𝛼𝛼 > 0, suppose another weight matrix, where: 
𝑊𝑊2 = 𝛼𝛼𝑊𝑊∗, therefore, 

𝑦𝑦𝑖𝑖2 = �(𝑥𝑥 − 𝑥̅𝑥)′(𝛼𝛼𝛼𝛼)′(𝛼𝛼𝛼𝛼′𝐷𝐷𝐷𝐷𝐷𝐷)−1𝛼𝛼𝛼𝛼(𝑥𝑥 − 𝑥̅𝑥)�
𝑖𝑖
1/2

= �(𝑥𝑥 − 𝑥̅𝑥)′(𝑊𝑊)′(𝑊𝑊′𝐷𝐷𝐷𝐷)−1𝑊𝑊(𝑥𝑥 − 𝑥̅𝑥)�
𝑖𝑖
1/2 = 𝑦𝑦𝑖𝑖1 

（4） 
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It can be seen that for different weight matrices 𝑊𝑊1、𝑊𝑊2, if 𝑊𝑊2 = 𝛼𝛼𝑊𝑊1, then 𝒢𝒢 ∘ ℱ1 = 𝒢𝒢 ∘

ℱ2, therefore, when 0 < 𝛼𝛼 < 1 
 𝐿𝐿(ℋ ∘ 𝒢𝒢 ∘ ℱ_1 ) + 𝜆𝜆‖𝑊𝑊‖_1 ≥ 𝐿𝐿(ℋ ∘ 𝒢𝒢 ∘ ℱ_2 ) + 𝜆𝜆‖𝛼𝛼𝛼𝛼‖_1  （5） 

That, 𝛼𝛼 → 0, then 
𝐿𝐿(ℋ ∘ 𝒢𝒢 ∘ ℱ1) + 𝜆𝜆‖𝑊𝑊‖1 ≥ 𝐿𝐿(ℋ ∘ 𝒢𝒢 ∘ ℱ2) （6） 

Because 

𝐿𝐿(ℋ ∘ 𝒢𝒢 ∘ ℱ2) + 𝜆𝜆‖𝛼𝛼𝛼𝛼‖1 ≥ min
𝑊𝑊,𝑏𝑏,𝜔𝜔

[𝐿𝐿(ℋ ∘ 𝒢𝒢 ∘ ℱ) + 𝜆𝜆‖𝑊𝑊‖1] （7） 

Therefore, 

𝑧𝑧 = min
𝑊𝑊,𝑏𝑏,𝜔𝜔

[𝐿𝐿(ℋ ∘ 𝒢𝒢 ∘ ℱ) + 𝜆𝜆‖𝑊𝑊‖1]= min
𝑊𝑊,𝑏𝑏,𝜔𝜔

[𝐿𝐿(ℋ ∘ 𝒢𝒢 ∘ ℱ)] （8） 

That is, L1 regular penalty in the full connection layer ℱ fails in the optimal solution. For 
a neuron in the first fully connected layer, its input matrix is 𝑋𝑋, its weight vector is 𝑤𝑤, and its 
activation function is 𝑔𝑔, then the output of the neuron after batch standardization is 

𝑦𝑦BN(𝑋𝑋;𝑤𝑤, 𝛾𝛾,𝛽𝛽) = 𝑔𝑔 �
𝑋𝑋𝑋𝑋 − 𝜇𝜇(𝑋𝑋𝑋𝑋)

𝜎𝜎(𝑋𝑋𝑋𝑋) 𝛾𝛾 + 𝛽𝛽� （9） 

Set, 𝑤𝑤′ = 𝛼𝛼𝛼𝛼 

𝑦𝑦BN(𝑋𝑋;𝑤𝑤′,𝛾𝛾,𝛽𝛽) = 𝑦𝑦BN(𝑋𝑋;𝛼𝛼𝛼𝛼, 𝛾𝛾,𝛽𝛽) = 𝑔𝑔 �
𝑋𝑋𝑋𝑋𝑋𝑋 − 𝜇𝜇(𝑋𝑋𝑋𝑋𝑋𝑋)

𝜎𝜎(𝑋𝑋𝑋𝑋𝑋𝑋) 𝛾𝛾 + 𝛽𝛽� = 𝑔𝑔�
𝑋𝑋𝑋𝑋 − 𝜇𝜇(𝑋𝑋𝑋𝑋)

𝜎𝜎(𝑋𝑋𝑋𝑋) 𝛾𝛾 + 𝛽𝛽� = 𝑦𝑦BN(𝑋𝑋;𝑤𝑤, 𝛾𝛾,𝛽𝛽) （10） 

Suppose the loss function of the algorithm is 
 𝐿𝐿𝜆𝜆(𝑤𝑤,𝜃𝜃) = 𝐿𝐿(𝑤𝑤, 𝜃𝜃) + 𝜆𝜆‖𝑤𝑤‖1 （11） 

Among them, the 𝐿𝐿(𝑤𝑤,𝜃𝜃)  losses for the algorithm prediction results. 𝜆𝜆‖𝑤𝑤‖1  is 𝑤𝑤 L1 
norm regularization losses, 𝜃𝜃 said other parameters of the algorithm. According to the structure 
of the NN, there is a function 𝐿𝐿1  of 𝑦𝑦BN , 𝐿𝐿(𝑤𝑤, 𝜃𝜃) = 𝐿𝐿1(𝑦𝑦BN(𝑤𝑤),𝜃𝜃) . So, 𝐿𝐿(𝛼𝛼𝛼𝛼,𝜃𝜃) =

𝐿𝐿1(𝑦𝑦BN(𝛼𝛼𝛼𝛼),𝜃𝜃) = 𝐿𝐿1(𝑦𝑦BN(𝑤𝑤),𝜃𝜃) = 𝐿𝐿(𝑤𝑤,𝜃𝜃), then 
 𝐿𝐿𝜆𝜆(𝛼𝛼𝛼𝛼,𝜃𝜃) = 𝐿𝐿(𝑤𝑤, 𝜃𝜃) + 𝜆𝜆𝜆𝜆‖𝑤𝑤‖1 = 𝐿𝐿𝛼𝛼𝛼𝛼(𝑤𝑤,𝜃𝜃) （12） 

Where is any positive real number 𝛼𝛼. Suppose 𝑤𝑤, 𝜃𝜃 the optimal estimation is 𝑤𝑤∗,𝜃𝜃∗, then, 
 (𝑤𝑤∗,𝜃𝜃∗) = arg min

𝜃𝜃
𝐿𝐿𝜆𝜆(𝑤𝑤,𝜃𝜃) （13） 

Set 𝑤𝑤1∗,𝜃𝜃1∗ be a set of parameter estimates that minimize 𝐿𝐿(𝑤𝑤, 𝜃𝜃), then 

𝐿𝐿(𝑤𝑤1∗,𝜃𝜃1∗) ≤ 𝐿𝐿𝜆𝜆(𝑤𝑤∗,𝜃𝜃∗) ≤ lim
𝛼𝛼→0

𝐿𝐿𝜆𝜆(𝛼𝛼𝑤𝑤1∗,𝜃𝜃1∗) = lim
𝛼𝛼→0

𝐿𝐿𝛼𝛼𝛼𝛼(𝑤𝑤1∗,𝜃𝜃1∗) = 𝐿𝐿(𝑤𝑤1∗,𝜃𝜃1∗) （14） 

Then, 

𝐿𝐿(𝑤𝑤1∗,𝜃𝜃1∗) = 𝐿𝐿𝜆𝜆(𝑤𝑤∗,𝜃𝜃∗), 𝜆𝜆‖𝑤𝑤∗‖1 = 0 （15） 

Therefore, L1 regularization will fail in the DNN algorithm. 

（2）Proposed Feature Selection 
Although that the L1 norm regularization alone will fail in the DNN algorithm has been 

proved in the above section. It was found that adding certain constraints to the weights would 
make the L1 regularization still effective after further analyzing the model dynamics. 
Specifically, when adding an L2 norm constraint to the weight vector w of the neuron and set 
‖𝑤𝑤‖2 = 𝛼𝛼, we obtain the optimal estimation of the model parameters 𝑤𝑤,𝜃𝜃 is 
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 (𝑤𝑤∗,𝜃𝜃∗) = arg min
𝑤𝑤,𝜃𝜃

𝐿𝐿𝜆𝜆(𝑤𝑤,𝜃𝜃)       𝑠𝑠. 𝑡𝑡. ‖𝑤𝑤‖2 = 𝛼𝛼 （16） 

By the Cauchy inequality 
 1 ≤ ‖𝑤𝑤‖1 ≤ √𝑘𝑘 （17） 

Where 𝑘𝑘 is the dimension of 𝑤𝑤, so L1 norm regularization is still valid. Analyzing the 
dynamics of the model, we have the following findings. 

Proposition 1: For batch regularization layer 𝑦𝑦BN(𝑋𝑋;𝑤𝑤, 𝛾𝛾,𝛽𝛽) , its intra-layer weight has 
scale invariance, namely 𝑦𝑦BN(𝑋𝑋;𝛼𝛼𝛼𝛼, 𝛾𝛾,𝛽𝛽) = 𝑦𝑦BN(𝑋𝑋;𝛼𝛼𝛼𝛼, 𝛾𝛾,𝛽𝛽), but the gradient of its weight is 

inversely proportional to its scale, namely ∇𝑦𝑦BN(𝑋𝑋;𝑤𝑤, 𝛾𝛾,𝛽𝛽) = 1
𝛼𝛼
∇𝑦𝑦BN(𝑋𝑋;𝛼𝛼𝛼𝛼, 𝛾𝛾,𝛽𝛽) 

Proof: Suppose, 𝑦𝑦𝑖𝑖 = 𝑋𝑋𝑖𝑖𝒘𝒘 = ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝜔𝜔𝑗𝑗
𝑝𝑝
𝑗𝑗=1 ,𝑦𝑦�𝑖𝑖 = 𝑦𝑦𝑖𝑖−𝜇𝜇ℬ

�𝜎𝜎ℬ2+𝜖𝜖
,𝑧𝑧𝑖𝑖 = 𝑦𝑦�𝑖𝑖𝛾𝛾 + 𝛽𝛽, then 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦�𝑖𝑖

= 𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑖𝑖
𝛾𝛾, 𝜕𝜕𝜕𝜕

𝜕𝜕𝒚𝒚�
= 𝜕𝜕𝜕𝜕

𝜕𝜕𝒛𝒛
𝛾𝛾, 𝜕𝜕𝜕𝜕

𝜕𝜕𝜎𝜎ℬ2
== −1

2
𝛾𝛾(𝜎𝜎ℬ2 + 𝜖𝜖)−3 2⁄ 𝜕𝜕𝜕𝜕

𝜕𝜕𝒛𝒛
⋅ (𝒚𝒚 − 𝜇𝜇ℬ), 𝜕𝜕𝜕𝜕

𝜕𝜕𝜇𝜇ℬ
= − 𝛾𝛾

�𝜎𝜎ℬ2+𝜖𝜖

𝜕𝜕𝜕𝜕
𝜕𝜕𝒛𝒛
⋅ 𝟏𝟏 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑦𝑦𝑖𝑖

= 𝛾𝛾
𝜕𝜕𝜕𝜕
𝜕𝜕𝑧𝑧𝑖𝑖

⋅
1

�𝜎𝜎ℬ2 + 𝜖𝜖
−

1
2
𝛾𝛾(𝜎𝜎ℬ2 + 𝜖𝜖)−3 2⁄ 𝜕𝜕𝜕𝜕

𝜕𝜕𝒛𝒛
⋅ (𝒚𝒚 − 𝜇𝜇ℬ) ⋅

2(𝑦𝑦𝑖𝑖 − 𝜇𝜇ℬ)
𝑚𝑚

−
𝛾𝛾

𝑚𝑚�𝜎𝜎ℬ2 + 𝜖𝜖

𝜕𝜕𝜕𝜕
𝜕𝜕𝒛𝒛

⋅ 𝟏𝟏 

𝜕𝜕𝜕𝜕
𝜕𝜕𝒚𝒚

=
𝛾𝛾

�𝜎𝜎ℬ2 + 𝜖𝜖

𝜕𝜕𝜕𝜕
𝜕𝜕𝒛𝒛

−
𝛾𝛾(𝜎𝜎ℬ2 + 𝜖𝜖)−3 2⁄

𝑚𝑚
𝜕𝜕𝜕𝜕
𝜕𝜕𝒛𝒛

⋅ (𝒚𝒚 − 𝜇𝜇ℬ)(𝒚𝒚 − 𝜇𝜇ℬ)𝑇𝑇 −
𝛾𝛾

𝑚𝑚�𝜎𝜎ℬ2 + 𝜖𝜖

𝜕𝜕𝜕𝜕
𝜕𝜕𝒛𝒛
𝟏𝟏 ⋅ 𝟏𝟏𝑇𝑇 

 𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

=
𝜕𝜕𝜕𝜕
𝜕𝜕𝒚𝒚

𝑋𝑋 =
𝛾𝛾

�𝜎𝜎ℬ2 + 𝜖𝜖

𝜕𝜕𝜕𝜕
𝜕𝜕𝒛𝒛
�𝐼𝐼 −

1
𝑚𝑚(𝜎𝜎ℬ2 + 𝜖𝜖)

(𝒚𝒚 − 𝜇𝜇ℬ) ⋅ (𝒚𝒚 − 𝜇𝜇ℬ)𝑇𝑇 −
1
𝑚𝑚
𝟏𝟏 ⋅ 𝟏𝟏𝑇𝑇�𝑋𝑋 （18） 

Then, 
 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕𝒘𝒘
=

1
𝛼𝛼
∙
𝜕𝜕𝜕𝜕
𝜕𝜕𝒘𝒘

 （19） 

 
∇𝑦𝑦BN(𝑋𝑋;𝑤𝑤, 𝛾𝛾,𝛽𝛽) =

1
𝛼𝛼
∇𝑦𝑦BN(𝑋𝑋;𝛼𝛼𝛼𝛼, 𝛾𝛾,𝛽𝛽) （20） 

In fact, for any weight with scale invariance, there are 𝑓𝑓(𝒘𝒘) = 𝑓𝑓(𝛼𝛼𝒘𝒘), so 
 

∇𝑓𝑓(𝒘𝒘) =
1
𝛼𝛼
∇𝑓𝑓(𝛼𝛼𝒘𝒘) （21） 

Proposition 1 shows that for batch regularization layers, although the scale change of the 
weight vector will not change the layer output, it will change the gradient of the layer and affect 
the model training. 

Proposition 2: For the batch regularization layer, let its weights be constrained by the 2-
norm, that is, ‖𝑤𝑤‖2 = 𝛼𝛼. Meanwhile, we add a 1-norm penalty to the loss function, which can 
make the weight coefficients sparse under certain conditions. At this time, the degree of sparsity 
is related to the 2-norm constraint value α and the 1-norm penalty coefficient. 

Proof: Let the objective function of model optimization be 𝐿𝐿𝜆𝜆(𝒘𝒘,𝜃𝜃,𝑋𝑋, 𝑦𝑦) = 𝐿𝐿(𝒘𝒘,𝜃𝜃,𝑋𝑋,𝑦𝑦) +

𝜆𝜆‖𝒘𝒘‖1, we get 
 ∇𝐿𝐿𝜆𝜆(𝒘𝒘,𝜃𝜃,𝑋𝑋,𝑦𝑦) = ∇𝐿𝐿(𝒘𝒘,𝜃𝜃,𝑋𝑋, 𝑦𝑦) + 𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒘𝒘) （22） 

Let 𝐿𝐿(𝒘𝒘,𝜃𝜃,𝑋𝑋, 𝑦𝑦)  obtain the minimum value at 𝒘𝒘∗ , at this time ∇𝐿𝐿(𝒘𝒘∗,𝜃𝜃,𝑋𝑋, 𝑦𝑦) = 0 . 
Perform second-order Taylor expansion on 𝐿𝐿𝜆𝜆(𝒘𝒘,𝜃𝜃,𝑋𝑋,𝑦𝑦) at 𝒘𝒘∗, then 
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𝐿𝐿𝜆𝜆(𝒘𝒘,𝜃𝜃,𝑋𝑋, 𝑦𝑦) = 𝐿𝐿(𝒘𝒘∗,𝜃𝜃,𝑋𝑋, 𝑦𝑦) + 𝜆𝜆‖𝒘𝒘‖1 +

1
2

(𝒘𝒘−𝒘𝒘∗)′𝐻𝐻(𝒘𝒘−𝒘𝒘∗) （23） 

Where 𝐻𝐻  is the Hessian matrix of 𝐿𝐿𝜆𝜆(𝒘𝒘,𝜃𝜃,𝑋𝑋,𝑦𝑦) . Orthogonal decomposition of 𝐻𝐻 , let 
𝐻𝐻 = 𝑄𝑄′Λ𝑄𝑄 , where 𝑄𝑄 is an orthogonal matrix. Λ  is a diagonal matrix, set as 
diag(ℎ11,ℎ22, … , ℎ𝑚𝑚𝑚𝑚). Since H is positive and semi−definite, ℎ𝑖𝑖𝑖𝑖 ≥ 0. Therefore, 
 

𝐿𝐿𝜆𝜆(𝒘𝒘,𝜃𝜃,𝑋𝑋,𝑦𝑦) = 𝐿𝐿(𝒘𝒘∗,𝜃𝜃,𝑋𝑋,𝑦𝑦) + ��𝜆𝜆|𝑤𝑤𝑖𝑖| +
1
2
ℎ𝑖𝑖𝑖𝑖(𝑤𝑤𝑖𝑖 − 𝑤𝑤𝑖𝑖∗)2�

𝑚𝑚

𝑖𝑖=1

 （24） 

Obviously, when we get to the minimum 𝐿𝐿𝜆𝜆(𝒘𝒘,𝜃𝜃,𝑋𝑋, 𝑦𝑦) , there are 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖) = 0  or 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖∗) . Let ∇𝐿𝐿𝜆𝜆(𝒘𝒘,𝜃𝜃,𝑋𝑋,𝑦𝑦) = 𝜆𝜆 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒘𝒘) +𝐻𝐻(𝒘𝒘−𝒘𝒘∗) = 0 , substitute 
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖∗) to get 

 
𝑤𝑤𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖∗) �|𝑤𝑤𝑖𝑖∗|−

ℎ𝑖𝑖𝑖𝑖
𝜆𝜆
� （25） 

Therefore, 𝑤𝑤𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖∗) max �|𝑤𝑤𝑖𝑖∗|−
ℎ𝑖𝑖𝑖𝑖
𝜆𝜆

, 0�. This means that when |𝑤𝑤𝑖𝑖∗| < ℎ𝑖𝑖𝑖𝑖
𝜆𝜆

, 𝑤𝑤𝑖𝑖 = 0; 

when |𝑤𝑤𝑖𝑖∗| ≥
ℎ𝑖𝑖𝑖𝑖
𝜆𝜆

 , 𝑤𝑤𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑤𝑤𝑖𝑖∗) �|𝑤𝑤𝑖𝑖∗| −
ℎ𝑖𝑖𝑖𝑖
𝜆𝜆
� , so 𝒘𝒘  sparse. And because the scale-invariant 

𝐿𝐿(𝒘𝒘,𝜃𝜃,𝑋𝑋, 𝑦𝑦), ℎ𝑖𝑖𝑖𝑖(𝒘𝒘) = 1
𝛼𝛼2
ℎ𝑖𝑖𝑖𝑖(𝛼𝛼𝒘𝒘), so the degree of sparsity is related to the 2-norm constraint 

values 𝛼𝛼 and 1-norm Penalty coefficients are related. Theorem 2 shows that under the 2-norm 
constraint, the penalty coefficient 𝜆𝜆 and 2-norm constraint value 𝛼𝛼 have the same effect on the 
sparsity of weight 𝒘𝒘. Therefore, during hyperparameter debugging of the algorithm, one value 
can be fixed, and the other value can be debugged. 

In summary, this study proposes the HDNN algorithm that is an improved DNN algorithm 
for high dimensional CCR datasets. We add L2 constraints on a single L1 regularization to 
prevent L1 regularization from failing in the DNN algorithm. Specifically, the L1 norm with a 
penalty coefficient of 0.01 is added to the first fully connected layer of the algorithm, and the 
L2 norm of its weight is constrained to 1. In this way, the sparse solution of the algorithm is 
obtained through L1 regularization, and the L2 norm is also added to better cope with the 
overfitting. The pseudo-code of the HDNN algorithm is shown in Figure 2. 
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Figure 2 The pseudo-code of the HDNN algorithm 

4.2 Methods evaluation 
The predictive effect of the HDNN algorithm was assessed firstly by using the area under 

the curve (AUC) of the receiver operating characteristic (ROC) (Fan et al., 2006; Pepe, 2000). 
ROC and AUC are metrics to measure the effectiveness of the learner. The closer the ROC 
curve approaches the upper left corner, the better the accuracy of the model is. In other words, 
a classifier with a larger AUC value has higher accuracy. Secondly, when testing the 
generalization performance of the model, we cannot simply use k-fold cross-validation for the 
chronological order of the dataset in this study, otherwise, it will lead to predicting past 
phenomena with the future (Bergmeir et al., 2012; Bergmeir et al., 2018). Therefore, this study 
performs subsequent segmentation of time series whereby sliding windows. Specifically, on 
the basis of the common 70% training sample division in time-series datasets (Siami-Namini et 
al., 2018; Xue et al., 2011), we fluctuate 10% of the training samples up and down and calculate 
10-time average in each dataset (Meng et al., 2018). In addition, we also compared the HDNN 
algorithm with traditional machine learning algorithms such as SVM, NN, LR and used non-
parametric tests to evaluate the significance of the HDNN algorithm. 

4.3 Methods results 
This study uses the high dimensional CCR dataset as input to test the HDNN algorithm’s 

predictive ability. According to the HDNN algorithm, we set parameters and input commands 
on the python platform. Furthermore, we allocated training samples and test samples by a ratio 
of 70% to 30% in line with a common way of sample division for time series (Siami-Namini & 
Namin, 2018; Xue et al., 2011). By applying the data to the algorithm, we get the ROC of the 
HDNN algorithm. As shown in Figure 3, the prediction accuracy AUC is 80.12%, which 
suggests great performance. 



13 
 

 
Figure 3 The ROC curve of the HDNN algorithm 

5. Discussion 

This section discusses the predictive effectiveness of the HDNN algorithm. As can be seen 
from Section 2, Section 3 and Section 4, this study considers the impact of network information 
and supply chain information on CCR, and proposes an HDNN algorithm for predicting high 
dimensional CCR data. To address the high dimensional feature selection problem, we 
theoretically theoretically prove that there is no regularization effect when L1 regularization is 
added to the batch normalization layer of the DNN, which is a hidden rule in the industrial 
implementation but never been proved. Also, we proved that adding L2 constraints on a single 
L1 regularization can solve this issue. Therefore, to verify the prediction ability of the HDNN 
algorithm, we conduct a comparison between the HDNN algorithm’s performance for CCR 
prediction and other competing algorithms, such as NN, SVM, LR. Notably, the remaining 
SVM, NN, LR, and other classifiers are set according to the default software package to avoid 
the deviation of the results caused by the artificially specified parameters. In addition, we 
fluctuate 10% of the training samples up and down on 70% of the training samples and perform 
10 computations on each dataset separately, because time series data does not allow random 
sampling cross-validation (Meng et al., 2018; Siami-Namini & Namin, 2018; Xue et al., 2011). 
The specific values are shown in Table 3. 

Table 3 The AUC of different proportional training sample  

Methods 60% training set 70% training set 80% training set 
NN 0.668 0.692 0.674 

SVM 0.713 0.738 0.702 

LR 0.696 0.717 0.726 

HDNN 0.787 0.801 0.794 

 
Table 3 shows the prediction results of HDNN and popular machine learning algorithms. 

The AUC values that measure the prediction accuracy reveal that, despite the different training 
samples, the HDNN algorithm still has the highest prediction accuracy. The second ranking is 
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the SVM algorithm. The final decision function of the SVM algorithm is determined by the 
number of support vectors, thus leading to unique advantages when dealing with high 
dimensional data (Ni et al., 2018). The performance of NN and LR algorithms is average, which 
may be due to the fact that a large number of indicators have been added to the dataset and the 
dimension is too high. On the whole, compared with the current popular competing algorithms, 
the HDNN algorithm works best. 

Moreover, this study also uses nonparametric tests to evaluate differences among these 
algorithms. Specifically, the Friedman test is adopted to examine the differences in algorithm 
performance on different datasets. Since the statistical result is 𝜒𝜒(30)

2  = 8.2, p = 0.04, which 

suggests there is a significant performance difference between the algorithms. It means that the 
HDNN algorithm can be applied to high dimensional CCR prediction in a targeted manner. 
This is the main contribution of our method to the current high dimensional CCR prediction. 

6. Conclusions 

This study clearly reveals the effectiveness of the HDNN algorithm in predicting high 
dimensional datasets, and proves the superiority of the proposed algorithm by comparing with 
existing algorithms. Specifically, we consider the impact of external information, including 
supply chain information and network information, on CCR. Although more information has 
been shown to be helpful in improving the CCR prediction accuracy (Wu et al., 2022), this 
often leads to a dramatic increase in data dimensionality, which can greatly reduce the 
performance of prediction algorithms along with redundant and irrelevant information. 
Therefore, we propose the HDNN algorithm to predict high dimensional CCR. For high 
dimensional datasets, we theoretically proved that there was no regularization effect when L1 
regularization was added to the batch normalization layer of the DNN, which was a hidden rule 
in the industrial implementation but never been proved. This study solved this issue by adding 
L2 constraints on a single L1 regularization, which not only performed feature selection through 
L1 regularization but also added L2 norm to better cope with the overfitting problem. Finally, 
this study analyzed a real case including supply chain and network information, and obtains the 
prediction accuracy of the HDNN algorithm is 80.12%, showing the superiority of the HDNN 
algorithm in the scenario of a high dimensional dataset. Such enhanced high dimensional CCR 
prediction is very important in practice. For example, adding supply chain information helps 
protect a company's industrial chain from supply chain risk spillovers. Timely network 
information can help companies to identify the early signs that could damage their financial 
stability. In addition, for the company owner, early detection and prediction of the company's 
credit situation, even a slight increase in prediction accuracy, can reduce future risks and 
translate into company benefits. Overall, the HDNN algorithm offers a possible solution for 
great accuracy prediction of high dimensional CCR. 

Despite the outstanding performance of the HDNN algorithm, some directions deserve 
further consideration. First, in addition to supply chain and network information, many other 
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factors may also affect credit risk such as executive behavior variables, customer profiles, and 
announcement text features. Therefore, richer data need to be incorporated into CCR prediction 
to help gain more management implications. Second, although the new information introduced 
in this study makes contributions to the CCR prediction to a certain degree, these data are 
acquired indirectly by calculating from the database. We believed that if the original data can 
be obtained, the performance of the HDNN algorithm may be further enhanced. Finally, this 
study mainly focuses on the prediction of high dimensional CCR, and the subsequent research 
can concentrate on the unbalanced and unstructured characteristics of the dataset in parallel to 
further enhance the interpretability of the model and obtain relevant management insights. 
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