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Abstract 
Aberrant methylation of CpG islands located at or near gene promoters is associated 

with inactivation of gene expression during tumour development. It is increasingly 

recognised that such epimutations may occur at a much higher frequency than gene 

mutation and therefore have a greater impact on selection of sub-populations of cells 

during tumour progression or acquisition of resistance to anticancer drugs. Although 

laboratory-based models of acquired resistance to anticancer agents tend to focus on 

specific genes or biochemical pathways, such “one gene:one outcome” models may 

be an over-simplification of acquired resistance to treatment of cancer patients. 

Instead, clinical drug resistance may be due to changes in expression of a large 

number of genes that have a cumulative impact on chemosensitivity. Aberrant CpG 

island methylation of multiple genes occurring in a non-random manner during 

tumour development and during the acquisition of drug resistance, provides a 

mechanism whereby expression of multiple genes could be affected simultaneously 

resulting in polygenic clinical drug resistance. If simultaneous epigenetic regulation 

of multiple genes is indeed a major driving force behind acquired resistance of 

patients’ tumour to anticancer agents, this has important implications for biomarker 

studies of clinical outcome following chemotherapy and for clinical approaches 

designed to circumvent or modulate drug resistance. 
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Introduction 
 

With the increasing variety of options for the treatment of cancer, it is 

becoming essential that the choice of anti-cancer therapy, or optimal combination of 

therapies, is based not only on conventional clinical/pathological criteria, but also on 

the molecular phenotype of the tumour. Many solid tumours are initially sensitive to 

chemotherapy, but the vast majority will recur or progress with ultimate failure of 

conventional cytotoxic chemotherapy treatment. In general novel experimental 

therapies are first examined for efficacy in patients that have failed standard 

treatments and whose tumours have acquired resistance to cytotoxic drugs. The 

pattern of gene expression of a tumour that no longer responds to conventional 

treatment will be very different from that of the tumour at presentation due to 

selection of drug resistant sub-populations. However, we know very little about the 

molecular characteristics of tumours after conventional treatment failure or the 

underlying mechanisms that drive the acquisition of drug resistance (Agarwal & 

Kaye, 2003).  

Laboratory based studies have identified a wide variety of biochemical 

pathways and many hundred genes that can potentially influence response to 

treatment in tumour cells. Early work in drug resistance identified genes such as 

MDR1 (P-glycoprotein) (Gottesman, 1993) and p53 (Lowe et al., 1993) as crucial in 

determining drug resistance in experimental models of in vitro cell lines or transgenic 

mice. However there is relatively little evidence that, individually, these mechanisms 

are able to predict treatment outcome in a manner that is comparable to known 

prognostic markers such as stage, performance status and histological grade (Hall et 

al., 2004, Agarwal & Kaye, 2003). The variability in quality of prognostic and 

predictive biomarker studies can make reaching a consensus on the value of a given 
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marker challenging and recent recommendations have emphasised the need for 

appropriate design and reporting of biomarker studies 

(http://www.cancerdiagnosis.nci.nih.gov/assessment/progress/progress/remark.html). 

Furthermore, response to treatment is only one factor influencing clinical outcome, 

numerous other tumour characteristics, such as such as capacity for 

invasion/metastasis or escape from the immune response will also have an impact and 

may do so irrespective of the therapies used, diluting any association between a 

marker of drug resistance and clinical outcome For instance, in the case of ovarian 

cancer, one of the strongest prognostic markers associate with time to progression of a 

tumour after treatment is the number of infiltrating T-cells (Zhang et al., 2003). 

However, while these factors may confound the analysis of drug resistance 

mechanisms, it is also becoming apparent that “one gene: one outcome” is an over-

simplification for acquired resistance to treatment of cancer patients. Thus, it seems 

increasingly likely that clinical drug resistance is due to polygenic expression changes 

involving multiple mechanisms rather than to the alteration of a single pathway or 

gene.  

An analogy can be made between clinical drug resistance genes and cancer 

susceptibility genes. Cancer susceptibility genes such as retinoblastoma (RB1) and 

adenomatois polyposis coli (APC) were originally identified as rare, mutant alleles 

that significantly increase the risk of cancer when inherited through the germline. 

More recently it has been argued that the greater part of cancer predisposition may be 

due to a combination of weak genetic variants at many different loci rather than to 

single high penetrance genes (Balmain et al., 2003). Similarly the combination of 

weak effects on drug resistance due to expression changes at many genes may be 

more significant the effect of any single gene. Since most cytotoxic drugs have a low 
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therapeutic index, additive effects of multiple low fold changes in drug resistance may 

be sufficient to cause clinical treatment failure. However identification and evaluation 

of multiple, small additive effects on clinical outcome following chemotherapy will 

require robust and novel statistical and computational approaches that allow non-

random clustering of effects to be identified.  In order to avoid the pitfalls inherent in 

analysing high dimensional datasets such as multiple testing and limited sample size, 

large scale prospective clinical studies are required. In addition, it may be more 

informative to study tumours longitudinally, as they acquire resistance during 

treatment rather than simply sampling tumours at presentation and to use surrogate 

endpoints more specific to drug resistance, such as response rather than overall 

survival. 

 

Genetic versus epigenetic alterations of resistance genes 
At the time of writing, we have been unable to identify any study of clinical 

material that has identified acquisition of a p53 mutation during treatment of a given 

patient and similarly gene amplification of MDR1, though widely observed in highly 

resistant cell lines, is only rarely observed following chemotherapy. Therefore, 

although mutations in genes such as MDR1 and p53 confer drug resistance in vitro 

and in animal models, and they may have a role in inherent resistance, there is little 

evidence that such genetic changes have a role in acquired clinical resistance 

following anti-cancer therapy.  

It is clear that changes in gene expression do occur following chemotherapy 

leading to the question, if not gene mutations, what are the mechanisms leading to 

changes in gene expression? The answer may lie in the increasing evidence that 

epigenetic changes can be a crucial driving force behind the acquisition of drug 
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resistance (Teodoridis et al., 2004). Indeed studies of drug resistant cell line models 

have shown that multiple changes in methylation of CpG islands and epigenetic 

regulation occur following drug selection (Wei et al., 2003).  

Epigenetics changes are heritable changes in gene expression that do not 

involve an alteration in the DNA sequence. Within the nucleus DNA is packaged, 

together with histone proteins, into a higher order structure known as chromatin. 

Interpretation of genetic information coded within the DNA is regulated by 

mechanisms that involve stable and heritable modifications of DNA and histones. 

These modifications include methylation of DNA at CpG dinucleotides and 

methylation, acetylation and phosphorylation of histones. Changes in the patterns of 

these modifications are associated with chromatin remodelling and can result in 

changes in gene expression through increasingly understood mechanisms (Lachner et 

al 2003).  

DNA methylation involves the transfer of a methyl group to the carbon-5 

position of cytosine residues, and occurs almost exclusively at cytosines that are 

followed by a guanine (CpG dinucleotides). CpG dinucleotides are relatively rare in 

the bulk of the genome and are nearly always methylated, but small stretches of DNA 

occur that are rich in CpG dinucleotides, so called CpG islands. These are usually 

unmethylated in normal cells and are often associated with the promoter regions of 

genes (Hendrich & Bird, 2000). Methylation of cytosines within these islands is 

associated with binding of methyl binding domain (MBD) proteins, recruitment of 

histone deacetylases (HDAC) and histone methyltransferases, histone modification, 

chromatin condensation and transcriptional inactivation of the associated genes. A 

large number of genes where aberrant methylation of CpG islands within their 

promoters is associated with gene inactivation have now been identified in tumours 
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(for methods of analysing CpG island methylation see Box 1). These include genes 

involved in all aspects of tumour development and also in response to treatment 

(Teodoridis et al., 2004).  Furthermore, for many genes such as hMLH1, BRCA1 and 

E-CADHERIN, aberrant methylation of CpG islands is a far more frequent mechanism 

of gene inactivation in sporadic tumours than gene mutation or deletion.  

Gene inactivation by DNA methylation can occur at a rate several orders of 

magnitude higher than inactivation of the same gene by mutation (Bhattacharyya et 

al., 1994). So, if inactivation of a gene is an important mechanism driving the 

acquisition of drug resistance, the probability of this occurring by methylation and 

being selected for during chemotherapy is much more likely than it occurring by 

mutation. It has also been suggested that some tumours may acquire a CpG island 

methylator phenotype i.e. concurrent methylation of genes occurring in a non random 

manner (Toyota et al., 1999). Cellular acquisition of a methylator phenotype could 

give cells a higher probability of cell transformation during carcinogenesis, as has 

been proposed for gene mutations and the mutator phenotype (Loeb 1994). Disruption 

of the cellular processes involved in methylation could lead to concurrent 

hypermethylation of multiple genes, including tumour suppressor genes, and as a 

result lead to oncogenic transformation. A possible consequence of this would be that 

in a tumour with a methylator phenotype there would also be a higher probability of 

multiple drug resistance/sensitivity genes becoming methylated, with associated 

changes in gene expression. Thus epigenetic silencing may occur fortuitously during 

tumour development and only confer an advantage to tumour cells when they are 

treated with chemotherapy or radiotherapy. However, the existence of a distinct 

methylator phenotype has been challenged, since a bimodal distribution of 

methylation frequency has not been seen in the same way as observed for gene 
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mutation in tumour cells with the mutator phenotype (Yamashita et al 2003, Anacleto 

et al 2005.).  

Nevertheless the vast majority of tumours, if not all, have aberrant DNA 

methylation at CpG islands and epigenetic silencing of the associated genes. Patterns 

of CpG island methylation differ between and within tumour types in a manner that 

suggests that methylation is not a random process (Costello et al., 2000, Esteller et al., 

2001, Wei et al 2002). Epigenetic inheritance of transcription patterns has been 

implicated in the control of cell proliferation during development, as well as in stem-

cell renewal and cancer (Valk-Lingbeek et al 2004). However the mechanisms and 

selective processes that give rise to specific methylation patterns in tumours remain 

unclear and are likely to be complex.  Changes in cell metabolism (Paz et al 2002), 

“epigenetic drift”(Egger et al 2004) and aging (Richardson 2002) have all been 

proposed. For instance, there is a global decrease in global 5 methlycytosine levels in 

DNA as cells age which is similar to that observed in many tumours (Richardson 

2002). At the same time localised hypermethylation occurs at some CpG islands (Issa 

2000).  In a restriction landmark genome scanning study of CpG island methylation in 

T lymphocytes from newborn, middle age and elderly subjects only 29 of more than 

2000 loci examined were found to alter methylation with ageing, with 23 increasing 

methylation, and six decreasing. The same subset also changed methylation status 

with age in the esophagus, lung, and pancreas, but in variable directions (Tra, 2002). 

Thus age-specific methylation also occurs in a non-random manner suggesting a 

tightly controlled process. What ever the process it seems likely that epigenetic 

changes regulating gene expression offer a more rapid means by which tumour cells 

can adapt to new environment such as cytotoxic drug therapy than genetic change and 



 8

because such changes are heritable they can be passed on to daughter cells without the 

need for continuous selection pressure producing persistent acquired resistance.  

 

Evidence for the role of epigenetic mechanisms in drug resistance 
Altered expression of genes involved in apoptosis and DNA repair may play 

an important role in determining response to treatment and there are many examples 

of such genes being methylated in tumours (see table 1). However, methylation of 

individual genes may have opposing effects on drug sensitivity. For instance, 

methylation of DNA repair genes such as MGMT and FANCF may lead to 

inactivation of DNA repair and confer chemosensitivity, while methylation and 

epigenetic silencing of pro-apoptotic genes such as hMLH1 and APAF1 would confer 

resistance (Esteller et al 2000, Soengas, 2001, Taniguchi et al, 2003, Teodoridis et al., 

2004).  

The DNA mismatch repair protein, hMLH1, has been shown to be necessary 

for engagement of a variety of downstream cellular responses to alkylating agent and 

cisplatin induced DNA damage (Papouli et al., 2004). Re-expression of hMLH1 in 

isogenic model systems has demonstrated that loss of hMLH1 expression confers 

resistance to alkylating agents and cisplatin.  The frequency of hMLH1 methylation in 

ovarian tumours increases after chemotherapy (Strathdee et al., 1999). Tumours 

frequently release DNA which can subsequently be isolated from plasma samples 

(Johnson & Lo, 2002). Genetic and epigenetic changes that are present in the tumour 

can be detected in tumour DNA isolated from plasma. Analysis of hMLH1 

methylation in tumour DNA isolated from plasma of patients with ovarian cancer 

before chemotherapy and at relapse showed 25% of patients acquired hMLH1 

methylation during chemotherapy and acquisition of hMLH1 methylation was 
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independently associated with poor overall survival potentially as a result of poor 

response to subsequent lines of chemotherapy (Gifford et al., 2004). 

In contrast to pro-apoptotic genes, loss of expression of DNA repair genes 

may be associated with increased sensitivity to chemotherapy. The DNA repair 

enzyme MGMT (O6 methyl guanine methyltransferase) removes mutagenic alkyl-

groups from the O6-position of guanine, which could otherwise lead to G→A 

transitions after DNA replication (Gerson, 2004). As a result it inhibits the killing of 

tumour cells by alkylating agents. Hypermethylation of the MGMT promoter and 

associated loss of expression correlates with response to temozolamide and BCNU in 

primary gliomas (Esteller et al 2000, Paz et al., 2004) and is an independent predictor 

of overall and progression free survival in patients with diffuse large B cell lymphoma 

treated with cyclophosphamide containing regimens (Esteller et al., 2002). 

Importantly the methylation status of MGMT in gliomas at presentation does not 

correlate with the clinical response when temozolamide is used at relapse, 

demonstrating the value of biomarkers may depend on when during tumour 

progression or treatment they are measured. 

There is thus growing evidence that CpG island methylation of genes with a 

known direct involvement in drug responses has a potential role in predicting clinical 

outcome following chemotherapy. However, there is a need for studies to investigate 

the potential to use methylation patterns of known or unknown genes to identify 

which patients may benefit from particular chemotherapeutic regimes or biological 

therapies. Given the potential of opposing effects depending on which genes are 

methylated, it is vital to examine whether particular methylation events are dominant 

in conferring resistance. Methods which allow genome wide analysis of methylation 

patterns may be particularly important for these types of study (Box 1). In a study of 
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late stage ovarian tumours increased methylation of a subset of CpG islands 

significantly correlated with worse clinical outcome, as defined by the time to clinical 

disease recurrence after chemotherapy (Wei et al., 2002). However in a study of 106 

stage III/IV ovarian cancers methylation of at least one of a group of genes involved 

in DNA repair/drug detoxification (BRCA1, GSTP1, MGMT) was associated with 

improved response to chemotherapy (Teodoridis et al., 2005). 

Large scale analysis of methylation patterns and correlation with response is 

intrinsically susceptible to the problems of multiple testing. This can be reduced by 

grouping genes into predefined groups according to a biological hypothesis such as 

grouping those with similar biological roles or within the same pathway, on the 

assumption that disruption of any one gene within a pathway or group will disrupt the 

functioning of that cellular response. This is undoubtedly an over simplification and 

the approach will need to be refined as more sophisticated molecular interaction maps 

and networks are developed (Pommier et al., 2004). An alternative approach will be to 

use supervised search algorithms that efficiently search array data to identify clusters 

that associate with clinical outcome (for instance see (Bair & Tibshirani, 2004)). 

 

Overcoming Epigenetic Resistance Mechanisms 

Epigenetic modifications require active mechanisms of maintenance and so unlike 

genetic modifications, they are amenable to pharmacological manipulation. 5-

azacytidine and its deoxyribose analogue, 5-aza-2’-deoxycytidine (Decitabine), have 

been used for many years to inhibit DNA methyltransferases and reverse DNA 

methylation in tissue culture (Brown & Plumb, 2004). These demethylating agents 

have been shown to re-activate expression of numerous methylation-silenced genes. 

Decitabine has clinical activity as a single agent in myelodysplastic syndrome (MDS), 
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CML and AML (Issa et al., 2004). Its activity in solid tumours as a single agent has so 

far been disappointing. However, it may have a role in sensitising tumours to other 

anti-cancer therapies by causing re-expression genes involved in drug sensitivity 

(Plumb et al., 2000). In vitro the differentiating effect of decitabine in cultured 

fibroblasts has a narrow dose window with a loss of action at high doses possibly 

caused by cytotoxicity as a result of its incorporation into DNA (Taylor & Jones, 

1979). It may, therefore, be more appropriate to use demethylating agents at 

concentrations below the maximally tolerated dose, but still at a level where they are 

known to cause demethylation and induce gene re-expression. Consistent with this, a 

low dose schedule appeared to be superior to schedules using higher doses in a study 

of haematological malignancies (Issa et al., 2004). This has the advantage of reducing 

the bone marrow toxicity of decitabine and making it easier to combine it with 

conventional cytotoxics. Histone deacetylase activity is important in the 

transcriptional repression of methylated sequences (Fischle et al., 2003). The 

combination of DNA demethylating agents and histone deacetylase inhibitors causes 

synergistic re-expression of epigenetically silenced genes (Cameron et al., 1999). It 

also produces synergistic antitumour effects and increased sensitivity to 

chemotherapeutic agents in cell line models (Boivin et al., 2002). The potential of this 

approach is now being assessed in clinical trials 

(http://www.clinicaltrials.gov/ct/show/NCT00114257). 

 

HDAC inhibitors and demethylating agents, such as Decitabine, will affect the 

expression of multiple genes. Given the potential for opposing effects on 

chemosensitivity when different genes are re-expressed it could be argued that we 

need to develop epigenetic therapies which are more gene specific in their mechanism 
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of action. However if we consider drug resistance to be a polygenic process then there 

may be advantages to a multi-targeted approach. This implies that some patients may 

benefit from epigenetic therapies as chemosensitisers, while others will not or may 

even do worse. Therefore, it will be vital to identify patterns of methylation that 

reliably predict for response to treatment and whether particular methylation events 

are dominant in conferring resistance. In order to do this we need robust clinically 

applicable technology to determine methylation patterns in tumours both at 

presentation and at relapse. There is also a need for pharmacodynamic markers of 

response to demethylating agents. Demethylation can be monitored on a whole-

genome level or by analysis of individual genes (Lyko & Brown, 2005). It has been 

shown that genomic DNA methylation levels are decreased in peripheral blood 

mononuclear cells from xenograft tumour-bearing mice treated with 5-aza-2’-

deoxycytidine (Plumb et al., 2000). This decrease closely coincided with the 

demethylation of the hMLH1 promoter in the tumours, which indicates that peripheral 

blood can serve as a surrogate tissue for determining pharmacodynamic 

characteristics of DNMT inhibitors. However, although demethylation of individual 

genes such as p15 has been demonstrated in clinical trials (Daskalakis et al., 2002), 

the prognostic value of these methylation changes remains to be established.  

Conclusions  
Aberrant epigenetic regulation, such as DNA methylation of CpG islands, occurs at 

many genes and in all cancers. CpG island methylation is a potentially important 

driving force both for tumorogenesis and for drug resistance. The use of 

demethylating agents and histone deacetylase inhibitors offers the potential to 

favourably alter the gene expression profile of tumours to cause tumour cell death and 

increased apoptotic response to established cytotoxic agents. However, we need to 
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identify and evaluate in greater detail the epigenetic characteristics of tumours that 

predict for lack of response to conventional treatment, so as to identify those patients 

who may particularly benefit from an epigenetic approach. The polygenic nature of 

these changes will make this challenging. Towards this objective, genome wide CpG 

island methylation of patients’ tumours can be examined, as well as detailed 

characterisation of methylation of individual CpG islands. Examination of tumour 

DNA released into body fluids may make the large numbers required for these 

analyses more feasible. These assays need to be conducted in an appropriate quality 

assured manner and their utility properly evaluated in prospective, randomised trials. 

Although the epigenetic therapies now undergoing clinical evaluations show promise, 

there is a need for further agents, which are more specific for epigenetic targets. This 

need not equate to more gene specificity, but rather to less non specific toxic effects 

such as the myelosuppression seen with decitabine which may be the result of direct 

cytotoxic effects of decitabine rather than demethylation. The clinical development of 

epigenetic therapies will require the development of surrogate pharmacodynamic 

markers to assess whether these therapies are having their desired pharmacodynamic 

effect (e.g. global or gene specific demethylation) and then whether this translates into 

clinical benefit. Epigenetic pharmacodynamic markers can be used as novel endpoints 

in early clinical trials allowing recommended doses to be based on maximal biological 

effect rather than maximum tolerated dose. Thus, such pharmacodynamic and 

predictive epigenetic biomarkers, together with targeted drug development, will allow 

rational and efficient evaluation of novel epigenetic therapies for cancer treatment. 
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Box 1: Methods for detecting CpG island methylation 
 
Methods for the analysis of CpG-island methylation are available both genome-wide 

and at the single gene-level. Restriction landmark genomic scanning (RLGS) is 

performed by digesting genomic DNA with a methylation sensitive restriction 

enzyme, endlabelling of the resulting DNA fragments and subsequent digest with two 

different restriction enzymes and 2-dimensional gel electrophoresis (Costello et al., 

2000). Comparison of signal intensities between tumour and normal DNA after 

autoradiography allows estimation of the number of aberrantly methylated CpG 

islands in tumours, and individual aberrantly methylated CpG islands can be 

identified by sequencing. Differential methylation hybridisation (DMH) is an 

alternative means of examining genome wide methylation patterns that uses 

restriction digest of genomic DNA and ligation to linkers (Huang et al., 1999), 

followed by digestion with a methylation-sensitive restriction enzyme such as BstUI, 

PCR amplification and hybridisation to CpG-rich DNA sequences (representing 

putative CpG islands). Comparison to hybridisation signals obtained from undigested 

linker-ligated DNA allowed the identification of aberrantly methylated CpG islands. 

MS-RDA (methylation sensitive-representational difference analysis) uses genomic 

tester and driver DNA samples digested with the methylation sensitive restriction 

enzyme HpaII (Ushijima et al. 1997). Sequences that are specific for the tester 

amplicon are subsequently enriched by repeated cycles of subtractive hybridisations. 

 

Several methods for the analysis of the methylation status of individual CpG islands 

utilise bisulphite-treatment of DNA, which has been described in detail (Grunau et al., 

2001; Warnecke et al., 2002). Bisulphite treatment of DNA converts unmethylated 

cytosines into uracil but does not affect methylated cytosines. A difference in 
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methylation is thus converted into a difference in sequence. A widely used method for 

analysing the methylation status of specific sequences is methylation-specific PCR 

(MSP) (Herman et al., 1996). MSP is performed using primers specific for either 

unmethylated or methylated sequences, thereby allowing the detection of the 

respective methylation state. Among the advantages of MSP are its easy detection due 

to its gain-of-signal character and its high sensitivity, allowing the detection of as 

little as 0.1% methylation in a DNA sample (Herman et al., 1996). The MethyLight 

technique also involves bisulphite modification. Fluorescence-based PCR is then 

performed with primers that either overlap CpG methylation sites or that do not 

overlap any CpG dinucleotides. Sequence discrimination can occur either at the level 

of the PCR amplification process or at the level of the probe hybridization process, or 

both (Eads et al 2000). Combined restriction analysis (COBRA) uses primers that 

amplify the template irrespective of its methylation state (Xiong & Laird, 1997). The 

PCR product should therefore be heterogeneous and reflect the various methylation 

states present in the template. Discrimination of methylation states is achieved by 

restriction digest using a restriction site whose presence after bisulphite modification, 

depends on the methylation state of the DNA. COBRA allows the quantification of 

the methylation, but its disadvantage is that the methylation of one CpG site is not 

necessarily representative for the other CpG sites in the analysed sequence. The 

highest accuracy of methylation density in a region of DNA is achieved by bisulphite 

sequencing. As in COBRA, the modified DNA is amplified irrespective of its 

methylation state, but subsequently the amplicon is subcloned and sequenced. This 

not only allows detection of methylation with a single nucleotide resolution but also 

gives information about the distribution of methylated cytosines within individual 
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DNA molecules. The disadvantage is that bisulphite sequencing is relatively labour-

intensive. 
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Table 1. Examples of genes associated with drug resistance. 
 
Gene Function Evidence for Role in Drug Sensitivity Ref 
Apaf 1 Pro-apoptotic 

Binds and 
promotes 
Caspase 9 
activation 

Methylation in melanoma cells can be 
reversed by DNMT inhibitors and this is 
associated with increased sensitivity to 
doxorubicin 

(Soengas 
et al., 
2001) 

Caspase 
8 

Pro-apoptotic Frequently methylated in tumours. 
Reversal of methylation associated with 
increased sensitivity to doxorubicin, 
etoposide and cisplatin in Ewings 
sarcoma, neuroblastoma, 
medulloblastoma and melanoma cell 
lines. 

(Fulda et 
al., 2001) 

hMLH1 DNA mismatch 
repair protein 

Methylation and loss of expression 
associated with resistance to cisplatin in 
cell lines which can be reversed by de-
methylation with decitabine. Increased 
frequency of methylation after 
chemotherapy. Acquisition of hMLH1 
methylation during chemotherapy 
independently associated with poor 
overall survival in ovarian patients 

(Gifford et 
al., 2004) 

FancF Activates DNA 
repair complex 
containing 
BRCA1 and 
BRCA2 loss 
cause a 
decreased ability 
to repair 
chemotherapy 
induced damage  

Methylation observed in cells with a 
defective BRCA2 pathway and 
increased sensitivity to cisplatin. 
Demethylation of FANCF with 
decitabine reduced sensitivity towards 
cisplatin in these cell line models 

(Taniguchi 
et al., 
2003) 

MGMT Removes 
mutagenic alkyl-
groups from the 
O6-position of 
guanine 

Methylation and associated loss of 
expression correlates with response to 
temozolamide and BCNU in primary 
gliomas and  overall and progression 
free survival in patients with diffuse 
large B cell lymphoma treated with 
cyclophosphamide containing regimens 

(Paz et al., 
2004) 

MCJ unknown Methylation associated with poor 
response to therapy and poor overall 
survival in ovarian patients 

(Strathdee 
et al., 
2005) 

ERβ  Methylated in 50% of invasive breast 
cancers. Methylation of ERβ less 
frequent and expression rate was higher 
in tamoxifen resistant compared to 
control tumours 

(Chang et 
al., 2005) 
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