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ThermoSecure: Investigating the effectiveness of AI-driven
thermal attacks on commonly used computer keyboards

NORAH ALOTAIBI, University of Glasgow, United Kingdom and Taif University, Saudi Arabia
JOHN WILLIAMSON, University of Glasgow, United Kingdom
MOHAMED KHAMIS, University of Glasgow, United Kingdom

Thermal cameras can reveal heat traces on user interfaces, such as keyboards. This can be exploited maliciously
to infer sensitive input, such as passwords. While previous work considered thermal attacks that rely on
visual inspection of simple image processing techniques, we show that attackers can perform more effective
AI-driven attacks. We demonstrate this by presenting the development of ThermoSecure, and its evaluation in
two user studies (N=21, N=16) which reveal novel insights about thermal attacks. We detail the implementation
of ThermoSecure and make a dataset of 1,500 thermal images of keyboards with heat traces resulting from
input publicly available. Our first study shows that ThermoSecure successfully attacks 6-symbol, 8-symbol,
12-symbol, and 16-symbol passwords with an average accuracy of 92%, 80%, 71%, and 55% respectively, and
even higher accuracy when thermal images are taken within 30 seconds. We found that typing behavior
significantly impacts vulnerability to thermal attacks, where hunt-and-peck typists are more vulnerable than
fast typists (92% vs 83% thermal attack success if performed within 30 seconds). The second study showed
that the keycaps material has a statistically significant effect on the effectiveness of thermal attacks: ABS
keycaps retain the thermal trace of users presses for a longer period of time, making them more vulnerable to
thermal attacks, with a 52% average attack accuracy compared to 14% for keyboards with PBT keycaps. Finally,
we discuss how systems can leverage our results to protect from thermal attacks, and present 7 mitigation
approaches that are based on our results and previous work.

CCS Concepts: • Human-centered computing→ Human computer interaction (HCI); • Security and
privacy→ Authentication.
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1 INTRODUCTION
Thermal cameras are becoming ubiquitous and more affordable than before. Today, thermal cameras
can be bought online for less than $150. While they have many benefits, they present a new front
for side-channel attacks. Namely, taking a thermal image of a user interface, such a keyboard or
a touchscreen, reveals heat traces that can be used to determine the user’s input. This input can
range from day-to-day input on said devices, to sensitive input such as passwords, PINs, credit card
numbers, and more. These types of attacks are referred to as thermal attacks [1, 3, 4].

Thermal cameras, unlike regular cameras, can reveal information without requiring the attacker
to interact with the targeted victim, be present during the authentication attempt, or plant any
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tool that can be linked to the attacker which could potentially exposing them. Such information
includes heat residues left by the user during authentication, which can be retrieved using thermal
cameras. Having acquired a thermal image of a keyboard or touchscreen after authentication, the
attacker can then analyze the heat map and exploit it to uncover the entire password or pattern.
Even without knowing the order of the keys, it is possible to significantly reduce the search space,
which means fewer attempts are required to guess a password. Even if the order of the keys is
unknown, it is possible to significantly reduce the search space, requiring fewer attempts to guess
a password. Furthermore, our study and studies from prior work [1, 3, 4, 23] have shown that the
order of entries can be leaked within a certain time frame.

Previous work has studied thermal attacks against ATMs [23], keyboards [3, 4, 13], smartphone
touchscreens [1, 3], and laptop touchpads [3]. It was shown that thermal attacks can be successful
if the resulting thermal images are visually inspected by non-experts [3, 4] or if they are analyzed
using simple image processing techniques as done by Mowery et al. [23] and Abdelrahman et al. [1].
While previous work showed high success rates ranging from 72% to 100% [1] when thermal images
of passwords are taken 30-60 seconds after user input in controlled conditions, we argue that higher
accuracy under different contexts can be achieved by leveraging deep learning techniques. Machine
learning is becoming increasingly accessible, making it more likely that attackers will employ it to
improve their thermal attacks. Thus, there is a need to understand how successful thermal attacks
can be if attackers employed more advanced methods for analyzing thermal images, and how user’s
behavior and input properties impact the success of thermal attacks.

We address this gap with a focus on thermal attacks against passwords entered on keyboards. Our
work presents the implementation of ThermoSecure, a novel system that integrates deep learning
to 1) determine the placement of keyboards in thermal images using Mask RCNNs, 2) determine
which keys were pressed on the keyboard including accurate detection of keys that were pressed
multiple times using K-mean clustering, 3) distinguish which keys were part of a username and
which were part of a password entry, and 4) determine the order in which the keys were pressed to
produce a list of the most likely user input using probability functions. We trained and evaluated
our models using a dataset of 1500 thermal images taken in realistic conditions, which is made
publicly available.

We then present the results of two user studies to assess the effectiveness of AI-driven thermal
attacks against passwords of different properties, different input behaviors, and different keycap
material types. First, in Study I (Section 6.1) we evaluate ThermoSecure in an empirical within-
subjects user study in which 21 participants entered usernames and passwords on an external
keyboard. Our participants entered passwords of different properties, and we took thermal images
at 20, 30 and 60 seconds after entry. Our results reveal insights about 1) properties that make
passwords more secure against thermal attacks and 2) typing behaviors that make input more
secure against thermal attacks. For example, our analysis shows that hunt and peck typing is
significantly more vulnerable to thermal attacks (92% thermal attack success if taken within 30
seconds) compared to fast typing (80%) and that this typing behavior can be determined in real time
through keystroke dynamics. This creates avenues for future work on real time protection from
thermal attacks by analyzing typing behavior. We also found that long passwords are significantly
more resilient to thermal attacks; 100% of 6-symbol passwords are detected using ThermoSecure
whereas 67% of 16-symbol passwords are detected within 20 seconds. Second, in Study II (Section
6.2) we investigate how some physical properties of external keyboards impact the success of
thermal attacks through a follow up within-subjects user study in which 16 participants entered
passwords on two keyboards: one that uses Acrylonitrile Butadiene Styrene (ABS) keycaps, and
one that uses Polybutylene Terephthalate (PBT) keycaps. Our results indicate that Keycaps made of
ABS were more vulnerable to thermal attacks than those made of PBT (52% and 14% attack success
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respectively). We conclude with a discussion of how systems can protect users from thermal attacks
by presenting 7 mitigation approaches that are based on our findings and previous work.

2 CONTRIBUTION STATEMENT:
In summary, this paper makes the following contributions:
(1) We present the first dataset of thermal images showing keyboards with heat traces resulting

from input. The dataset contains 1500 thermal images and can be used to further investigate
and understand Thermal attacks1.

(2) We present the implementation of a novel model that:
(a) automates the detection of keyboards within the thermal image using a deep learning

model: Mask RCNNs.
(b) employs K-mean clustering to detect multiple presses in the thermal image.
(c) distinguishes which key presses belong to the username and which belong to the password

in an authentication attempt.
(d) offers a novel technique to infer the order of the pressed keys. This technique generates a

combination of different passwords with different order probabilities.
(3) Novel insights about the effectiveness of thermal attacks in realistic settings and how they

are impacted by password properties, ages of heat traces, user typing behaviors, and the
plastic material used for the keyboard’s keycaps.

3 RELATEDWORK
Previous work on thermal attacks is scarce. This is likely because the threat has only recently
become feasible due to the falling prices of thermal cameras. Work in this area can be split into two
categories based on the threat model: 1) thermal attacks in which the attacker utilized an automated
approach to analyze the thermal images, and 2) attacks in which the attacker visually inspected the
thermal image to determine the input.

3.1 Automated Thermal attacks
To the best our knowledge, the earliest published work on thermal attacks was by Mowery et al. [23].
In their work, they focused on ATM keypads and experimented with manual visual inspection of
thermal images and an automated approach. They found that their automatic technique was more
accurate than visually inspecting the thermal image, particularly as time went on. In comparison
to visual inspection, which retrieved just 20-30% of codes after a minute, the automated technique
retrieved roughly 50% of them.
Similarly, a study by Li et al. [19] investigated thermal attacks on ATM keypads. In addition to

the thermal camera, an RGB camera was also used to help locate the keypad in the thermal image.
The two cameras were aligned in advance for joint sequence analysis. In their model, the order of
entries in the password was inferred by a frame by frame comparison of change in the temperature
of keys. The main contribution of their work was developing a model estimation method of key
touch time based on maximum likelihood, achieving an accuracy of 26.7% in attacking 6-digit PINs.
While the previously discussed work focused on ATM keypads, other researchers investigated

different user interfaces. A study by Abdelrahman et al. [1] investigated the effectiveness of thermal
attacks on user authentication on mobile devices. They developed the ThermalAnalyzer, which
featured a recognition pipeline that reconstructs PINs and Android Lock Patterns by analyzing
thermal images taken with an optris PI thermal camera. The approach used blob detection and the
mean temperatures of the heat traces in the regions of interest to determine the input and order
1https://doi.org/10.5281/zenodo.7069957
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of entry. In their work, they achieved an overall accuracy of 78% when attacking PINs within 30
seconds of entry, and 38.89% when attacking patterns. It is notable that attack accuracy was 100%
when attacking patterns that do not contain any overlapping input within 30 seconds.

Closest to our work is the work by Kaczmarek et al. [13], which focused on thermal attacks
against keyboards. They collected thermal images of keyboards from fixed camera locations and
orientations. They asked participants to locate, draw the regions where the heat traces are located
and label the keys. Their system, called Thermanator, used a blob detection technique to separate
the thermal traces from the background. The authors show that the key-presses that constitute
the password can be recovered within 30 seconds, however they do not estimate the order of
key-presses. Instead, the authors suggest using a dictionary attack to generate possible passwords
that use the detected keys.

3.2 Thermal Attacks by Visual Inspection
While the previously discussed works presented automated methods for analyzing the thermal
images, other works explored how well visually inspecting thermal images can reveal input.
A study by Wodo and Hanzlik [31] presented several scenarios that simulated thermal attacks

against passwords on computer keyboards, cash machines, digital doors locks and payment termi-
nals. In these scenarios most of user’s passwords were successfully retrieved within a time frame
that varies between 30 seconds and 40 seconds. No further details about the accuracy of the attacks
were reported. Another study by Abdrabou et al [3] investigated thermal attacks against touch
gestures and taps on smartphone touchscreens and laptop touchpads. In this study, two sets of
participants were recruited: the first entered passwords while input was recorded using a Flir
C2 Compact thermal camera after 4 seconds of entry, and the second set inspected the recorded
thermal images with the aim to determine the passwords. The authors found that touch gestures
are more vulnerable compared to tapping on the touchscreens/touchpads (60.65% vs 23.61% success
rate), and that touchscreens are more vulnerable than touchpads (87.04% vs 56.02%). One main
insight from that work is that thermal attacks are feasible using affordable cameras even when the
attackers are not trained, suggesting that thermal attacks can potentially become ubiquitous. This
is supported by further evidence from recent work by Bekaert et al. [8], which showed that users’
typical behavior makes them frequently at risk of thermal attacks due to, for example, their choice
of authentication methods, and leaving devices unattended.

3.3 How our work advances state of the art
Our work advances state of the art in three directions 1) our work features improved attack
accuracy, 2) our evaluation uses a more realistic threat model, and 3) our work reveals novel
insights regarding how password properties, plastic material of keyboards, and user input behavior
impact vulnerability to thermal attacks.

While most previous work on thermal attacks considered smaller search spaces (e.g., 10 keys on an
ATM keypad or a mobile touchscreen [1, 3, 4, 23, 31]), our work focuses on thermal attacks against
keyboards, which are relatively understudied. In contrast to the work by Kaczmarek et al. [13], our
model is able to determine the order of entries by comparing the temperatures of the heat traces at
the different keys and uses the information obtained from the thermal image to probabilistically
decode multiple hypothesized passwords ranked by probability of correctness. Our approach also
distinguishes username and password key-presses by comparing every pair of consecutive keys to
find the ones with the highest temperature difference (i.e., the last key of the username and the
first key of the password), which can indicate a possible shift that corresponds to typing something
new (i.e., password). Furthermore, our deep learning approach achieves high accuracy: up to 100%,
93%, 82% and 67% for 6-symbol, 8-symbol, 12-symbol and 16-symbol passwords respectively. This
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is significantly higher than the values reported in Sections 3.1 and 3.2. We also reveal valuable
insights on the impact of typing behavior and keycaps’ material on the success of thermal attacks.
Furthermore, all previous work assumed a fixed setup where the distance between the user

interface and the camera is fixed [13]. However, it cannot be assumed that these methods will
always work in a real life scenarios where the attacker will need to configure the method for every
image captured. In contrast, a) our study involves thermal images from differ angles and distances
from the keyboard and b) our model is able to distinguish the entry of usernames and passwords.
Taking this into consideration, understanding how successful thermal attacks can be if they

benefit from all the aforementioned information is essential to assess the attacks’ impact on security.

4 THREAT MODEL
In our threat model, the attacker possesses a thermal camera and uses it to take a thermal image of
the surface of the keyboard after the user has authenticated by entering a username and a password.
Our experiment considers cases where the thermal image is taken 20, 30 and 60 seconds after
authentication. This could happen in situations where the user logs in and then shortly leaves their
workstation e.g., to take a break. The attacker can then take a thermal image after the user has left
their workstation unattended. Another possible scenario is where the attacker inconspicuously uses
a thermal camera while the victim is still using their computer provided they do not occlude the
keyboard. This can be done either by using a small add-on thermal cameras, such as FLIR one2, that
can be attached to smartphones, and using a smartphone that comes with an integrated thermal
camera3), or through a mounted thermal camera used for security4. It does not matter whether the
user has logged out before leaving their workstation without using their keyboard or if the device
automatically logs them out due to inactivity – this does not impact our threat model. We assume
the user does not interact with the keyboard after log in. This is a reasonable assumption as users
may spend complete interaction sessions using their mouse or consuming content displayed on the
screen.
Unlike previously studied threat models where the user entered a password only [1, 3, 4, 13],

our model assumes the user has entered both a username and a password. This means that the
attacker in our threat model needs to distinguish heat traces resulting from interaction before
authentication (i.e., entering the username) from those resulting from authentication (i.e., entering
the password).

5 THERMOSECURE: CONCEPT AND IMPLEMENTATION
In the following, we present our implementation of ThermoSecure, a method that retrieves input on
keyboards through thermal imaging. The main objectives of ThermoSecure were shaped through
comparative review of how previous studies approached the topic of thermal attacks [1, 3, 4, 13, 23],
and addressing the gaps by said approaches. While our threat model and some of the approaches
used to process the thermal images were inspired by previous work, ThermoSecure advances state
of the art through the following:
(1) ThermoSecure incorporates an object detection technique based on Mask RCNN to ensure

that the placement of the keyboard in the thermal image does not reduce the effectiveness of
the attack.

(2) While previous approaches for thermal attacks demonstrated some success, none of the previ-
ously proposed methods outputs the correct entry every time [1, 13]. Instead of producing a

2https://www.flir.com/flir-one/
3https://www.catphones.com/en-gb/features/integrated-thermal-imaging/
4https://www.flir.co.uk/browse/security/thermal-security-cameras/

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2022.



1:6 Alotaibi, et al.

single output, ThermoSecure uses the information obtained from the thermal image to prob-
abilistically decode multiple hypothesised passwords ranked by probability of correctness.

(3) While previous work assumed the user does not provide any input apart from the password,
ThermoSecure is evaluated under a threat model where the user provides both a username
and a password. ThermoSecure’s ability to distinguish heat traces resulting from password
entry and those resulting from interactions prior to authentication demonstrates that the
attack is feasible in scenarios that are more realistic compared to previously studied threat
models [1, 13].

Fig. 1. ThermoSecure architecture

Figure 1 summarizes the architecture of the model used in ThermoSecure. The next subsections
detail the different phases that form ThermoSecure. The first phase is concerned with the detection
of the keyboard within the thermal image. The coordinates obtained from this phase are then used
in the second phase to apply a skeleton layout to the detected keyboard to extract the pressed
keys. Having defined which keys form the password, the final phase produces the order of the key
presses to retrieve the full password.

5.1 Phase 1: Keyboard Localization
In this phase, our goal is to detect the keyboard within the thermal image and obtain the bounding
box coordinates surrounding it, such that the thermal image of the keyboard can be rectified. We
apply a deep learning approach to extract the keyboard corners and warp the thermal image to
standardized coordinates. This process is detailed in the following sections.

5.1.1 Data collection/Annotation of the images. First, we captured 1500 thermal images of a standard
ISO QWERTY keyboard with ABS keycaps using an optris PI 450i (see samples in Figure 3). In
each thermal image, we pressed random keys to create random heat traces on different parts of
the keyboard. This was done to avoid biasing the model towards detecting keyboards that have
specific patterns of heat traces or those with no traces at all. The direction of the camera and the
distance from the keyboard were randomly changed in each image to evaluate ThermoSecure, and in
particular phase 1, against challenging and realistic scenarios. The thermal images were annotated
using Lableme package5. The annotation process includes labeling, setting the coordinates of the
keyboards in the thermal image and saving these information in JSON files (see example in Figure
2).

The thermal images along with their corresponding annotation files were then randomly divided
to three sets:
(1) Train Set: 1300 images that were used to train the model.
(2) Validation Set: 170 images that were used during the training to tune the parameters of the

model.
(3) Test Set: 30 thermal images that were used to test how well the model performs on unseen

(new) data.
5https://github.com/wkentaro/labelme
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Fig. 2. An example of the labeling process in which each point on the keyboard edges was annotated.

Fig. 3. Samples of the collected thermal images used for training the model. We took thermal images of a
standard ISO QWERTY keyboard with ABS keycaps from random angles and distances. In each image, heat
traces were produced on the keyboard by pressing random keys.

5.1.2 Pre-processing/Data augmentation. To make the thermal traces in the image more prominent,
we need to reduce high-frequency noise and standardize the contrast. Noise can arise as an effect
of different factors such as having an insufficient light levels during image acquisition and the
interference in the electronic circuits inside the camera that increase the thermal energy of heat
inside the sensors.

As illustrated in Figure 4, in addition to applying Contrast Limited Adaptive Histogram Equaliza-
tion (CLAHE) [32] to the image, the noise filtering process in a previous study [1] was adapted as
follows:
(1) Applying a 5x5 median filter.
(2) Converting the images from RGB color to grayscale.
(3) Reapplying the median filter in (1) for enhanced noise reduction.
Furthermore, data augmentation was applied to increase the training data without capturing

new images. We did this by applying random rotation, padding, and horizontal flipping (see Figure
5).

5.1.3 Training. Our model uses Mask RCNN [12] for object detection. Mask RCNN is a framework
for Image Segmentation tasks that uses the ResNet architectures (101, 50) to extract features from
the images. In order to achieve optimal results with less training time on our relatively small dataset

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Fig. 4. Sample thermal image undergoing the pre-processing stage for denoising. We removed the noise by
applying a 5x5 median filter, converting the image to grayscale, reapplying the same filter again, and then
enhancing it using Contrast limited adaptive histogram equalization (CLAHE) [32].

Fig. 5. An example of an augmented thermal image

we follow the transfer learning concept. A COCO6 model which is pre-trained on classifying
and detecting more than 800K objects was used as a feature extractor. By choosing the optimal
hyper-parameters from several trials, the model is fine-tuned on our custom dataset.

5.1.4 Detection. The model loads the best trained weights to detect an object that belongs to a
class in a given image. In our case, the class is a keyboard. This returns a dictionary that includes:
class name (i.e., a keyboard or an undefined object), bounding box coordinates of the detected
object, mask information that include the coordinates of every pixel within the bounding box, and
a prediction score of how confident the model is that the detected object is from a certain class. The
bounding box coordinates of the detected keyboard are then saved to be used in the next phase.

5.2 Phase 2: Obtaining the key presses
The bounding box coordinates obtained from the previous phase were used to approximate the
location of the keys using the following method:
(1) The Rotated Bounding Box (RBBox) was calculated to be used instead of the bounding box

(BBox) obtained from the Mask RCNN Network (see Figure 6).
(2) The RBBox is then used to locate the four corners of the detected Keyboard.
(3) We assume the target keyboard has the typical layout for most keyboards: 8 regions of interest,

6 rows of keys and 2 areas without keys at the top and bottom of the keyboard.
(4) The coordinates that represent the start and the end of each region of interest is calculated

by adding or subtracting displacement values unique to every image. The direction and the
amount of displacement needed in the 2D axis is determined based on the layout of the

6https://cocodataset.org/
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Fig. 6. The BBOX is calculated with no regards to the rotation of the object (left). Thus, we used the RBBox
as shown in the right image instead. The RBBox mainly depends on the mask coordinates that include all
of the data points that were detected as part of the keyboard. The RBBox was calculated by estimating the
corner points of the mask.

keyboard; in particular on the height, width and the rotation of the keyboard which was
obtained using the RBBox.

(5) The start and end of each region, the region length and the displacement values are used to
estimate the box coordinates of the keys (see examples in Figure 7).

Fig. 7. Example of Keys that were located using the method described in Section 5.2.

5.2.1 Blob Detection. The last described step of the second phase provided us with box coordinates
for each key. We then use this information along with blob detection to obtain the entries of the
password: a blob is a group of connected pixels in a binary image, while blob detection is the
process of detecting regions that have different properties such as shape or brightness. To perform
blob detection the following steps are necessary:
(1) We apply a threshold to convert the image to a binary image, i.e., each pixel value greater

than 200 was set to zero while preserving the pixel values of the background.
(2) We then apply a morphological closing to fill (i.e., close) any small holes/black points in the

foreground objects.
(3) The final step is finding and extracting the contours of the blobs.

After performing blob detection, we use the box coordinates of the keys to find all the keys that
have contour points within their bounding box as shown in Figure 8.

5.2.2 K-mean clustering. K-mean clustering is a machine learning algorithm that is used to cluster
data points into different clusters based on how similar they are. In our model, K-mean clustering
was employed to analyze the temperature values for each of the detected keys in order to detect
multiple clusters (presses) if any. The mean of an idle (unpressed) key was used to remove the
temperatures of data points with a regular temperature. To choose the optimal value of k, we used
the elbow method. Namely, we ran k-means several times and incremented k every iteration. We
then selected the value at the “elbow” start of the linear increase: K=2 (see Figure 9).
We ran the algorithm again with the appropriate k value and assigned each point to its cluster.

For example the letter N now is divided into N1 and N2 with different temperature values (mean,

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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Fig. 8. The figure shows an example of detected blobs that represent pressed keys (left) and their bounding
boxes (right).

Fig. 9. We selected the value of K at the “elbow” start of the linear increase. In that case we selected K=2.

max, min) and (x,y) coordinates. The (x,y) values obtained from the blob detection were then used
to visualize the different clusters.

Fig. 10. The figure shows examples of different clusters (Multiple-presses).

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2022.
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State\Key 6 f b x 9 p
1 0.029392 0.02839 0.027722 0.027555 0.027054 0.02672
2 0.029392 0.063392 0.062592 0.062392 0.061792 0.061392
3 0.029392 0.063392 0.104892 0.104642 0.103892 0.103392
4 0.029392 0.063392 0.104892 0.159342 0.158352 0.157692
5 0.029392 0.063392 0.104892 0.159342 0.240342 0.239342
6 0.029392 0.063392 0.104892 0.159342 0.240342 0.400342

Table 1. The password in this example is generated by calculating the probabilities of each key in different
states.

5.3 Phase 3: Determining the order of key presses
Using the coordinates of the detected password keys obtained from the previous phase, the tempera-
ture data for each thermal image is used to extract the mean, minimum and maximum temperatures
for each detected key. Each key’s (mean, max, min) triple is averaged, then used to arrange the
keys in the appropriate order to obtain the correct password.

5.3.1 Distinguishing Authentication and Interaction. As explained in our threat model, the attacker
needs to distinguish which heat traces result from entering the password, and which of those result
from entering the username. The temperature values of the obtained keys were analyzed to find
a temperature transition threshold. This can be done by comparing the transition value between
each consecutive keys;the highest transition is then assumed to be the one between the last entry
in the username and the first entry in the password.

5.3.2 Determining the order of entries. After removing the keys which are part of the username,
the temperature data for each key is used as a transition probability to move between different
states (keys). Using the transition probability and the state probability we calculated the probability
of each key at a different state as shown in Figures 11 and ??.

Fig. 11. Example of a possible path to determine the password. For example, the highest probability for the
first key is 6, followed by f, b, x, 9 and p.

To infer the password order, we developed a symbol-level model that uses the thermal probabilities
vector for each key at a given state to generate the most likely passwords by predicting one symbol
at a time (see Figure 12). The model will generate a probability distribution over all of the possible
symbols in the password sequence, having done that we will need a decoding algorithm to convert
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the probabilistic output into a readable form. To do this we used the beam search decoding algorithm.
The beam search decoder considers the top-k sequences with the highest probabilities. Thus, the
beam search decoder generates k-different output sequences, where we will have a high chance of
obtaining the correct sequence in the top-k sequences (see Sample output 1.

1 ('Password :', '6fbx9p', 'with a probability:' , 0.40740188103110087)

2 ('Password :', '6fxx9p', 'with a probability:' , 0.4071952200350172)

3 ('Password :', 'ffbx9p ', 'with a probability:' , 0.40670664210825924)

4 ('Password :', '6fb99p', 'with a probability:' , 0.40659163972726375)

5 ('Password :', '6f9x9p', 'with a probability:' , 0.4065814008654436)

6 ('Password :', 'ffxx9p ', 'with a probability:' , 0.40649998111217556)

7 ('Password :', '6fx99p', 'with a probability:' , 0.40638497873118007)

8 ('Password :', '6bbx9p', 'with a probability:' , 0.4059259564615335)

Listing 1. Sample output from ThermoSecure outlining the possible passwords and the probability of each to
be the correct password.

6 USER STUDIES
We conducted two user studies to address the following research questions:
RQ1 Does the length of a password affect the feasibility of a thermal attack using ThermoSecure?
RQ2 Does the age of the heat trace has an impact of the effectiveness of a thermal attack?
RQ3 Does the way people type makes them more vulnerable to thermal attacks?
RQ4 Does the type of keycaps have an impact on the feasibility of thermal attacks?
We address RQs 1-3 in user study I (Section 6.1) and RQ4 in user study II (Section 6.2).
Participation in both studies was voluntary, and participants were not compensated for their

participation. Due to the situation with Coronavirus (COVID-19) at the time, participants were
chosen through convenience and snowball sampling. The studies were carried out in accordance
with local health and safety regulations as laid out by the Saudi Ministry of Health7, which included
the use of masks and disinfection of all touched equipment upon the completion of the study
tasks by each participant. We also followed University of Glasgow’s guidelines for conducting
user studies during COVID-19. Both studies took place in different locations and at different times,
including participants’ homes and offices in the cities of Jeddah, Mecca, and Taif in Saudi Arabia).

6.1 Study I: Effect of Password Length, Age of the Heat Trace, and Typing Behavior
This study aims to evaluate ThermoSecure’s effectiveness in retrieving passwords of different
lengths when entered on keyboards, and how this is impacted by the age of the heat trace and user’s
typing behavior. To this end, we first collected a dataset of a) new thermal images of keyboards,
taken after participants have authenticated by entering a username and a password, paired with b)
usage logs of the keystroke dynamics while authenticating. Apart from evaluating ThermoSecure,
the analysis can reveal whether certain users groups or typing behaviors are more vulnerable to
thermal attacks, and general insights about factors that impact the effectiveness of thermal attacks.
The first part of the study follows a within-subject design and aims to investigate the impact of
two independent variables on the success of thermal attacks:
(1) Password Length: We covered the following conditions: 6-symbol passwords (resembling

weak passwords), 8-symbol passwords (oftentimes used as the minimum length for strong
passwords), and 12-16 symbol passwords. For the last one, we used passphrases as users are
unlikely to memorize passwords of that length if they consist of random characters [15].

7https://www.moh.gov.sa/en/Pages/Default.aspx
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All the symbols used to formulate the passwords are alphanumeric passwords consisting of
digits and uppercase/lowercase characters Moreover,some of theses passwords have special
characters that must be entered while holding down the shift key. For easier referencing, we
will refer to these passwords hereafter as short, medium and long passwords.

(2) Heat trace age: We took thermal images of the keyboard at 20, 30 and 60 seconds after
authentication.

Fig. 12. Snapshot of a session from the study: The thermal camera (A) was placed on a tripod where the
height and the distance from the keyboard (B) were different at every session The participant was shown
the content they should enter on laptop1 (D), while laptop2 (C) was used by the experimenter to store the
thermal images and log the keystroke dynamics.

6.1.1 Apparatus. Figure 12 shows the setup of our experiment. Participants typed on a Microsoft
Wired ISO Keyboard 600 (QWERTY) with ABS keycaps, while thermal images were taken using an
Optris pi 450 (764px× 480px, 80 Hz, 40mK NETD, -20°C to 100°C). The thermal camera produced a
16-bit color video from which we took snapshots in the timestamps indicated above. The Optris
API generated a csv data file that shows the temperature at each pixel in the thermal image. The
thermal camera was mounted on a tripod to ensure the entire keyboard is captured. Two tripods8
(Figures 12 and 15) were used in the user studies, with the camera placed at random distances
ranging from 50cm to 121cm and 60cm to 90cm. To simulate realistic scenarios and evaluate our
keyboard localization model, the height of the tripod and the distance from the keyboard were
randomly changed every time the participant authenticated.

Both the keyboard and thermal camerawere connected to a laptop that stored the thermal data and
logged the keystrokes. A second laptop was used to show the participant which username/password
they should enter next.

6.1.2 Participant and Procedure. 21 participants (12 female and 9 male) were invited to participate
in the study. Due to the Covid-19 pandemic, the materials presented to the participants were
restricted to electronic materials only. Each participant was presented with an information sheet, a
8https://amzn.eu/d/6io8vY1
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consent form, and a task sheet. Before reading the task sheet the participants were asked to read
and sign the consent form digitally. The task sheet provided the participants with instructions to
complete the task. The participants were asked to complete 4 tasks. In each task, the participant
entered a username followed by a password. The username and password to be entered were
displayed to the participant on a screen (see Figure 12). Participants spent 1.00 to 1.30 min on
average in each task and were asked to wait 4 to 5 min between tasks to ensure that the heat
traces from the previous task have faded away. While performing the tasks, the keyboard was
video recorded by a thermal camera. Approval from our ethics committee for this experiment was
received prior to conducting it.

6.1.3 Collected Data. We collected two types of data: 1) thermal images and 2) behavioral typing
data. The behavioral typing metrics are essential to investigate if typing behavior has any impact
on susceptibility to thermal attacks. Linking this data with the thermal images can be very useful
for further analysis by the Human-Computer Interaction and Security research communities. We
collected:
(1) Thermal images of the heat traces left after completing each task. Thermal images were

taken 20, 30 and 60 seconds after authentication.
(2) Behavioral typing data: We collected the following for each key entry: a) Key Press time,

b) Key-release time, c) Key-press duration, d) Latency (time between releasing the key and
pressing the following key), and e) Flight time (time between pressing two consecutive keys).

6.1.4 Measuring the Accuracy of Attacks. By analyzing the thermal images using ThermoSecure
(see Section 5 for the detailed steps/phases), we were able to obtain a set of passwords. Inspired
by prior work in thermal attacks [1, 3, 4], we calculated the similarity between the password
produced by ThermoSecure and the actual password using the Levenshtein Distance [18], which is
commonly used by the user-centered security community to measure accuracy of attacks against
passwords [20, 21, 28]. The Levenshtein distance is a metric that measures the minimum number
of modification (addition or deletion) needed to map a word to a different one. We then convert the
Levenshtein distance to a percentage to allow comparing guesses against passwords of different
length. The result of the mapping is the accuracy of the guess against the actual password as a
percentage. Furthermore, the behavioral key metrics data along with the notes collected during
the study were used to objectively assign each participant to the appropriate typing behavior type.
Figure 13 shows a summary of how the age of the heat trace and password length affect attack
accuracy.
Distinguishing interaction and authentication: The flight time and the latency values

revealed that there is a notable time difference between entering the username and entering the
password which led us to further investigate the temperature data for each key to seek a temperature
transition threshold. We used this to distinguish between entries that were part of a username
and entries that were password. This was done by comparing the transition value between the
alphanumeric keys within the password and the username with the transition value between the
last key of the username and first key of the password.

6.1.5 Results. As we have two independent variables, we analyzed the data using a two-way
repeated measures ANOVA. We applied Greenhouse-Geisser correction due to the violation of
Mauchly’s test of spherecity. The analysis revealed that there was no statistically significant two-
way interaction between the password length and the age of the heat trace, F(2.7, 54.5) = 2.645, p =
0.1. But significant main effects were found as we report next: Effect of Password Length on
Attack Accuracy: Observing the mean accuracy values of the predicted passwords suggests that
short and medium password are more prone to be cracked using thermal attacks (92% and 80%
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Fig. 13. Impact of the heat trace age and the length of the password on the accuracy of the guess. The figure
shows how accuracy of attacks drop as more passwords become longer, and also as the time period between
entry and taking the thermal image increases.

respectively) compared to long passwords (12-16 symbols) where the average accuracy was 63%
(71% for 12-symbol passwords and 55% for 16-symbols passwords).

Furthermore, a repeated-measures ANOVA revealed a significant main effect of length of pass-
word on accuracy of the guess F(2.338,46.77) = 275.118, p < 0.05. Post-hoc pairwise comparisons
with Bonferroni correction showed significant differences (p<0.05) between all the different pairs
of password length (see values in Table 2 and Figure 13).

Effect of Age of Heat traces on Attack Accuracy: The collective values of the accuracy of the
guess based on the age of the heat traces suggests that we have a better chance in retrieving the
password with 76-86% accuracy if the thermal images were taken within the first 30s.The accuracy
of the guess then drops to 62% when we reach the 60 seconds mark. A repeated-measures ANOVA
was run to determine the effect of time (age of heat trace) on the accuracy of the guess and revealed
a significant main effect of the age of heat trace on accuracy of the guess F(1.524, 30.49) = 300.146,
p < 0.05. Post-hoc pairwise comparisons with Bonferroni correction showed significant differences
(p<0.05) between all the different pairs of the heat trace ages (20s, 30s and 60s).

Effect of Typing behavior onAttackAccuracy In addition to the twowithin-subjects variables
above, we additionally investigated whether the typing behavior impacts the success of thermal
attacks. Note that we did not control for typing behavior when recruiting participants but rather
analyzed it posthoc. After analyzing the typing behavior of our participants by observing the way
they typed and the behavioral typing metrics, we found that our participants’ typing behavior can
be classified into two types:
(1) Fast typists: these typists lightly touch the keyboard’s keys. The average key press duration

is less than 200ms and the latency is less than 1000ms.
(2) Hunt-and-peck typists: these typists spend more time looking for the key to press (>1000ms

latency) and their key presses are also longer (>200ms).
Out of our 21 participants, 11 were fast typists and 10 were hunt-and-peck typists. There were
two outliers in the data, as assessed by inspection of a boxplot, which were removed: (P20 (77%
guess accuracy, Hunt-and-Peck) and P6 (60% guess accuracy, Fast typist)). Thus, we treated the
typing behavior as a between-subject factor with the two typing methods as its conditions. An
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20 seconds after
authentication

30 seconds after
authentication

60 seconds after
authentication

Average
accuracy

Long
Passwords
(16 symbols)

Guess Accuracy : 67% Guess Accuracy : 56% Guess Accuracy : 41%

55%

Long
Passwords
(12 symbols)

Guess Accuracy : 82% Guess Accuracy : 74% Guess Accuracy : 57%

71%

Medium
Passwords

Guess Accuracy : 93% Guess Accuracy : 81% Guess Accuracy : 67%

80%

Short
Passwords

Guess Accuracy : 100% Guess Accuracy : 94% Guess Accuracy : 83%

92%

Average
accuracy 86% 76% 62%

Table 2. Accuracy of guess results from Study I alongside a sample thermal images from different angles
and distances to the keyboard. Shorter passwords are more vulnerable to thermal attacks and the sooner the
thermal image is taken the more effective it is. Still, even 60 seconds after authentication up to 6 characters
in a 16-character password are determined in the correct position and order through ThermoSecure.

independent-samples t-test was run to determine if there were differences in the attack accuracy
between the two typing behaviors. Accurate guess scores for each type of Typing behavior were
normally distributed, as assessed by Shapiro-Wilk’s test (p > .05). and there was homogeneity of
variances, as assessed by Levene’s test for equality of variances (p = .075). There was a statistically
significant difference in average attack accuracy between the two typing behaviors which indicates
that an attacker can obtain more accurate password guesses if the typist was a hunt and peck typist
(83% ± 0.01) rather than a Fast typist (68% ± 0.017), t(17) = -22.7, p <0.05

Figure 14 shows how some user groups, specifically hunt and peck typists, are more vulnerable to
thermal attacks than others. Figure 3 shows a detailed sample from participants P1 (hunt-and-peck
typist) and P12 (fast typist).
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Fig. 14. Hunt-and-Peck typists (left) vs Fast typists (right). Attack accuracy is significantly higher for Hunt-
and-peck typists, which means they are more vulnerable to thermal attacks. On the other hand, fast typists
lightly touch the keys in comparison, resulting in less heat traces due to the short contact time.

While previous work suggested that typing behavior can impact the susceptibility to thermal
attacks [13] by visually inspecting typing behavior, our work is the first to determine whether
the user’s typing behavior makes them vulnerable to thermal attacks by using behavioral typing
metrics that can be determined in real time. This means that our findings allows future systems to
preemptively determine whether the user is likely to be vulnerable to thermal attacks by monitoring
their typing behavior.

6.2 Study II: Effect of Type of Keycaps
This study aims to evaluate the impact of the most commonly used materials for keyboard keycaps
on ThermoSecure’s effectiveness in retrieving passwords (RQ4). Other keycap styles are available,
but they are much less common and more expensive. Rubber and brass keycaps, for example,
can be difficult to find and purchase. This study also follows a within-subject design and has one
independent variable: the Keycap Type, which had two conditions:

• Keycaps made of PBT plastic (Polybutylene Terephthalate).
• Keycaps made of ABS plastic (Acrylonitrile Butadiene Styrene).

6.2.1 Apparatus. Figure 15 shows the setup of our experiment. Participants typed on a Razer
Huntsman Tournament Edition Gaming Keyboard (PBT keycaps) and a Razer Cynosa Lite Gaming
Keyboard (ABS keyaps), while thermal images were taken using the same thermal camera and
setup mentioned in Section 6.1.1. The second laptop, however, was used to randomize the order of
the predefined passwords list and show the participant which password to enter next.

6.2.2 Participants and Procedure. A total of 16 participants (10 female and 6 male) were invited
to take part in the study. The same documents in Section 6.1.2 were presented. Participants were

Short Passwords Medium Passwords Passphrases (12 symbols) Passphrases (16 symbols)
20 30 60 20 30 60 20 30 60 20 30 60

P1 100% 100% 100% 100% 86% 67% 91% 86% 80% 76% 62% 56%
P12 100% 91% 67% 86% 77% 67% 74% 67% 59% 62% 56% 43%

Table 3. Sample of results from participants P1 and P12. P1 was a hunt-and-peck typist – their short password
was detected with 100% accuracy even 60 seconds after entry. In general, As the password length increased
and more time passed, the accuracy decreased.But the decrease in accuracy was sharper for P12 as they were
a fast typer.
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Fig. 15. An example of a session from Study II: In every session, the thermal camera (F) was mounted on
a tripod at varying heights and distances from the keyboards. (A) a Razer Huntsman Tournament Edition
gaming keyboard (PBT keycaps). (B) a Razer Cynosa Lite Gaming Keyboard (ABS keycaps). The content
participants should type was shown to the participant on Laptop1 (D), while the experimenter recorded the
thermal images using Laptop2 (C) which was connected to the thermal camera.

instructed to complete three tasks on each keyboard (6 tasks in total). Each task required the
participant to enter a password with different properties. To reduce learning effects, the passwords
to be entered were shown to the participant in a random order. Participants spent 30 to 60 seconds
on average in each task. Similar to Study I, participants of this study were asked to wait 4 to 5
minutes between tasks to ensure that the heat traces from the previous task had faded away. While
the participants were performing the tasks, the thermal camera recorded the keyboards.

6.2.3 Collected Data. In this study, thermal images of the heat traces left after completing each
task were collected. We captured thermal images 20, 30, and 60 seconds after authentication.

6.2.4 Measuring the Accuracy of Attacks. Using ThermoSecure (as described in Section 5), we
inferred the passwords using the information gathered from the heat traces left after each task on
each keyboard. As done for Study I (see 6.1.4), we measured the the Levenshtein Distance between
ThermoSecure’s generated password and the actual password to estimate the accuracy. The distance
was then converted to a percentage to account for passwords of different lengths.

6.2.5 Results. As we need to evaluate the attack’s feasibility against two different keycap types
(i.e., ABS vs. PBT), the data was analyzed using a Paired Sample T-test. Prior to the test, the data
was tested for outliers and was checked for normal distribution. Boxplot inspection revealed that
there were no outliers. The differences between PBT keycaps and ABS keycaps in term of the
accuracy of the guess were normally distributed, as assessed by Shapiro-Wilk’s test (p = 0.162). the
paired sample T-Test revealed that passwords entered on an ABS keyboard (52% ± 16%) are more
vulnerable to thermal attacks regardless of the length of the password or the age of the heat trace
compared to the PBT keyboard (14% ± 19%) which are more resilient to thermal attacks t(15)= 8.124
d=2.03 p < 0.0005. The detailed results are shown in Table 4.
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20 seconds after
authentication

30 seconds after
authentication

60 seconds after
authentication

ABS PBT ABS PBT ABS PBT

Long
Passwords

61% 26% 50% 13% 37% 5%

Medium
Passwords

69% 25% 60% 21% 45% 8%
Average
guess

accuracy
63% 20% 54% 16% 39% 6%

Table 4. Accuracy of guess results from Study II against passwords of different lengths when thermal images
are taken 20, 30 and 60 seconds after authentication on keyboards with ABS (left) and PBT (right) keycaps.
The results show that the type of the keycaps has a significant impact on the success of the thermal attacks
(52% against ABS and 14% against PBT). We observed that regardless of the length of the password, gathering
any information from a keyboard with PBT keycaps 20 seconds or longer after password entry is very difficult.

7 DISCUSSION AND FUTUREWORK
In the following, we discuss which factors impact the success of thermal attacks, and discuss ways
to mitigate them in light of our results and previous work.

7.1 Factors that impact the success of thermal attacks
Our findings indicate that a variety of factors can explain why thermal attacks are more successful
in some cases but may fail in others. These factors can be classified into two types: 1) factors related
to the input such as the password length, and user typing behavior, and 2) factors related to the
interface such as the material out of which the keycaps are made and their thermal conductivity,
which in turn impact how fast heat traces decay off the keys. Our findings explain how these factors
influence the feasibility of thermal attacks.

7.1.1 Input factors. The length of the password has a significant main effect on the accuracy of the
guessed password. In particular, Short and medium passwords are significantly more vulnerable to
thermal attacks (up to 100% attack success).

Main finding 1 : Increasing the length of the password significantly increases the resistance
to thermal attacks.

This is in line with previous work on thermal attacks against different types of passwords (e.g.,
graphical passwords [1, 3]).
Apart from the properties of the input, another input factor is the user’s typing behavior. We

investigated the possible link between input behavior and thermal attacks, and found that user’s
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typing behavior significantly impacts the quality of information obtained from the thermal traces.
As a result, there are typing behaviors that make the users more vulnerable to thermal attacks.

Main finding 2: Users who are Hunt-and-Peck typists are particularly vulnerable to thermal
attacks.

Compared to the most relevant prior work [13], ThermoSecure is successful in inferring both the
keys used to input the passwords and their order of entry in the majority of cases. This was done
by relying on the information gained from the thermal images only without the need to integrate
any other form of attacks such as dictionary attacks as done in [13].

7.1.2 Interface factors. By performing a frame-by-frame comparison at different time intervals,
we find that the age of the heat trace has a significant impact on the quality of the information that
can be used in performing a thermal attack.

Considering the thermodynamic nature of the surface (i.e., keyboard) the heat traces will decay
over time across all the keys. Thermal images taken 20 seconds after entry provide more thermal
information, which makes it easier to reveal both the entries of the password and the order of entry
compared to thermal images that were taken later. Although these thermal images revealed less
information about the authentication process, we can still uncover most of the password entries
with accuracy 40% to 80% after 60 seconds). This significantly reduces the password space, thereby
making it easier for the attacker to guess the rest of the password or use other means to uncover a
smaller portion of the password. These other means could be guessing attacks, dictionary attacks
(as done in [13]), smudge attacks [7] (in case of touchscreen interfaces), video-based attacks [34] or
even a second thermal attack.

Main finding 3: The age of the heat trace has a significant impact on the attack’s success.
The more time passes, the less likely the attack will succeed.

Furthermore, Study II investigated how thermal attacks fare against two models of computer
keyboards with keycaps constructed of two different plastic materials in the (i.e., ABS vs PBT).
PBT keycaps were found to be more resilient to thermal attacks as heat traces fade faster due the
material’s lower thermal conductivity [33].

Main finding 4 :There is a link between keyboard materials and the feasibility of thermal
attacks. Keyboards using ABS keycaps are more vulnerable to thermal attacks than those
that use PBT keycaps.

7.2 Increasing password length
Main finding 1 indicates that longer passwords are more secure against thermal attacks. The straight
forward consequence of this is to recommend that users create longer passwords (Mitigation
approach 1). The longer the password, the more likely heat traces of the first entries to decay by
the time the thermal image is taken. Additionally, the longer the password, the less pronounced
the differences in temperatures at different keys will be, which makes it harder for attackers to
infer the correct order of entries.
However, there are human factor challenges in creating long passwords; it is unreasonable

to expect users to create and memorize different long passwords for their many accounts [5].

ACM Trans. Priv. Sec., Vol. 1, No. 1, Article 1. Publication date: January 2022.



ThermoSecure: Investigating the effectiveness of AI-driven thermal attacks on commonly used computer keyboards 1:21

While many platforms recommend increasing password lengths to improve security, increasing
the complexity of the password instead (e.g., by including special characters and mixing upper-
and lower-case characters) can yield better results in terms of usability and security against offline
attacks [27]. For this reason, we recommend using passphrases as they were shown to be more
memorable [15] and can help users create longer passwords. That being said, there are mitigation
strategies that could potentially be more usable, which we discuss next.

7.3 Estimating vulnerability based on user properties
Main finding 2 indicates that typing behavior can be an predictor of how vulnerable a user can be
to thermal attacks. We were able to classify users into hunt-and-peck and fast typists by objectively
analyzing their typing behavior. This means that future systems can leverage the typing behavior
to do the same in real time, and consequently take measures to improve security against thermal
attacks (Mitigation approach 2). For example, these users may be required to use longer passwords,
or they may be asked to provide random input after entering their passwords, so that the heat
traces can be distorted.
In a similar vein, a promising direction for future work is to explore if certain user groups are

inherently vulnerable to thermal attacks. For example, gender [16] and age [30] impact the body
and hand heat temperature. A future study could investigate if these demographic factors impact
vulnerability as systems can then deploy different authentication methods for these user groups.

7.4 Thermal conductivity of surfaces
Main finding 4 indicates that PBT keycaps are more resistant to thermal attacks due to their lower
thermal conductivity. Mowery et al. [23] has shown that metallic keypads are also not vulnerable to
thermal attacks as they reflect the hands temperature. Previouswork in human-computer interaction
investigated the thermal conductivity of surfaces to exploit them for interaction [2, 24]. The idea is
that if a surface can maintain enough heat traces to be captured by a thermal camera, the thermal
camera can then channel this information to other systems to make said surface interactive. This
concept has already been used in patents and research applications [11, 17]. These developments
have several implications on thermal attacks: 1) there is ongoing work on assessing the feasibility
of determining input through heat traces on different surfaces, which means that more work is
needed to understand if other surfaces are vulnerable to thermal attacks, 2) as these applications
and patented ideas make their ways into consumer products, the risk of thermal attacks becomes
greater, and 3) another mitigation method is to use interactive surfaces that are less vulnerable to
thermal attacks (Mitigation approach 3). For example, metal keypads should be used instead of
plastic ones [23], and PBT keyboards instead of ABS ones.

7.5 Inducing heat to “erase” heat traces
Some keyboards come with backlighting to improve their aesthetics and usage in dark environ-
ments. The heat generated by backlighting in the keyboards can potentially be used to balance
the temperature across the keybaord, thereby erasing the heat traces resulting from interaction
(Mitigation approach 4). As shown in Figure 16, our pilot tests with the keyboards we tried
show that this approach is slightly effective, but no significant results were found. Future work can
explore how to customize backlighting to increase the decay rate of heat traces.
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Fig. 16. An illustration of the effect of increasing the keyboard’s backlight to accelerate the decay of heat
traces. The thermal image A was captured after authenticating with a medium password (Backlight=0). B)
The heat traces revealed by segmenting A. C) A thermal image of the same password as in A, but with the
backlight turned up to 100. D) After adjusting the backlighting on the keyboard, segmenting C revealed that
there were fewer heat traces left.

7.6 Hiding heat traces in the thermal camera’s view
An alternative approach to mitigate thermal imaging attacks is by detecting interfaces in the feed
of the thermal camera, and obfuscating it to prevent users from performing thermal attacks. There
has been recent preliminary work in this direction [6]. However, more research is needed to offer
protection against thermal attacks without significantly impacting the utility of the thermal camera.

7.7 Alternative authentication methods
“The continued domination of passwords over all othermethods of end-user authentication is amajor
embarrassment to security researchers” [9]. While there had been predictions that passwords will
cease to exist, they are pervasively integrated into systems we use in our day-to-day lives, making
them difficult to replace. Nevertheless, there has been a lot of efforts in developing alternative
methods that are both more secure and more usable. Some of these methods are also promising for
protecting against thermal attacks.
Biometric authentication is a possible alternative authentication method that is not vulnerable

to thermal attacks at the time of writing this article (Mitigation approach 5). Examples include
physiological biometrics such as fingerprint and facial recognition, but also behavioral biometric
methods that rely on keystroke dynamics [10, 22] or gaze behavior [14]. Authentication schemes
that rely on eye gaze are also resistant to thermal attacks as they do not result in heat traces.
See [14] for an overview of the use of gaze for implicit and explicit authentication (Mitigation
approach 6). Finally, many of the methods that were proposed in the literature to resist smudge
attacks [7], are also resilient to thermal attacks by design (Mitigation approach 7). Examples
include smudgesafe [26], and the work of von Zezschwitz et al. [29].

While the aforementioned authentication methods are expected to be resilient to thermal attacks,
they come with their own disadvantages. For example, biometric passwords are difficult to change,
and the collection of biometric and gaze data by third parties has privacy implications [14]. Some
of the methods proposed to resist smudge attacks employ graphical passwords, which might be not
suitable for integration with existing backends, and usually suffer from low password space and/or
vulnerability to shoulder surfing [25].
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8 CONCLUSION
In this work, we examined the feasibility of thermal attacks on commonly used computer keyboards.
We presented ThermoSecure, a system that analyzes thermal images to estimate user input. We
also presented the first publicly available dataset of 1500 thermal images of keyboards. Through
two user studies, we found that ThermoSecure reveals the vast majority of passwords within 20
seconds (86%) and slightly less in 30 seconds (76%). Accuracy drops significantly after 60 seconds
(62%). Accuracy also decreases as passwords become longer, and as users type fast rather than
using the hunt-and-peck approach. We found through a second study that PBT keyboards are
significantly more secure against thermal attacks compared to ABS keyboards. We concluded with
recommendations for mitigating thermal attacks and directions for future work in this area.
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