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Abstract—A unique and ideal integration of wavelet-based 
total variation (WATV) and empirical Wiener denoising method is 
proposed in this paper to significantly enhance the signal-to-
noise ratio (SNR) while preserving the characteristics of a lung 
sound signal. While individual wavelet-based denoising filters 
based on a single basis function have been employed in the past, 
the outcome has been unsatisfactory because only significant 
(signal) wavelet coefficients are considered for denoising 
analysis. The new WATV-Wiener hybrid technique, proposed 
here, takes into account both significant and insignificant (noise) 
wavelet coefficients of the noisy signal. An intensive analysis of 
selecting and fine-tuning the WATV-Wiener filter parameters is presented here through the simulation studies. The 
WATV-Wiener filter applied here onto different one-dimensional lung sound signals of different noise levels has led to 
an optimal root mean square error compared to seven other state-of-the-art filters reported in the literature. The optimal 
parameters achieved through our simulation studies led to a 3–20 dB improvement in SNR, and the average SNR was 
improved by 4–30 dB in our experiment. We also observed that the WATV-Wiener filter is less sensitive to the variation 
of SNR values of the input signal. Furthermore, the WATV-Wiener filter obtains similar SNR performance between 
continuous piecewise signal (wheeze) and noncontinuous piecewise signal (crackle) in both simulation and 
experimental studies. 

 
Index Terms—Denoising, lung sound signal, signal to noise ratio, signal estimation, Wavelets, Wiener filter. 

 

 

I.  INTRODUCTION 

he respiratory sounds carry the signature of the health status 

of the lungs and can be used for diagnosing respiratory 

diseases. For example, auscultation serves as a reference point 

and is frequently used by doctors and clinicians to ‘listen’ to 

weird lung sounds and patterns. Whilst auscultation is widely 

adopted, it is not easy to use as issues such as variability and 

 
 

dependent on inter-listeners medical and diagnostic skills. In 

this regard, the computer-based lung sound techniques are 

attractive as they eliminate the subjective nature and provide a 

more reliable approach to assessing lung function [1]–[3]. 

However, in lung sound recording, noise source such as 

ambient noise is an inevitable interference that can obscure the 

existence of interesting sound trends. Interference obstructs the 

computer-based lung sound algorithm’s applicability or results 

in undesirable false positives; thus, noise reduction or denoising 

is crucial in lung sound signal processing. 

To address these issues, we present here an indirect and 

optimal integration of wavelet-based total variation filter and 

wavelet-based empirical Wiener filter (WATV-Wiener) to 

smoothen the denoised signal (Fig. 1) and significantly improve 

the signal-to-noise ratio (SNR) and root mean square error 

(RMSE) of the denoised signal, which are crucial for an 

accurate assessment. SNR, in our case, reflects the denoised 

signal strength in relation to noise without compromising the 

frequency components of interest contained in the lung sound 

signal. Literature has confirmed that clinicians were able to 

distinctly identify airway diseases such as asthma, chronic 

obstructive pulmonary disease (COPD), and fluid around the 

lungs (pneumonia) from captured interesting signal waveform 

characteristics such as wheeze and crackle [3]–[5] compared to 

pre-denoised data, typically on conditions that the SNR is 

enhanced in the order of 4–20 dB [2], [6]–[8]. RMSE results 
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reflect the filter capability in denoising and retaining significant 

characteristics of lung sound. Inefficient parameter selection 

resulting in overly suppressed denoised signal may result in 

high SNR, despite the filter introducing obvious distortions 

resulting in undesirable RMSE results. As a result, RMSE is 

also a crucial criterion for determining if the denoising filter 

keeps the desired waveform characteristics of interest. 

In addition, a comprehensive investigation was conducted on 

ideal parameters selection to facilitate the optimization of our 

proposed WATV-Wiener technique, particularly in the lung 

sound signal domain, as only parameters estimates were 

available in the literature, and no case studies on how the 

parameters adjustment affected the filter performance were 

performed or discussed [9], [10]. 

To thoroughly evaluate the WATV-Wiener filter, we 

compared the proposed filter with a range of state-of-the-art 

lung sound signal denoising techniques, which had achieved 

either optimal SNR or RMSE performance, or achieved good 

results in both SNR and RMSE in the literature [6], [9]–[14]. 

The bandpass (BP) filter [11], Hard- and Soft- thresholding 

filter [13], Serial filter [6], and Savitzky-Golay (SG) filter [12] 

have shown good SNR performance, while the total variation 

(TV) filter [14] and wavelet-based total variation (WATV) 

filter [10] have shown good RMSE results in the literature. In 

simulation and experimental studies, WATV-Wiener and the 

seven filters mentioned above are applied to both healthy lung 

sound signals and lung sound signals containing crackle and 

wheeze, and the performance is evaluated in terms of RMSE 

and SNR improvement. In comparison with the BP filter, Hard 

and Soft thresholding filter, Serial filter, SG filter, and TV filter 

in denoising noisy lung sound signals, the optimized WATV-

Wiener technique achieved better RMSE results by 0.2–0.7 V 

in both simulation and experiment studies. In addition, 

compared to the seven filters as mentioned earlier, the WATV-

Wiener achieved better SNR performance by 5–20 dB and 4–

30 dB in simulation- and experimental-studies, respectively. 

Through the efficient parameters identified in our parameter 

tuning evaluation, WATV-Wiener filter achieved optimal 

RMSE results regardless of low of high noise variance in the 

lung sound signals ― showing the capability in preserving 

signal characteristics from noise and further improving SNR. 

This paper is organized as follows: Section II briefly 

describes the state of the art. This is followed by our data model 

and the assumption, and the problem formulation in Section III. 

Next, we present our proposed technique in Section IV. Section 

V presented the simulation results and discussions of WATV-

Wiener filter parameters tuning, and denoising synthesized lung 

sound signals. We compared and discussed our simulation 

results with experimental results in Section VI, and the 

conclusion is presented in Section VII. 

II. STATE OF THE ART 

In the literature, adventitious lung sounds are indicators of 

lung dysfunctions, and they can be related to airway obstruction 

and various pulmonary diseases such as asthma, COPD, 

pneumonia, and sputum production [4], [15]. The adventitious 

lung sounds can be grouped as crackles and wheezes [4], [16]. 

Coarse crackles are noncontinuous, nonmusical, explosive, and 

have a typical frequency of 350–950 Hz and a duration of 10–

15 ms. Contrarily, wheezes are continuous, musical, oscillatory, 

have a typical frequency range between 100 and 1000 Hz, and 

a duration of 100 ms. Hence, differentiating the adventitious 

lung sound signals from noise, as shown in Fig. 2, is critical for 

improving the lung function assessment. 

The straightforward approach to mitigating external 

interference is linear high-pass or BP filtering with a specific 

cutoff frequency [11]. SG filter, a finite impulse response (FIR) 

filter, was proposed to denoise and smoothen the lung sound 

signal from noise [12]. An FIR-based filter, particularly the BP 

filter, can reduce unwanted noise in the low and high frequency 

ranges from the observed signal; however, the lung sound and 

noise interference may have spectral overlap in the low or the 

passband frequency range [3], [6], [17]. A combination of a 

chain of filters: FIR-based BP filter, a wavelet-based filter, and 

 
Fig. 1.  Comparing (a) the noisy signal, (b) the noise-free signal, and 
the output of normalized denoised lung sound signal typically for 
lung health assessment and diagnostic through (c) Bandpass filter; 
(d) Hard thresholding filter; (e) Serial filter; (f) Soft thresholding filter; 
(g) Savitzky-Golay filter; (h) Total variation filter; (i) Wavelet-based 
total variation filter; and (j) Proposed filter – WATV-Wiener filter. 
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a least mean square adaptive filter was proposed (Serial) in [6] 

to overcome the problem in FIR-based filter in reducing 

unwanted noise from lung sound signals. 

Classical wavelet-based universal soft thresholding (Soft), 

universal hard thresholding (Hard), or wavelet transform 

methods are a practical signal denoising approach when the 

actual noise-free signal is practically unknown [6], [13], [18]–

[21]. Wavelet transform assumes the “nonstationary” region, 

typically lung sound, in the time domain produces significant 

wavelet transform coefficients (amplitude) over many wavelet 

scales. The “stationary” region, typically noise, decays quickly 

with increasing scale without affecting the signal quality. The 

limitation with classical wavelet transform is introducing 

artifacts such as spurious-Gibbs oscillations and noise spikes 

around discontinuities [9]. Generally, when the noisy wavelet 

coefficients exceed the threshold, noise spikes occur in the 

denoised signal [9]. When the noisy wavelet coefficients are 

less than the threshold and inaccurately set to zero causes the 

pseudo-Gibbs artifacts in the denoised signal [9]. TV denoising 

is introduced to improve the denoised signal by reducing the 

artifacts produced by wavelet transform [14]. However, TV 

denoising often produces undesirable staircase artifacts. 

An alternative approach is to perform empirical Wiener 

filtering in the wavelet transform domain [22]. Since the actual 

signal is practically unknown as different individuals exhibit 

different adventitious lung sound characteristics, Wiener 

filtering becomes empirical [23]. Wavelet-based empirical 

Wiener filter considers both significant (signal) and 

insignificant (noise) wavelet coefficients for scaling/denoising. 

An acceptable signal estimate for Wiener filter construction is 

critical in the wavelet domain Wiener filtering [22]–[25]. The 

wavelet-domain empirical Wiener filtering uses two different 

wavelet transform bases (two/dual-stage transform): 1) Wavelet 

transform discards small coefficients (noise) and retains 

significant coefficients (signal) for denoising noisy signal. 2) 

Design of the empirical Wiener filter where the filter brings 

back insignificant coefficients (noise) for consideration and 

scales them by minimizing the mean square error (MSE) [22]–

[25]. Sandeep et al. [22] showed that the empirical Wiener filter 

improved wavelet denoising and outperformed other 

thresholding denoising algorithms. Wavelet transform 

decorrelate signal and Wiener filter filtering of individual 

transform coefficients improved the signal estimate [22]–[25]. 

However, the limitation with wavelet-domain empirical Wiener 

filtering is that the approach requires two different wavelet 

transform bases. The effect on denoising the signals differs with 

different combinations of wavelet bases [22]–[25]. 

It was proposed in [9] a WATV filter approach to overcome 

the artifacts produced during denoising by modifying a single 

objective function. In addition, the WATV filter indirectly 

eliminates the need to select the appropriate wavelet transform 

bases required in the wavelet-based empirical Wiener filter. 

However, WATV still presents artifacts after denoising the 

signal, particularly in the lung sound signal containing crackle 

[10]. 

Inspired by [6], [9], [10], [22], a novel approach (WATV-

Wiener) to denoising and filtering the noisy lung sound signals 

was proposed in this paper, which integrated WATV and the 

wavelet-based empirical Wiener filter effectively and uniquely. 

Firstly, WATV was synthesized and fine-tuned through case 

studies and was used to achieve a set of adequate denoised 

signal wavelet coefficients, and then the wavelet-based Wiener 

filter was designed to smooth the artifacts produced by the 

WATV denoising process. To the best of our knowledge, the 

combination and integration of WATV and the Wiener filter has 

not been investigated and reported in the literature [6], [9], [10], 

[22], particularly in the acoustic lung signal domain. 

III. NUMERICAL MODELING AND PROBLEM FORMULATION 

Our lung sound model is based on the airflow transmission 

to the chest wall by the technique in the communication system 

and signal processing [26]–[28]. The lung sound model 

contains crackle and wheeze. 

The lung sound is modeled as the flow source (airflow) 

hitting the airway [26]–[28]. When the airflow hits the airway, 

the lung sound is modulated by amplitude and frequency, 

 ( ) ( ) ( ) ( ),a s a fx t x t m t m t=  (1) 

where 𝑥𝑎(𝑡) is the airflow hitting on the airway, 𝑥𝑠(𝑡) is the 

airflow; the amplitude and frequency modulation functions are 

denoted as 𝑚𝑎(𝑡) and 𝑚𝑓(𝑡), respectively. 

The modulated airflow 𝑥𝑎(𝑡) is accompanied by noise 𝑣𝑎(𝑡) 

when it penetrates the airway wall, given as 𝑥𝑓(𝑡), 

 ( ) ( ) ( ) ,f a ax t x t v t= +  (2) 

The noise from the sensor was also transferred, as is 

customary when noise from electronic devices is fed into the 

recording system [26]–[28], 

 ( ) ( ) ( ) ,f fx t x t v t= +  (3) 

where 𝑥(𝑡) is the airflow transmitted out of the chest wall or the 

modulated signal with noises, and 𝑣𝑓(𝑡) is the noise transferred 

from the sensor, such as an electronic stethoscope. 

Noise is also produced by the ambient and other factors such 

as speech and cough during the lung sound recording, 

 ( ) ( ) ( ),ey t x t v t= +  (4) 

where 𝑦(𝑡) is the airflow that is captured by the sensor with 

noise, and 𝑣𝑒(𝑡) is the noise caused by ambient. Substituting 

(1)–(3) into (4), we will have our received lung sound 

 
Fig. 2.  Typical recorded lung sounds and the interesting waveform 
trend and characteristics for lung health assessment. (a) Noisy lung 
sounds recording with crackle; (b) Crackle waveform; (c) Noisy lung 
sound recording with wheeze, and (d) Wheeze waveform. 
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containing noise, 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ).s a f a f ey t x t m t m t v t v t v t= + + +  (5) 

A reasonable assumption is that the noises are a zero-mean 

process having a probability density distribution that can be 

defined with mean and variance, uncorrelated with the 

transmitted lung sound 𝑥(𝑡), with varying SNR levels, similar 

to those classical signal denoising studies [9], [18], [24], [25]. 

Hence, we modeled the noises as white Gaussian noise (WGN) 

[7], [10] and combined 𝑣𝑎(𝑡), 𝑣𝑓(𝑡), and 𝑣𝑒(𝑡). Therefore, (5) 

can be simplified to (6) similar to a linear system, where 𝑦(𝑡) 

is the received lung sound signal (output) containing WGN 

(error) 𝑣(𝑡) and the desired lung sound signal (input) 𝑥𝑎(𝑡) as 

in (1), 

 ( ) ( ) ( ).ay t x t v t= +  (6) 

From (6), the desired signal 𝑥𝑎(𝑡) is contaminated by noise 

𝑣(𝑡) from the collisions of the airflow onto the airway, 

electronic devices, and ambient noise; thus, we have to remove 

the noise from the captured lung sound signal 𝑦(𝑡) through 

denoising. However, an inappropriate denoising method may 

introduce artifacts, particularly in the lung sound signal domain 

[10], which may lead to misinterpretation and affect the 

assessment. Thus, the design of an optimal lung sound 

denoising technique is crucial for an accurate assessment [5], 

[29], [30]. 

IV. WATV-WIENER DENOISING FILTER 

A good denoised signal is achieved in [9], [10] (low RMSE); 

however, defects such as the staircase effect still exist after 

denoising noisy lung sound signals [10], hence; we proposed 

the integration of the WATV-Wiener filtering technique to 

reduce ambient noise and smoothen the denoised signal further 

to achieve a better-denoised signal with higher SNR and 

insensitive to both high and low noise variance while 

maintaining the optimal RMSE performance. 

The principle of the integrated filter is discussed in this 

section, starting with the synthesis of the WATV filter in 

Section IV-A, whereby the indirect approach of parameter 

tuning and selection will be discussed in Section V-B, followed 

by the design of the empirical Wiener filter in Section IV-B. 

Lastly, the customized filter algorithm and block diagram are 

presented in Section IV-C. 

A. Wavelet Threshold Total Variation Denoising 

We first perform wavelet transform W to (6) to achieve (7) 

[9], where n is denoted as the sample index, and the total 

number of samples 𝑁 over a known time 𝑇 is defined as 𝑁 =
 𝐹𝑠𝑇, where 𝐹𝑠 is the sampling frequency in this work, 

 ( ) ( ) ( )W W W , 1, 2,  .ay n x n v n n N= + =  (7) 

Equation (7) contains the entire signal coefficients W𝑦(𝑛) 

that contains dependable signal coefficients W𝑥𝑎(𝑛) and 

ambiguous signal coefficients W𝑣(𝑛). To accurately estimate 

the dependable signal coefficients from the signal coefficients 

W𝑦(𝑛) in (7), a 5-scale undecimated discrete wavelet transform 

W with two vanishing moments fulfilling the Parseval frame 

condition, and Daubechies filter (due to its translation-invariant 

property in denoising) with a low- and high-pass analysis filter 

was designed and applied onto the signal for denoising [9]. The 

‘nonstationary’ region of the lung sound signal produces 

significant wavelet transform coefficients (amplitude) over 

many wavelet scales. Most of the significant coefficients at 

each wavelet scale correspond to the desired lung sound signals, 

whereas the insignificant wavelet coefficients with small 

values, typically noise, are shrunk during denoising. ω is 

denoted as the wavelet coefficients containing our signal 𝑥𝑡 

required for designing the empirical Wiener filter [9], [22], 

 W .tx =  (8) 

Thus, the estimation of signal 𝑥𝑡 denoted as �̂�𝑡 can be 

obtained by inverse wavelet transform W−1 of wavelet 

coefficients ω once the estimated wavelet coefficients �̂� is 

available [9], 

 1 ˆˆ W .tx −=  (9) 

The wavelet coefficients �̂� in (9) can be identified in the 

following way. 1) Split augmented Lagrangian shrinkage 

algorithm (SALSA) [14], [17] is applied to compute the wavelet 

coefficient in (10) with the condition that the wavelet 

coefficient between 1 2⁄ ‖W𝑦 − 𝜔‖2
2 + ∑ 𝜆𝑗𝜙(𝜔𝑗,𝑘; 𝛼𝑗)𝑗,𝑘  and 

𝛽‖𝐷W−1𝜔‖1 are equal. 2) To achieve a balance between 

wavelet transform and TV denoising, they are controlled by a 

control parameter 0 < 𝜂 < 1 [9], [10]. The regularization 

parameter λj and TV parts β from (10), where σ is related to the 

WGN variance σ2 in each wavelet scale j, is presented in (11) 

and (12), respectively [14]. From the regularization parameter 

𝜆𝑗 above, the threshold shape controller is identified as 𝛼𝑗 =

1 𝜆𝑗⁄ . 

 

( )

( ) ( )
2 1

,2 1
, 

ˆ

1
arg min W ; W .

2
j j k j

j k

n

F y D




       −

=

 
= − + + 

 


  (10) 

 
22.5 2 jj =  (11) 

 ( )( )1 4N  = −  (12) 

The indexed terms 𝑗 and 𝑘 are used to represent the scale and 

vanishing moment of the signal in the wavelet coefficients 𝜔𝑗,𝑘 

respectively. The ‖DW-1ω‖
1
 can be defined as the total 

variation of signal estimation, where D is the first-order 

difference matrix. The single indexed normalized wavelet 

coefficient is represented as, e.g., ‖𝑥‖1 = ∑ |𝑥𝑛|𝑛 , ‖𝑥‖2 =
∑ |𝑥𝑛|2

𝑛 . Doubly indexed normalized wavelet coefficient is 

denoted as, e.g., ‖𝜔‖2
2 = ∑ |𝜔𝑗,𝑘|

2
𝑗,𝑘 . 

B. Modified Empirical Wiener Filter 

The obtained signal �̂�𝑡 is the estimated signal of wavelet filter 

containing the lung sound of interest and dubious signal such as 

artifacts. The estimated reference signal �̂�𝑎 which is linearly 

related with �̂�𝑡, as shown in (13). 

 1ˆ ˆW W ,a tx H x−=  (13) 

The Wiener filter is designed to smooth the pilot estimation 

�̂� in (10) to predict the remaining dubious coefficients; thus, 
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the design of the Wiener filter in (14) estimates the entire signal 

coefficients consisting of both trustworthy and dubious 

coefficients, 

 ( )
( )

( )

2

2 2

ˆ
.

ˆ

n
H n

n



 
=

+
 (14) 

The coefficients estimate from (10) guarantees that the 

Wiener filter in (14) can further smooth the trustworthy 

coefficients in the pilot estimate of the wavelet coefficient �̂� 

(10) through the bias of the Wiener filter. Smoothing occurs 

when the wavelet coefficients �̂� are larger than the noise 

variance 𝜎2. However, if the pilot estimate �̂� is small or similar 

to the noise variance 𝜎2, the denoised signal has biases, leading 

to a significant gain (H < 1) in the MSE sense. Thus, we can 

identify if the denoised wavelet coefficient is overly stretched 

with the Wiener filter by comparing WATV-Wiener and 

WATV RMSE results. 

The estimated denoised wavelet coefficients �̂� is applied to 

empirical Wiener filter design in (13)–(14) for smoothing and 

mitigating the artifacts by minimizing the RMSE to design an 

improved weighting profile in (14) [22]. 

C. WATV-Wiener Denoising Algorithm 

Inspired by [9], [22], a unified wavelet threshold denoising 

filter (WATV) is first customized to reduce the interference 

noise, achieving an adequate denoised signal coefficient from 

the lung sounds by estimating all wavelet coefficients (reliable 

and unreliable) concurrently. The estimated signal coefficient 

is fed into the empirical Wiener filter for smoothing by 

minimizing the denoised signal overall mean square error in the 

process of inverse filtering. WATV denoising strategy 

estimates all wavelet coefficients in (7) concurrently by 

computing the optimal single objective function in (10) to 

provide an estimate of 𝑥𝑎, denoted as 𝑥𝑡 in (8) with the 

underlying understanding that dependable signal coefficients 

will survive thresholding and zeros most of the ambiguous 

signal coefficients. We denote �̂�𝑡 as the pilot estimate related 

via (8) and (9) with the fundamental explanation that �̂�𝑡 

contains estimates of dependable signal coefficients �̂� and the 

modified empirical Wiener filter in (13) smooths �̂�𝑡 from 

artifacts output from the WATV filter. The signal coefficient �̂� 

is treated as approximate maximum posteriori estimation of 

variance to design an empirical Wiener filter 𝐻 in (14) to 

smooth the remaining ambiguous signal coefficients from �̂� 

which resulted from the artifacts produced from WATV 

denoising strategy, and thus output an estimated desired signal 

�̂�𝑎(𝑛) through the signal coefficient �̂� [9], [10], [22]–[24]. The 

proposed technique is summarized in Fig. 3. 

From Fig. 3 and (7)–(14), we applied the estimated denoised 

signal �̂�𝑡 from WATV to obtain an adequate signal coefficients 

estimate �̂� instead of deciding on two wavelet transform bases 

to obtain an optimal empirical Wiener filter [9], [10], [22]–[24]. 

The Wiener filter further reduces the ambiguous signal 

coefficient that produces artifacts from the WATV. The 

approach has been simplified into a linear system instead of the 

dual wavelet transform and smooths the signal through the 

additional empirical Wiener filter. The pseudocode of the 

proposed WATV-Wiener algorithm is shown in Fig. 4. 

V. LUNG SOUND MODELING AND SIMULATION 

The modeling of both healthy and adventitious lung sound 

signals 𝑥𝑠 shown in (1) is expressed in Section V-A [26]–[28], 

followed by the optimization and evaluation of filter parameters 

affecting the overall proposed filter performance in the SNR 

sense, which were demonstrated in Section V-B. In Section V-

C, the simulated noisy lung sound signals shown in Fig. 5 were 

fed into the optimized WATV-Wiener filter and seven other 

state-of-the-art filters that had shown good SNR or RMSE 

results in the literature for denoising and performance 

comparison in terms of SNR and RMSE [6], [9]–[14]. The 

sampling frequency is set to 𝐹𝑠 = 4000 Hz in this work, and we 

//Input: Noisy data (𝑦); Number of vanishing moment (𝑘); 

Regularization parameter (𝜆𝑗); TV parts (𝛽); Step size (𝜇); 

Number of wavelet scale (𝑗); Number of iterations (𝑛𝑖𝑡𝑒𝑟), 

Threshold function (𝜃) 

//Variables: Wavelet transform (W); Wavelet coefficient 

(𝜔) 

//Initialization 

𝜔 = W𝑦; 

//Identifying wavelet coefficient in (10) by iteratively 

minimizing with respect to 𝜔 and 𝑢 with variable splitting 

and augmented Lagrangian approach.  

𝑢 = 𝜔; 𝑑 = 𝜔; 𝑐 = 0; 
//Iteration till convergence between 𝝎 and 𝒖. 

For 𝑖 = 1:𝑛𝑖𝑡𝑒𝑟 

𝑝𝑗,𝑘 = [W𝑦 + 𝜇(𝑢 − 𝑑)] (1 + 𝜇)⁄   

//Finding the wavelet coefficient 𝜔 for all 𝑗, 𝑘 with the 

input from 𝜃, 𝑝, 𝜆𝑗, 𝜇, 𝑎𝑗 = 1/𝜆𝑗  

𝜔𝑗,𝑘 = 𝜃(𝑝𝑗,𝑘;  𝜆𝑗 (1 + 𝜇⁄ ); 𝑎𝑗)  

𝑐 = 𝑑 + 𝜔  

//Total variation denoising (𝑡𝑣𝑑) requires data input from 

𝑐, length of the data input (𝑁) and TV parts 

𝑑 = W[W−1𝑣 − 𝑡𝑣𝑑(𝑊−1𝑐; 𝑁; 𝛽 𝜇⁄ )]  
𝑢 = 𝑐 − 𝑑  

𝑑 = 𝑑 − (𝑢 − 𝜔)   

end For 

Preliminary Output: Denoised wavelet coefficient (�̂�), 

where signal �̂�𝑡 = W−1�̂� 

//Empirical Wiener filter design for smoothing: 𝐻 

𝐻 = �̂�2 (�̂�2 + 𝜎2)⁄   

//Smooth denoised output 

�̂�𝑎 = W−1𝐻W�̂�𝑡  

Fig. 4.  WATV-Wiener algorithm. 

 

 
 
Fig. 3.  A hybrid technique of WATV and wavelet-based empirical 
Wiener filtering. 
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performed 500 simulation runs on denoising lung sound signals 

at each noise level. Analyses were performed offline through 

MATLAB R2019b in our simulation studies. 

RMSE and SNR were utilized as performance metrics after 

denoising the observed lung sound signal 𝑦 in (6). We 

determined RMSE by employing the amplitude of denoised and 

noise-free signals and expressing the differences in root mean 

square sense shown in (15). We defined SNR by finding the 

ratio of denoised signal peak amplitude to noise peak amplitude 

and expressed the ratio using the logarithmic decibel scale in 

(16), 

 ( )
2

RMSE mean ,d x = −
 

 (15) 

 SNR=20 log ,
d

y x

  
  

−  
 (16) 

where 𝑥 is the noise-free simulated signal, 𝑦 is the simulated 

noisy signal, and d is the denoised signal. 

A. Synthesis of Lung Sound with Crackle and Wheeze, 
and Healthy Lung Sound 

To obtain both adventitious and healthy lung sound shown in 

(1) and depicted in Fig. 5(a), Fig. 5(c), and Fig. 5(e), airflow 

source 𝑥𝑠(𝑛) is first modulated by the frequency modulation 𝑚𝑓 

cosine wave in (17) with an amplitude of 1 V, and frequency of 

F = 400 Hz, followed by the amplitude modulation 𝑚𝑎 

sawtooth wave in (18) with an amplitude of 1 V amplitude, and 

frequency of F = 400 Hz [26], [27]. The noise 𝑣 from (2)–(6) 

and shown in Fig. 5(b), Fig. 5(d), and Fig. 5(f) is presented last 

in this Section V-A. 

 ( )( )( ) cos 2 ,f sm n F F n=  (17) 

 ( )
5

1

1 1 1
sin ,

2
a

k s

F
m n k n

k F


 =

 
= −  

 
  (18) 

where k is the order of harmonics of amplitude modulation. 

Employing the equations proposed in [31], we simulate 

adventitious airflow (crackle) transmitted to the airway using 

(19)–(20). We present the crackling signal 𝑥𝑠(n) as two periods, 

and the crackle modulation function in (20) is employed to shift 

the energy of 𝑥𝑠(n) to the initial part of the shape. Fig. 5(a) 

presented the simulated crackle, with initial deflection width 

(IDW) = 1.2 ms and two cycle duration (2CD) = 9.8 ms [20], 

 ( ) ( ) ( )
( )
( )

log 0.25
sin 4 , ,

log 0.12
s cx n n m n  = =

 
 (19) 

 ( ) ( ) 0.50.5 1 cos 2 0.5 .cm n n = + −
 

 (20) 

Synthesis of wheeze as airflow source 𝑥𝑠(n) [28] and then 

transmitted to the airway 𝑥𝑎(𝑛) is presented in (21). The airflow 

source 𝑥𝑠(n) for wheeze was simulated as a pure sine wave with 

1 V amplitude, 𝐹 = 100 Hz, and WGN at 50 µW [28] The 

simulated wheeze is presented in Fig. 5(c), 

 ( ) ( )( ) ( )sin 2 ,s s wx n F F n v n= +  (21) 

where 𝑣𝑤(𝑛) is the WGN for wheeze airflow source. 

The synthesis of healthy lung sound signals is shown in (22) 

[28], similar to wheeze in (21) except for the insertion of WGN 

and presented in the simulated healthy lung sound in Fig. 5(e). 

 ( ) ( )( )sin 2 ,s sx n F F n=  (22) 

The modulation’s accompanying noises 𝑣𝑎(𝑛) were inserted 

into the acoustic signals in (19), (21), and (22) that penetrate to 

the airwall shown in (2), with WGN power level and SNR at 

0.6 dBm and 0.01 dB [28], respectively. The parameters chosen 

demonstrated that the proposed communication model 

corresponds with the physiological characteristics of the actual 

lung sounds [28]. Finally, the microphone received sound 

combined with the WGN 𝑣𝑓(𝑛), power at 10−6 dBm, as is 

usually the case in electronic communication [26]–[28]. From 

the above noise parameters, in an uncontrolled environment, the 

electronic noise 𝑣𝑓(𝑛) is dominated by the noise produced 

internally by the airway wall and ambient interference. 

However, in a quiet and controlled environment, situation of the 

electronic noise may have different impact on the simulation 

studies. Thus, we included the noise power in our simulation 

studies, consistent with the literature simulation studies [26]–

[28]. 

We generated WGN at various SNRs and were employed as 

the noise component 𝑣(𝑡) in (6), similar to the literature [10], 

[28]. We varied the SNR values between 0 dB and 20 dB with 

a 2 dB increment rate resulting in 11 noise levels. We 

superimposed each noise level on the individual simulated lung 

sound signals, which gave us the observed physiological signals 

𝑦(𝑡) in (6) and presented in Fig. 5(b), Fig. 5(d), and Fig. 5(f), 

with a specific SNR. From Fig. 5, we can observe the similarity 

between our simulated signal and the actual noisy signal 

 
Fig. 5.  Simulated lung sound signals transmitted out of the chest 
wall, corrupted with additive WGN as the noise component v(t). (a) 
Simulated airflow source crackle; (b) Lung sound signal containing 
crackle transmitted onto chest wall with additive WGN; (c) Simulated 
airflow source wheeze; (d) Lung sound signal containing wheeze 
transmitted onto chest wall with additive WGN; (e) Simulated 
healthy lung sound; and (f) Healthy lung sound signals are 
transmitted onto the chest wall with additive WGN 
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captured in an uncontrolled environment with an electronic 

stethoscope and microphones in the literature [6], [18]. 

B. Tuning of Parameters for Optimizing the WATV-
Wiener Filter 

The simulations were tailored to optimize the overall filter 

performance by modifying three parameters η, σ, and N that 

influence the TV parts 𝛽 and regularization parameter 𝜆𝑗 from 

(10)–(12). We can observe in (10) that both 𝛽 and 𝜆 control the 

pilot estimation of the denoised wavelet coefficients in our 

proposed technique. As the pilot estimation affects the 

designing of the empirical Wiener filter and the overall filter 

performance; hence, the pilot estimation of the denoised 

wavelet coefficients is critical. The parameter 𝜂 estimates were 

available in the literature; however, no case studies on how the 

parameter adjustment affects the filter performance, 

particularly in the lung sound signal domain, were attempted or 

discussed [9], [10]. Additionally, the literature has not 

discussed the filter’s SNR performance in recovering signals of 

interest from noisy lung sound signals [9], [10]. Thus, to 

evaluate the effect of the parameter 𝜂 on the overall filter, we 

will be comparing the performance of the denoised noisy lung 

sound signals in the SNR sense. 

In our initial investigation into optimizing SNR performance, 

three possible simulation case studies were evaluated through 

adjusting 𝜂, while keeping 𝜎 = 10 and the total number of 

samples N = 4000. In the first demonstration, we kept 0.76 < 𝜂 

< 1, e.g., 𝜂 = 0.80, 𝜂 = 0.90, which resulted in ∑ 𝜆𝑗  > 𝛽. Next, 

we adjusted 0 < 𝜂 < 0.76 to a lower value, e.g., 𝜂 = 0.2, 𝜂 = 0.5, 

resulting in 𝛽 > ∑ 𝜆𝑗. Lastly, we balanced both 𝛽 ≈ 𝜆𝑗 with 𝜂 = 

0.76. The mean SNR improvement with respect to the ratio 

between TV parts and regularization parameter in the three 

explored scenarios were demonstrated in Fig. 6. We can 

observe that the SNR performance of the filter is at the lowest 

when 𝛽 > ∑ 𝜆𝑗, with a ratio < 1, and achieved the best SNR 

performance when ∑ 𝜆𝑗 = 3𝛽, at 𝜂 = 0.90. 

We have identified that the condition 𝜂 = 0.90 as a baseline 

for optimizing the SNR performance from the results in Fig. 6. 

An additional observation from the TV parts 𝛽 in (12) and the 

regularization parameter 𝜆𝑗 in (11) wherein they were also 

determined by the total number of sample N. Typical lung 

sound signals comprised of minimally two respiratory cycles 

with time T ≈ 4 s, Fs = 4000 Hz in the literature [3], [18], [28]. 

 
Fig. 8.  The impact of parameter 𝜂 on the WATV-Wiener filter 

denoising SNR performance. 

 
Fig. 6.  The impact of the ratio of TV parts and regularization 
parameters on the SNR performance of the WATV-Wiener filter. 

 
Fig. 7.  The impact of baseline parameter 𝜂 = 0.90 on the various 
total number of samples N in terms of the denoising SNR 
performance. 

 
Fig. 9.  Average RMSE of denoised lung sound signals with various 
noise variance in the lung sound signals. 
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Hence, we have adjusted the total number of samples N to our 

lung sound signals to determine if N affects the overall filter 

performances. We presented the mean SNR performance with 

respect to N with the parameters in our initial investigation, e.g., 

𝜂 = 0.90, ∑ 𝜆𝑗 / 𝛽 = 3 in Fig. 7. 

The performance of the WATV-Wiener filter was not 

affected by the total number of samples presented in Fig. 7 in 

terms of SNR performance compared to Fig. 6 and showed a 

similar SNR performance trend at the ratio ∑ 𝜆𝑗 = 3𝛽, with 𝜂 = 

0.90 regardless of number of signal samples. 

As the parameter 𝜂 range between 0 and 1, we have identified 

0.9 < 𝜂 < 1 as a baseline parameter from Fig. 6 and Fig. 7 

discussion above. The remaining question is, what is the 

optimal parameter range in 𝜂 for our filter? Thus, to present the 

optimizing of parameter 𝜂 from the baseline parameters 

identified from our case studies, we set different possible 

combinations of parameter 𝜂, e.g., 𝜂 = 0.90, 𝜂 = 0.95, and 𝜂 = 

0.99 to evaluate the optimal SNR performance of our overall 

filter on different noisy lung sound signals and presented the 

result in Fig. 8. An optimal SNR parameter is achieved, as 

observed from Fig. 8. WATV-Wiener filter obtained higher 

improved SNR by 3–8 dB with 𝜂 = 0.95 compared to the 

literature [9], [10] estimated parameter, and our initial 

investigation 𝜂 = 0.90, and the SNR performance is similar for 

both 𝜂 = 0.95 and 𝜂 = 0.99, with a variation of 1 dB. In addition, 

WATV-Wiener performed better in terms of SNR with the 

single setting of ∑ 𝜆𝑗 > 𝛽 with 0.95 ≤ 𝜂 < 1 compared to the 

other case settings shown in Fig. 6–Fig. 8. 

From the case studies, optimal SNR results were obtained in 

Fig. 6–Fig. 8; we recommend the following optimized 

parameters for denoising typical lung sound signals by tuning 
∑ 𝜆𝑗 = 3𝛽 with 0.95 ≤ 𝜂 < 1. 

Ultimately, the denoised signal ought to retain waveform 

characteristics of interest without overly deforming the lung 

sound signals. Thus, we set the ideal parameter 0.95 ≤ 𝜂 < 1 to 

denoise noisy lung sound signals with different noise variances 

and presented the RMSE result in Fig. 9. Our filter achieved 

consistent RMSE results with different noise variance in the 

system in Fig. 9, showing robustness to the noise variance. 

C. WATV-Wiener Filter Fine-tuned Parameters 
Performance Evaluation and Discussion 

Optimal quantitative findings such as SNR of certain prior 

denoising approaches may seem promising, but the 

inappropriate selection of parameters, e.g., in the wavelet 

thresholding, may result in a high SNR, albeit evident artifacts 

are introduced in the signal processing. Thus, RMSE is essential 

in identifying that the denoising filter retains the frequencies of 

interest and waveform characteristics. In the literature, WATV 

is an optimal denoising filter in the RMSE sense [9], [10], [32]. 

Our goal is to denoise the signal without affecting the waveform 

characteristics while improving the SNR; thus, with the 

parameters identified in the optimal tuning study, 0.95 ≤ 𝜂 < 1, 

we compared the WATV-Wiener filter with other established 

lung sound signal filters in the literature [6], [9]–[14] and 

presented the mean RMSE and SNR results in Fig. 10(a)–Fig. 

10(c), and Fig. 10(d)–Fig. 10(f), respectively. The simulated 

lung sound signals have the following parameters: noise 

variance 𝜎2 = 9, 𝐹𝑠 = 4000 Hz, and the total number of samples 

N=16000. 

We can observe WATV denoising filter is optimal in terms 

of RMSE from Fig. 10(a)–Fig. 10(c), achieving mean RMSE of 

0.43 V, 0.47 V, 0.21 V in adventitious lung sound signals 

containing crackle and wheeze, and healthy lung sound signals, 

 
Fig. 10.  Average RMSE (a)-(c) and SNR improvement (d)-(f) of denoised healthy and adventitious lung sound signals to various SNR values 
of the input signal. (a), (d) Lung sound signal containing crackle; (b), (e) Lung sound signal containing wheeze; and (c), (f) Healthy lung 
sound signal. 
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respectively, consistent with the findings in the literature [9], 

[10], [32]. WATV-Wiener shadows WATV sharply, within 

±0.02 V, or within 10% in the absolute relative change in terms 

of optimal RMSE, and performed better by 0.2–0.7 V compared 

to remaining filters, i.e., BP, Soft, Hard, Serial, and TV. From 

Fig. 10(d)–Fig. 10(f), WATV-Wiener obtained the best mean 

improved SNR of 38.09 ± 0.80 dB, 41.03 ± 0.79 dB, 47.56 

±0.73 dB in crackle, wheeze, and healthy lung sound signals, 

respectively. From the results in SNR and RMSE, the BP filter 

has the lowest SNR performance and worse RMSE results; the 

reason could be due to denoised lung sound signals containing 

overlapping noise spectral. The finding in RMSE is consistent 

with the literature where a single linear infinite impulse 

response or FIR-based filter may not be sufficient to denoise a 

noisy signal, and the noise affects the waveform characteristics 

[11], [18]. 

From the SNR and RMSE results in Fig. 10, WATV-Winer 

filter can achieve optimal RMSE results similar to the optimal 

RMSE-sense WATV, and further achieved higher noise 

removal in terms of SNR by another 5–20 dB compared to other 

established lung sound signals filters. From the RMSE and SNR 

results, WATV-Wiener showed it could retain waveform 

characteristics (low RMSE) while improving SNR from 

denoising various inputs of SNR lung sound signals, showing 

robustness to severe noise. The WATV-Wiener performance 

benefits achieved could be due to the optimized pilot estimation 

of the wavelet coefficient �̂� and smooth the pilot denoised 

wavelet coefficient with the complementing diagonal weighting 

matrix H from the empirical Wiener filter. As shown in Fig. 8–

Fig. 10, without the optimal parameters in the pilot estimation 

of the denoised wavelet coefficient, the integration of the 

WATV filter and empirical Wiener filter may not have achieved 

optimal denoised lung sound SNR performance. WATV 

estimates the wavelet coefficients �̂� by considering both 

insignificant (noise) and significant (signal) coefficients, we 

used the estimated signal estimates from WATV to design an 

empirical Wiener filter 𝐻 to smooth and reduce the artifacts on 

the denoised signal. The empirical Wiener filter scales the 

coefficients by minimizing the MSE to design an improved 

weighting profile H ≈ 1, with a WATV coefficient more 

significant than the noise variance, �̂�2 ≫ σ2. Thus, pilot 

estimation of the denoised wavelet is critical to improving our 

filter’s weighting profile. Our proposed hybrid technique can 

decrease the denoised signal’s bias and achieve an optimal filter 

in SNR performance. Under the condition of the noise variance 

σ2 is greater than the estimated denoised signal �̂�2, the 

weighting profile will contribute to the gain in wavelet 

coefficient resulting in a lower SNR performance. 

VI. EXPERIMENTAL STUDIES 

To ensure the denoising performance stability of the WATV-

Wiener filter between our simulation studies and actual 

respiratory sound, we quantitatively compare the WATV-

Wiener filter and other prominent filters in the literature, 

similarly to our simulation studies, in the denoising experiment 

studies [6], [9]–[14]. 

We shortlisted healthy volunteers in our experimental studies 

with their verbal consent and no history of respiratory diseases 

in the past 1 month. We collected 10 healthy lung sound signals 

from our volunteers with our system presented in Section V-A. 

and evaluated the system SNR performance compared against 

a commercial product used for capturing lung sound signals. 

We experimented in an uncontrolled environment with an 

average 59 ± 0.54 dBA sound pressure level, similar to a 

hospital noisy intensive care unit, where emergency alarm, 

communications, and critical care are often happening [33]. 

Due to the current pandemic situation globally, we could not 

get actual respiratory patients for the experiment. Hence, 17, 

10, and 13 unhealthy lung sound signals containing crackle, 

wheeze, or both crackle and wheeze (mixed) were shortlisted 

from an open-access respiratory database [34], respectively. 

The respiratory database [34] contained adventitious lung 

sound signals (crackle, wheeze) from volunteers diagnosed 

with COPD, asthma, and respiratory tract infection. The 

respiratory database [34] captured volunteers’ respiratory 

sounds by digital stethoscope or an array of MEMS 

microphones in a clinical or home setting, with qualified 

independent reviewers annotating the signals. The signals also 

contain cough, speech, and throat clearing. The shortlisted 

respiratory signals have a minimum sampling frequency of 𝐹𝑠 = 

4000 Hz, and a minimum recording time of T = 10 s. A total of 

50 recordings from our captured healthy lung sound signals and 

the shortlisted respiratory signals are passed through the 

denoising filters to estimate the denoised signal’s SNR output. 

Before denoising, a bandpass filter ranging from 150 Hz–

1300 Hz has been applied to remove other major artifact events 

such as cough and throat clearing. All patients in the respiratory 

signal database had COPD with comorbidities – heart failure. 

Hence, signals below 150 Hz are excluded. We chose a 

maximum of 1300 Hz as the upper bandpass limit in our paper 

as 𝐹𝑠 = 4000 Hz to avoid aliasing effects. In the literature, 

healthy, wheeze, and crackle frequency signal falls within our 

bandpass range of 150 Hz and 1300 Hz [3]–[5], [28]; thus, it 

should be sufficient to retain the interest frequency range and 

adventitious lung sound characteristics after denoising. 

The estimated noise variance [35] is about 𝜎2 = 0.05 (𝜎 = 

0.23) from our healthy lung sound signal measurement in our 

experimental studies. We resampled the lung sound signals with 

a sampling frequency of 𝐹𝑠 = 4000 Hz, and applied 𝜎 = 0.23, 

and the optimal parameter evaluated from our simulation 

studies, 𝜂 = 0.95 to our experiment analysis as the sound 

pressure level for capturing our healthy lung sound signals and 

the database is similar. The static and ambient noise in the 

database may be different from our captured lung sound signals; 

however, we have also demonstrated earlier that the WATV-

Wiener filter is insensitive to noise variance in our simulation 

studies, achieving similar SNR and RMSE performance in both 

low and high noise variance with 0.95 ≤ 𝜂 < 1. 

We present the computation of RMSE for our captured lung 

sound signals in (23), the SNR for our captured lung sound 

signals, and the database in (25) and (26), respectively, 

 ( )
2

systemRMSE mean ,d x = −
 

 (23) 

where d denotes the amplitude of denoised lung sound signals, 

x represents the amplitude of noise-free lung sound signals 

given in (24), 

 ,s nx a a= −  (24) 

where the captured lung sound signals with noise and captured 

ambient noise without lung sound signals are denoted as 𝑎𝑠 and 
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𝑎𝑛, respectively. 

The computation of SNR in (25) and (26) is similar to (16), 

defining SNR by finding the ratio of denoised signal peak 

amplitude to noise peak amplitude and expressing the ratio 

using the logarithmic decibel scale. 

 systemSNR 20 log10 ,
n

d

a

  
=   

  
 (25) 

where 𝑎𝑛 is the noise peak amplitude from our system 

electronic static noise and ambient noise without lung sound 

signals, and d denotes the filter denoised signal peak amplitude. 

There is a slight modification for the computation of database 

SNR in (26) as noise is unavailable; thus, ‘noise’ is defined as 

subtracting the denoised signal from the noisy signal, 

 
databaseSNR 20 log10 ,

y

d

f d

  
=    −   

 (26) 

where, 𝑓𝑦 is the noisy signal peak amplitude from the database, 

and 𝑑 is the denoised signal peak amplitude. 

A. Acoustic Signal Acquisition 

The motivation to assemble an acoustic sensor-based MEMS 

for capturing lung sounds is that a MEMS sensor is cheaper, a 

few dollars per piece compared to an electronic stethoscope, 

hundreds of dollars, particularly when an array of sensors is 

required to capture the acoustic signals. The research team 

assembled the system shown in Fig. 11 to record the lung sound 

signals, and the design specifications are similar to the literature 

[1]–[3], [33], [36]. The primary module of the equipment is a 

high SNR microelectromechanical system (MEMS) 

microphone with a frequency response between 50 Hz and 20 

kHz. The sampling frequency of the MEMS microphone is 

44100 Hz, and the MEMS sensor consists of a signal 

conditioning function, an analog-to-digital converter, 

decimation and anti-aliasing filters, power management, and an 

industry-standard 24-bit time-division multiplexing interface. 

3M electronic stethoscope has ‘proprietary’ ambient noise 

reduction technology that eliminates an estimated 85% of 

ambient background noise interference without eliminating 

critical lung sounds. Therefore, we benchmark our system 

performance against a 3M electronic stethoscope. The SNR 

computation for our system and 3M electronic stethoscope can 

be expressed as SNR = 20 log(�̅�s �̅�n⁄ ), where, �̅�𝑠 =
∑ (𝑎𝑠 − 𝑎𝑛) N⁄  represents the mean peak amplitude of the 

signal, and �̅�𝑛 = ∑ 𝑎𝑛 N⁄  is the mean peak value of the 

collected noise without lung sound signal from our MEMs 

sensor and 3M electronic stethoscope. 𝑎𝑠 is the peak amplitude 

of the collected lung sound signal with noise, 𝑎𝑛 is the peak 

value of the collected noise without lung sound signal, and N =
10 is the number of collected signals. We obtained an estimated 

SNR of 71.63 dB and 68.73 dB from our system and 3M 

electronic stethoscope, respectively. Our sensor device can 

perform similarly to a commercial 3M electronic stethoscope in 

terms of SNR. 

B. Experiment Results and Discussion 

We summarized the denoised experimental lung sound 

signals RMSE and SNR in Fig. 12 and Fig. 13, respectively. 

From Fig. 12, WATV-Wiener achieved a similar optimal 

RMSE of 0.1933 V compared to the optimal WATV filter in the 

RMSE sense at 0.1938 V, achieving an absolute relative change 

of about 0.26%. In addition, we can observe a similar trend from 

our simulation studies, particularly in the BP filter, where noise 

presence in the overlapped spectral may affect the overall filter 

signal quality, resulting in a high RMSE result of 0.99 V. 

Altogether, the WATV-Wiener filter achieved better and 

optimal RMSE results by about 0.1–0.8 V as compared to other 

filters such as BP filter, Hard filter, Serial filter, Soft filter, SG 

filter, and the TV filter. 

Further evaluation of denoising filter performance from Fig. 

13 showed that the WATV-Wiener filter improved SNR by 

about 4–30 dB compared to other denoising filters, consistent 

with our simulation study findings (5–20 dB). As noise might 

be present in the denoised signal from BP filter as observed 

from the healthy lung sound RMSE results in Fig. 12, which 

resulted in the large range of SNR improvement in adventitious 

lung sound signals from Fig. 13. WATV-Wiener improved 

SNR by about 44 dB in healthy lung sound signals, consistent 

with the SNR results in our simulation studies. 

It is known that denoising continuous piecewise signal, e.g., 

healthy, and wheeze is more straightforward than denoising 

noncontinuous piecewise signal, e.g., crackle; however, we 

have achieved similar performance in terms of improved SNR, 

about 49 dB between crackle and wheeze in our experimental 

studies. From our experimental results, the WATV-Wiener 

filter functions better than the WATV filter in denoising noisy 

 
 
Fig. 11. Lung sound signal recording equipment. 

 
Fig. 12. Denoised filter RMSE performance in captured healthy 
lung sound signals. 
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signals achieving optimal RMSE, and improving the SNR, and 

the noise variance has minimal effect on WATV-Wiener. 

We achieved better (optimal) RMSE results by 0.1–0.8 V in 

the actual healthy lung sound signals than other filters, similar 

to our simulation studies (0.2–0.9 V). Moreover, we achieved 

similar improved SNR for healthy lung sound signals between 

our simulation studies and experiment at about 3–20 dB with 

our optimal parameters. It can also be seen from the data in Fig. 

13 that the improved SNR of about 4–30 dB was attained for 

adventitious (crackle, wheeze, mixed) lung sound signals. The 

improved SNR in our experiment studies (4–30 dB) is higher 

than the improved SNR in our simulation studies (5–20 dB) 

could be attributed to the modified computation of SNR as 

shown in (26), where noise is defined as the differences 

between denoised lung sound signals and observed noisy lung 

sound signals. Although a difference of 10 dB in improved SNR 

for crackle and wheeze is observed between our experiment and 

simulation studies, the minimal difference can be further 

reduced if noise data is available in the database. ‘Noise data’ 

is typically available in practice and usually referred to as using 

a sensor to capture the static electronic interference and ambient 

noise without lung sound signals, similar to our system’s 

captured noise 𝑎𝑛 in (25), and in the literature [3], [6], [18]. 

The optimal results obtained by the WATV-Wiener filter 

could be: 1) due to the advantage of wavelet-based denoising in 

noncontinuous piecewise signal, and 2) the optimal integration 

of two ideal filters, particularly in the RMSE sense, by 

addressing different challenges faced individually, e.g., WATV 

eliminates the requirement of selecting two different wavelet 

transform bases compared to empirical Wiener filter, but 

introduces artifacts, and empirical Wiener filter (known for 

eliminating artifacts through minimizing MSE) to remove the 

artifacts introduced by WATV [9], [14], [22]. 

In denoising actual lung sound signals, the WATV-Wiener 

filter algorithm comprises two primary filters: a bandpass filter 

ranging from 150 Hz to 1300 Hz and an integration of WATV 

and Wiener filter. Each step of the filter handles different 

components of noises. The FIR bandpass filter reduces most 

high-frequency and low-frequency noises such as cough, 

speech, and environment, which accounts for most of the noises 

in actual lung sound signals. However, with the overlapped 

noise frequency, a single linear filter cannot eliminate all the 

noise in the stopband [11], [18]. The WATV-Wiener filter 

segments the signal into different frequency regions in the 

wavelet domain and estimates all wavelet coefficients, both 

reliable and unreliable, in parallel, minimizing the denoised 

signal overall mean square error in the process of inverse 

filtering. The remaining high-frequency and low-frequency 

noises and environmental noise that has overlapping 

frequencies with signals of interest and are not removed by 

bandpass filter are reduced without distortion of the lung 

sounds, as shown in the results from Fig. 12 and Fig. 13. 

In addition, the WATV-Wiener filter can identify the signal 

acoustic features of lung sounds in terms of RMSE, as shown 

in Fig. 12. Thus, the WATV-Wiener filter is helpful for further 

pattern recognition research and can help clinicians identify the 

condition of the patient’s lungs based on observed acoustic 

features. Moreover, the WATV-Wiener filter enables the 

investigation and auscultation of several lung sounds that were 

previously inapplicable due to the weak acoustic features. The 

respiratory characteristics are often too weak to determine the 

condition of the lungs because of the inadequate ideal (noise-

free) signal measuring environment. For instance, the WATV-

Wiener filter helps expose the signals in relation to noise 

without compromising the characteristics of interest in the lung 

sound signals and makes denoised signals contain strong 

enough features in the judgment of lung conditions in terms of 

SNR, as shown in Fig. 13. 

C. Limitations 

However, some limitations must be considered with this 

work and potentially as future work. Firstly, on account of the 

overlapping frequency between lung sound signals and heart 

sound signals. This work focused on denoising environmental 

noises, while the separation of heart sound signals and lung 

sound signals was not considered. To obtain reference lung 

sound signals, the lung sound signals from both our 

measurement system and the shortlisted lung sound signals 

from the respiratory database were recorded on the patient’s 

posterior to ensure that the heart sound signal will be minimal 

and does not interfere significantly with the lung sound signal. 

Additionally, 150 Hz – 1300 Hz bandpass filtering was applied 

to the actual lung sound signals to eliminate the lower heart 

sound frequency. While these frequency bands contain the 

majority of interesting lung sound characteristics, there can still 

be prominent unwanted heart sounds inside the frequency band. 

Therefore, to more accurately replicate the frequency overlap 

between heart sound signals and lung sound signals and assess 

the WATV-Wiener filter robustness in sound separation 

methods between lung and heart signals, pure and unfiltered 

reference lung and heart sound signals would be required. 

The second correlated limitation is with the signal quality 

estimation of the respiratory database shown in (26). Although 

(26) strives to evaluate the denoised signal power in relation to 

noise quantitatively, it was not error-free. As noise is 

unavailable, the assumption for noise was made by subtracting 

the denoised signal from the original noisy signal. Hence, the 

differences between denoised lung sound signals SNR results 

from the respiratory database and the simulation studies can be 

explained with this limitation. The overall performance of the 

 
Fig. 13.  Denoised filter SNR performance in actual healthy lung 
sound signals, and adventitious lung sound signals containing 
crackle, wheeze, or mixed of both crackle and wheeze. 
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WATV-Wiener filter does not directly consider if significant 

portions of the heart sound components are also being removed 

to obtain noise-free sounds. In the general utilization of the 

algorithm, the frequency domain of pulmonary sounds is 

relatively stable. The normalization wavelet method based on 

the signal power against noise significantly improves the 

integration of the WATV-Wiener filter. Besides, the integration 

of the WATV-Wiener filter proposed in this work shows a good 

effect in denoising without distortion. 

VII. CONCLUSION 

A controlled environment for capturing lung sound signals is 

not practical. The signals often contain interference such as 

ambient noise, leading to inaccurate lung health assessments. 

Hence, denoising is critical. Artifacts may be introduced when 

an unsuitable denoising filter is applied, particularly in the lung 

sound signals domain. Thus, we proposed a novel denoising 

wavelet-based approach by unifying the WATV filter and 

empirical Wiener filter denoising noisy lung sound signals in 

this paper. In contrast to parameter approximation akin to the 

literature, this paper established optimal filter parameters 

through case studies. Furthermore, the analysis from the case 

studies in this paper provided a new understanding of filter 

parameters affecting the overall filter denoising performance, 

particularly in the SNR domain. Subsequently, optimal RMSE 

performance is accomplished regardless of noise variance and 

verified in the simulation and experiment studies, ensuring the 

filter conserves waveform characteristics while denoising lung 

sound signals. Additionally, SNR improvement by about 3–20 

dB and 4–30 dB was fulfilled and validated via simulation and 

experiment studies, respectively, compared with other accepted 

lung sound signals denoising filters in the literature. The 

research has demonstrated optimal denoising of noisy lung 

sound signals and further smoothing of the denoised signal 

achieving optimal RMSE results and improved SNR. This work 

is vital for a system that maps lung sound distribution or 

acoustic intensity signal into images for an accurate lung 

function assessment. 
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