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Abstract

A traditional method of in vitro cell culture involves a monolayer of cells at the base of a petri dish
filled with culture medium. While the primary role of the culture medium is to supply nutrients
to the cells, drug or other solutes may be added, depending on the purpose of the experiment.
Metabolism by cells of oxygen, nutrients and drug is typically governed by Michaelis-Menten
(M-M) kinetics. In this paper, a mathematical model of solute transport with M-M kinetics is
developed. Upon non-dimensionalisation, the reaction/diffusion system is re-characterised in terms
of Volterra integral equations, where a parameter β, the ratio of the initial solute concentration to
the M-M constant, proves important: β ≪ 1 is relevant to drug metabolism for the liver, whereas
β ≫ 1 is more appropriate in the case of oxygen metabolism. Regular perturbation expansions for
both cases are obtained. A small time expansion and steady-state solution are also presented. All
results are compared against the numerical solution of the Volterra integral equations, and excellent
agreement is found. The utility of the model and analytical solutions are discussed in the context of
assisting experimental researchers to better understand the environment within in vitro cell culture
experiments.
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1 Introduction

The practice of cultivating cells under controlled conditions outwith a living organism, known as
in vitro cell culture, has been employed for over a century across a wide range of applications. For
example, in vitro cell cultures form a critical part of the drug development pathway, and provide
a platform for investigation of disease initiation and progression. A traditional method of in vitro

cell culture involves culturing a monolayer of cells at the base of a petri dish filled with culture
medium, whose primary role is to supply nutrients to the cells. Despite significant advances in
recent years to increase the physiological relevance of in vitro cell culture, for example the de-
velopment of perfusion bioreactors and the incorporation of three-dimensional cell structures, this
traditional method is still widely adopted today, remaining a popular choice due to its ease of use,
reproducibility and low-cost [1, 2]. Within the typical static in vitro environment, conditions must
be optimal to ensure the growth and/or survival of a healthy cell culture; for example, cells should
receive a sufficient supply of oxygen (O2) and nutrients, and in the case of drug testing, optimal
dosage must be determined. Thus, there is scope for mathematical modelling to provide useful
information that can inform, and improve, experimental design. Mathematical models of solute
transport and metabolism can be used to tailor the set-up of an experiment such that the ideal O2,
nutrient and/or drug concentrations are achieved and, furthermore, can provide insight into issues
such as how often the culture medium should be replenished in order to maintain certain thresholds
over time.

There are many mechanisms by which the interaction between the solute of interest and the cells
can be described; in this paper, Michaelis-Menten (M-M) kinetics are used to characterise solute
metabolism, a common approach in the literature [3], particularly when the solute of interest is O2

or a drug such as paracetamol (routinely used for in vitro toxicity testing [4]). Previously, diffusion
and M-M kinetics have been used to describe the transport and metabolism of O2 within set-ups
representative of standard static in vitro experiments. For example, Demol et al. [5] and Zhao et al.
[6] developed mathematical models and used numerical methods to estimate the O2 concentrations
within cell-seeded hydrogels and cell-seeded scaffolds, respectively. For a monolayer of cells at
the base of a petri dish, a computational model presented by Przekwas et al. [7] was used to predict
O2 concentrations within the cell layer for various depths of culture medium. Considering a similar
experimental set-up but with a focus on cell growth, a mathematical model developed by Burova et
al. [8] was solved numerically and parameterised by comparing experimental data with simulated
results. Finally, in a study by Yarmush et al. [9], the governing equations were solved analytically
to provide the O2 concentration at the surface of a layer of cells at the base of a petri dish. However,
only the steady-state solution was provided.

With the exception of [9], the aforementioned studies were computational in nature and there-
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fore produced purely numerical results: this can be highly useful if the goal is to predict the environ-
ment within a specific set-up, and the visual representations obtained from numerical solutions are
often appealing and easy to interpret. However, such results provide little information on the form
of the mathematical solution and its dependence on the underlying model parameters. Therefore,
it is difficult to generalise the results in the event of any changes to experimental design; instead,
it would be necessary to re-run a computational model with updated input parameters, which can
be time-consuming. On the contrary, an analytical approach provides an exact solution to a set
of governing equations that clearly highlights the interplay between the various model parameters,
and that can readily be updated to account for different cell culture conditions.

In this paper, we present a mathematical model of solute transport within a petri dish, including
metabolism of solute by a monolayer of cells. A series of approximate analytical solutions are
derived and excellent agreement is found upon comparison with numerical solutions. The key
advantage of the analytical solutions is that they clearly highlight the dependence of the cell surface
solute concentration on the various parameters of the model, enabling the more efficient design of
experiments. The remainder of the paper is organised as follows. In section 2, we formulate the
mathematical model before performing non-dimensionalisation, enabling us to express the model in
terms of three key non-dimensional parameters. We then provide motivation for the consideration
of one of these parameters (β, the ratio of initial solute concentration to the M-M constant) being
either small or large. In section 3, we re-characterise the model using two methods. First, Laplace
transforms is used to derive Volterra integral equations for (i) the solute concentration at any depth
within the petri dish, and (ii) the solute concentration at the cell surface. We consider the special
case of a zero flux boundary condition at the fluid/air interface and show that a different Volterra
integral equation is required, due to a subtlety in the inversion of the solution in Laplace transform
space. Secondly, a result from Cannon [10] is used to derive two coupled Volterra integral equations
for (i) the solute concentration at the fluid/air interface, and (ii) the solute concentration at the cell
surface. In section 4, we derive a regular perturbation solution for the cases of small β and large
β, then in section 5 we derive an approximate solution for small time and present the steady-state
solution. In section 6, we provide results comparing the approximate solutions with the numerical
solutions of the Volterra integral equations, before considering two case studies involving O2 and
drug metabolism, respectively. Finally, in section 7, we discuss how the solutions may be exploited
to provide useful information when configuring in vitro cell culture experiments.

2 The mathematical model

Consider a typical static in vitro experimental set-up, where a single layer of cells line the base of
a petri dish of radius R that is filled to a depth d with fluid containing solute (see Fig. 2.1). Given
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Figure 2.1: Schematic drawing (not to scale) illustrating a typical static in vitro experimental set-up (left)
and the 1D domain over which the governing equations are solved (right).

the simple geometry of a petri dish with d ≪ R (see Table 2.1 for typical values), coupled with
the form of the initial and boundary conditions under consideration, it is sufficient to describe a
reaction-diffusion problem in the vertical direction. Here, we choose x and t as the spatial and
temporal co-ordinates, respectively.

We describe transport of the solute through the fluid via diffusion, i.e.

∂c

∂t
(x, t) = D

∂2c

∂x2
(x, t), 0 < x < d, t > 0, (2.1)

where c(x, t) (mol m−3) is the solute concentration and D (m2 s−1) is the constant isotropic diffu-
sion coefficient. Initially, the concentration of the solute within the fluid is assumed to be constant:

c(x, 0) = c0, 0 < x < d. (2.2)

In general, the flux of solute at the fluid/air interface is proportional to the difference between
the solute concentration in the air and at the interface, i.e.

−D
∂c

∂x
(0, t) = K(c0 − c(0, t)), t > 0, (2.3)

Diameter of dish (mm) Recommended volume (mL) Depth of fluid (mm)
35 1.8 - 2.7 1.9 - 2.8

60 4.2 - 6.3 1.5 - 2.2

100 11.0 - 16.5 1.4 - 2.1

150 30.4 - 45.6 1.7 - 2.6

Table 2.1: Diameter (2R) of Corning culture dishes and recommended volume of fluid taken from [11],
with the associated fluid depth (d) calculated using V = πR2d.
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where K (m s−1) is the mass transfer coefficient, and the solute concentration in the air is given by
c0 since Henry’s law dictates that, initially, the concentration of solute in the air and the fluid must
be equal. It is noted that a special case will be considered for solutes that cannot cross the fluid/air
interface (such as drug) where we set K = 0 and consider zero flux across this boundary.

At the base of the petri dish, it is assumed that the cell population is maintained at a fixed
number. We further assume that the thickness of the cell layer is negligible in comparison to the
depth of the fluid, so we can use a flux boundary condition to represent the interaction between the
solute and the cells. Here, M-M kinetics describe solute metabolism:

−D
∂c

∂x
(d, t) =

Vmaxc(d, t)

Km + c(d, t)
, t > 0, (2.4)

where Vmax (mol m−2 s−1) is the maximum metabolic rate and Km (mol m−3) is the M-M constant,
representing the solute concentration for which the metabolic rate is half maximal.

The governing equations (2.1) - (2.4) are non-dimensionalised using the scalings

c = c0c
′, t =

d2

D
t′, x = dx′,

and so, dropping the primes for clarity, the non-dimensional model is given by

∂c

∂t
(x, t) =

∂2c

∂x2
(x, t), 0 < x < 1, t > 0, (2.5)

c(x, 0) = 1, 0 < x < 1, (2.6)
∂c

∂x
(0, t) = −µ

[
1− c(0, t)

]
, t > 0, (2.7)

∂c

∂x
(1, t) = − αc(1, t)

1 + βc(1, t)
, t > 0, (2.8)

where the resulting non-dimensional parameters are defined as follows:

µ =
Kd

D
, α =

Vmaxd

DKm

, β =
c0
Km

.

2.1 Motivation for the consideration of small β and large β

Clearly, the values of the three non-dimensional parameters µ, α and β will vary depending on the
experimental configuration, as well as the solute and cell type under consideration. Whilst it is
clear that the two extremes of µ (0 and ∞, representing zero flux of solute and a constant source of
solute at the fluid/air interface, respectively) are both possible, one must turn to the experimental
literature in order to estimate a reasonable physiological range of α and β. We have uncovered
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that β is typically large for the case of O2 metabolism, and is typically relatively small when
drugs primarily metabolised by the liver are considered (see Table 2.2). This provides sufficient
motivation to explore approximate solutions that are valid for small β and large β.

Parameter Description Case 1: O2 metabolism Case 2: Drug metabolism
d Depth of fluid 4.50× 10−3 m 4.50× 10−3 m

D Diffusion coefficient 1.91× 10−9 m2 s−1 7.50× 10−10 m2 s−1

c0 Initial concentration 2.18× 10−1 mol m−3 1.00× 10−1 mol m−3

Vmax Maximum metabolic rate 1.19× 10−8 mol m−2 s−1 3.49× 10−8 mol m−2 s−1

Km Michaelis-Menten constant 3.33× 10−3 mol m−3 1.40× 10−1 mol m−3

µ Kd/D ∞ 0

α Vmaxd/DKm 8.42 1.50

β c0/Km 65.47 0.71

Table 2.2: Dimensional and non-dimensional parameter values relating to O2 (case 1) and drugs primarily
metabolised in the liver (case 2). Case 1: Values taken from [8]. To obtain Vmax in appropriate units, the
provided value (2.55×10−17 mol cell−1 s−1) was multiplied by the cell density (4.66×108 cells m−2). The
value of µ represents a constant source of O2 at the fluid/air interface. Case 2: Values taken from [12] (with
the exception of d [8]). To obtain Vmax in appropriate units, the provided value (5.00× 10−3 mol m−3 s−1)
was multiplied by the height of the cell layer (6.99 × 10−6 m), calculated by multiplying the cell density
(4.66 × 108 cells m−2 [8]) by the volume of a single cell (1.50 × 10−14 m3 [13]). The value of µ reflects
zero flux of drug at the fluid/air interface.

3 Model re-characterisation

The non-dimensional model (2.5) - (2.8) permits re-characterisation both as a single nonlinear
Volterra integral equation, and also as a system of two nonlinear singular Volterra integral equa-
tions. This section will be concerned with their derivation.

3.1 Formulation 1: a single integral equation

Here, Laplace transforms are used to derive a Volterra integral equation that describes the concen-
tration of solute at the cell surface, c(1, t). This formulation will be used to obtain perturbation
expansions that are valid for small and large β.

By the method of Laplace transforms, the solution of (2.5) subject to (2.6) - (2.7) is

c̄(x, s) = A(s) cosh(
√
sx) +

µA(s)√
s

sinh(
√
sx) +

1

s
,

where
c̄(x, s) =

∫ ∞

0

e−stc(x, t) dt.
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Differentiating with respect to x, applying (2.8) and re-arranging allows one to obtain the following
expression for A(s):

A(s) = − 1√
s sinh(

√
s) + µ cosh(

√
s)
L
{

αc(1, t)

1 + βc(1, t)

}
,

so it follows that the solution in Laplace transform space may be written as

c̄(x, s) =
1

s
− k̄(x, s)L

{
αc(1, t)

1 + βc(1, t)

}
, (3.1)

where
k̄(x, s) =

√
s cosh(

√
sx) + µ sinh(

√
sx)

√
s
[√

s sinh(
√
s) + µ cosh(

√
s)
] .

By taking the inverse Laplace transform of (3.1) and employing the convolution theorem, the fol-
lowing relationship is obtained:

c(x, t) = 1− α

∫ t

0

k(x, t− τ)
c(1, τ)

1 + βc(1, τ)
dτ, (3.2)

where

k(x, t) = L−1

{ √
s cosh(

√
sx) + µ sinh(

√
sx)

√
s
[√

s sinh(
√
s) + µ cosh(

√
s)
]} .

Given that no branch points exist (as can be observed through consideration of Taylor series expan-
sions of sinh and cosh), the residue theorem may be used to evaluate this inverse Laplace transform.
It is noted that s = 0 is a removable singularity, so the poles are given by

√
s sinh(

√
s) + µ cosh(

√
s) = 0,

and, for convenience, setting
√
s = iγ in this transcendental equation gives

µ cos(γ)− γ sin(γ) = 0. (3.3)

Thus, there are infinitely many simple poles at sn = −γ2
n for n ∈ N, where γn are the roots of

(3.3). The residue at s = sn is calculated by re-writing the limit as s → sn as the product of two
limits, the first of which may be evaluated by making use of L’Hôpital’s rule, and then substituting
√
sn = iγn:
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Res
s=sn

= lim
s→sn

{ √
s cosh(

√
sx) + µ sinh(

√
sx)

√
s
[√

s sinh(
√
s) + µ cosh(

√
s)
](s− sn)e

st

}

= lim
s→sn

{
s− sn√

s sinh(
√
s) + µ cosh(

√
s)

}
×

lim
s→sn

{[√
s cosh(

√
sx) + µ sinh(

√
sx)
]

√
s

est

}

=
2
[
γn cos(γnx) + µ sin(γnx)

]
γn cos(γn) + (µ+ 1) sin(γn)

e−γ2
nt.

Then, applying the residue theorem gives

k(x, t) = 2
∞∑
n=1

γn cos(γnx) + µ sin(γnx)

γn cos(γn) + (µ+ 1) sin(γn)
e−γ2

nt. (3.4)

When x = 1, (3.2) reduces to a second kind nonlinear Volterra integral equation, given by

c(1, t) = 1− α

∫ t

0

k(1, t− τ)
c(1, τ)

1 + βc(1, τ)
dτ, (3.5)

where

k(1, t− τ) = 2
∞∑
n=1

γn cos(γn) + µ sin(γn)

γn cos(γn) + (µ+ 1) sin(γn)
e−γ2

n(t−τ),

i.e.

c(1, t) = 1− 2α

∫ t

0

∞∑
n=1

γn cos(γn) + µ sin(γn)

γn cos(γn) + (µ+ 1) sin(γn)
e−γ2

n(t−τ) c(1, τ)

1 + βc(1, τ)
dτ.

The solution of (3.5) then allows one, in principle at least, to evaluate c(x, t) for all x ∈ [0, 1] using
(3.2).

An integral equation can also be obtained for the special case when µ = 0, applicable to solutes
such as drug that cannot cross the fluid/air interface. At first glance, it might be supposed that µ = 0

is simply substituted into (3.4); however, this does not give rise to the correct expression because in
this case, s = 0 is not a removable singularity. Therefore, the residue at this simple pole provides
a non-zero contribution:

Res
s=0

= lim
s→0

{ √
s cosh(

√
sx) + µ sinh(

√
sx)

√
s
[√

s sinh(
√
s) + µ cosh(

√
s)
]∣∣∣∣∣

µ=0

sest

 = 1.

Thus, when µ = 0, the second kind nonlinear Volterra integral equation describing the solute
concentration at x = 1 is given by

c(1, t) = 1− α

∫ t

0

k0(1, t− τ)
c(1, τ)

1 + βc(1, τ)
dτ, (3.6)
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where

k0(1, t) = 1 + 2
∞∑
n=1

γn cos(γn)

γn cos(γn) + sin(γn)
e−γ2

nt.

Note that when µ = 0, (3.3) reduces to sin(γ) = 0, i.e. γn = nπ for n ∈ N. Thus, k0(1, t) may be
re-written as

k0(1, t) = 1 + 2
∞∑
n=1

e−n2π2t.

3.2 Formulation 2: a system of integral equations

Here, the following result from Cannon [10] (see Corollary 7.3.2) is used to derive two coupled
Volterra integral equations that describe the concentration of solute at the fluid/air interface, c(0, t),
and the cell surface, c(1, t). This formulation allows for characterisation of the behaviour of the
solution at small times.

Lemma 1. For piecewise-continuous f , and continuous F and G, the problem

∂u

∂t
(x, t) =

∂2u

∂x2
(x, t), 0 < x < 1, t > 0,

u(x, 0) = f(x), 0 < x < 1,

∂u

∂x
(0, t) = F (t, u(0, t)), t > 0,

∂u

∂x
(1, t) = G(t, u(1, t)), t > 0,

has a unique solution if and only if the function u(x, t) can be expressed as

u(x, t) = w(x, t)− 2

∫ t

0

θ(x, t− τ)F (τ, ϕ1(τ)) dτ + 2

∫ t

0

θ(x− 1, t− τ)G(τ, ϕ2(τ)) dτ,

where

w(x, t) =

∫ 1

0

[
θ(x− ξ, t) + θ(x+ ξ, t)

]
f(ξ) dξ,

and

θ(x, t) =
1√
4πt

∞∑
n=−∞

e−(x+2n)2/4t,

and ϕ1(t), ϕ2(t) are piecewise-continuous functions uniquely satisfying the system of Volterra inte-

gral equations given by
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ϕ1(t) = w(0, t)− 2

∫ t

0

θ(0, t− τ)F (τ, ϕ1(τ)) dτ + 2

∫ t

0

θ(−1, t− τ)G(τ, ϕ2(τ)) dτ,

ϕ2(t) = w(1, t)− 2

∫ t

0

θ(1, t− τ)F (τ, ϕ1(τ)) dτ + 2

∫ t

0

θ(0, t− τ)G(τ, ϕ2(τ)) dτ.

From the governing equations (2.5) - (2.8), it is observed that

f(x) = 1,

ϕ1(t) = c(0, t),

ϕ2(t) = c(1, t),

F (t, c(0, t)) = −µ(1− c(0, t)),

G(t, c(1, t)) = − αc(1, t)

1 + βc(1, t)
.

Furthermore, we note that

κ1 = 2θ(0, t) =
1√
πt

(
1 + 2

∞∑
n=1

e−n2/t

)
, (3.7)

κ2 = θ(±1, t) =
1√
πt

∞∑
n=1

e−(2n−1)2/4t. (3.8)

Finally, it may readily be shown that

w(x, t) =

∫ 1

0

[
θ(x− ξ, t) + θ(x+ ξ, t)

]
dξ = 1,

for all x ∈ [0, 1]. Thus, from Lemma 1, a re-characterisation of the original reaction-diffusion
problem may be obtained in terms of two coupled Volterra integral equations:

c(0, t) = 1 + µ

∫ t

0

κ1(t− τ)
[
1− c(0, τ)

]
dτ − 2α

∫ t

0

κ2(t− τ)
c(1, τ)

1 + βc(1, τ)
dτ, (3.9)

c(1, t) = 1 + 2µ

∫ t

0

κ2(t− τ)
[
1− c(0, τ)

]
dτ − α

∫ t

0

κ1(t− τ)
c(1, τ)

1 + βc(1, τ)
dτ. (3.10)

4 Perturbation expansions

In this section, we use formulation 1 of the model re-characterisation, i.e. the Volterra integral
equations (3.5) and (3.6), to derive approximate solutions that are valid for small and large β,
as motivated in section 2.1. It is noted that, at leading order, the asymptotic limits of β allow for
linearisation of the M-M kinetics. Thus, an alternative approach to obtaining approximate solutions
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(to leading order) is to solve the linear PDE models directly: these solutions are provided in the
supplementary information, and match the approximate solutions we derive in this section. In
contrast to directly solving the linear PDE models, the approximate solutions we derive from the
Volterra integral equations provide the solution at precisely the spatial location of interest, i.e. at
the cell surface. Furthermore, higher order terms can be sought when using the Volterra integral
equations as a starting point for the asymptotic analysis, thereby providing additional information
and highlighting the relative importance of the model parameters.

4.1 Small β solution

Here, we derive a regular perturbation solution of (3.5) for the case where β is small. Let β → 0

and consider
c(1, t) = c0(1, t) + βc1(1, t) +O(β2). (4.1)

Substituting this expression into (3.5) and equating powers of β gives

c0(1, t) = 1− α

∫ t

0

k(1, t− τ)c0(1, τ) dτ, (4.2)

c1(1, t) = −α

∫ t

0

k(1, t− τ)
[
c1(1, τ)− c0(1, τ)

2
]
dτ. (4.3)

First, we can obtain an analytical expression for c0(1, t) by solving (4.2). Taking Laplace trans-
forms, using the convolution theorem and re-arranging yields

c̄0(1, s) =
1

s
[
1 + αk̄(1, s)

] .
Then, taking the inverse Laplace transform and applying the residue theorem gives

c0(1, t) =
µ

αµ+ α + µ
+

∞∑
n=1

2
[
µ cos(λn)− λn sin(λn)

]
e−λ2

nt

(αµ+ α + µ− λ2
n) cos(λn)− λn(2 + α + µ) sin(λn)

, (4.4)

where λn are the countably infinite roots of

(αµ− λ2) sin(λ) + λ(α + µ) cos(λ) = 0. (4.5)

Thus, from (4.1), the approximate solution when β → 0 is given by

c(1, t) =
µ

αµ+ α + µ
+

∞∑
n=1

2
[
µ cos(λn)− λn sin(λn)

]
(αµ+ α + µ− λ2

n) cos(λn)− λn(2 + α + µ) sin(λn)
e−λ2

nt

+ βc1(1, t) +O(β2).

(4.6)
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It is noted that, in principle, an analytical expression for c1(1, t) may be obtained by applying
Laplace transforms to (4.3) after substitution of (4.4) for c0(1, τ). However, in practice, we solve
(4.3) numerically using the methods detailed in the supplementary information. For the special
case when µ = 0, the above analysis can be repeated using (3.6) to obtain

c(1, t) =
∞∑
n=1

2 sin(χn)

χn cos(χn) + (α + 1) sin(χn)
e−χ2

nt + βc1(1, t) +O(β2). (4.7)

where it is noted that χn are the roots of (4.5) with µ = 0, i.e.

χ sin(χ)− α cos(χ) = 0.

4.2 Large β solution

Here, we derive a regular perturbation solution of (3.5) for the case where β is large. Let β → ∞,
set ε = 1/β and consider

c(1, t) = c0(1, t) + εc1(1, t) +O(ε2). (4.8)

Substituting this expression into (3.5) and equating powers of ε gives

c0(1, t) = 1,

c1(1, t) = −α

∫ t

0

k(1, t− τ) dτ, (4.9)

c2(1, t) = α

∫ t

0

k(1, t− τ) dτ = −c1(1, t).

We can obtain an analytical expression for c1(1, t) by direct integration of (4.9):

c1(1, t) = −α

∞∑
n=1

2
[
γn cos(γn) + µ sin(γn)

]
γ2
n

[
γn cos(γn) + (µ+ 1) sin(γn)

] (1− e−γ2
nt
)
.

Thus, from (4.8), the approximate solution when β → ∞ is given by

c(1, t) = 1− α

β

(
1− 1

β

) ∞∑
n=1

2
[
γn cos(γn) + µ sin(γn)

]
γ2
n

[
γn cos(γn) + (µ+ 1) sin(γn)

] (1− e−γ2
nt
)
+O(1/β3). (4.10)

For the special case when µ = 0, the above analysis can be repeated using (3.6) to obtain

c(1, t) = 1− α

β

(
1− 1

β

)(
t+

1

3
− 2

∞∑
n=1

1

n2π2
e−n2π2t

)
+O(1/β3). (4.11)
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5 Small and large t solutions

In this section, we use formulation 2 of the model re-characterisation, i.e. the Volterra integral
equations (3.9) and (3.10), to derive an approximate solution that is valid for small t. Experimen-
tally, it is of interest to develop an understanding of the behaviour of the solution at early times:
for example, if the solute is found to deplete rapidly at the beginning of the experiment, this could
provide an indication that a higher initial concentration of solute is required to maintain a desired
set of cell culture conditions. Further to this, the duration of experiments often outlasts the time
taken for the system to reach equilibrium, so it is also of relevance to examine the steady-state
solution; this is presented here.

5.1 Small t solution

In order to use (3.9) and (3.10) to derive an approximate solution for small t, it is necessary to
examine the behaviour of κ1 and κ2 (given by (3.7) and (3.8), respectively) as t → 0; we will do
this using Riemann sums. First considering κ1, it is clear from Fig. 5.1 that∫ ∞

1

e−x2/t dx <
∞∑
n=1

e−n2/t <

∫ ∞

0

e−x2/t dx.

Evaluation of these integrals yields

√
πt

2
erfc

(
1√
t

)
<

∞∑
n=1

e−n2/t <

√
πt

2
,

Figure 5.1: Schematic drawing illustrating the area under the curve e−x2/t and an approximation to this
area using (a) lower and (b) upper Riemann sums.
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and from (3.7), it follows that

1√
πt

+ erfc

(
1√
t

)
< κ1 <

1√
πt

+ 1.

As t → 0,

erfc

(
1√
t

)
=

√
t√
π
e−1/t

(
1− t

2
+ · · ·

)
is exponentially small, and so

κ1 ∼
1√
πt

as t → 0. (5.1)

Now considering κ2, using lower Riemann sums as illustrated in Fig. 5.2(a) gives

2
∞∑
n=1

e−(2n−1)2/4t >

∫ ∞

1

e−x2/4t dx =
√
πt erfc

(
1

2
√
t

)
,

so from (3.8) it follows that

κ2 >
1

2
erfc

(
1

2
√
t

)
.

Similarly, using upper Riemann sums, Fig. 5.2(b) shows that

2
∞∑
n=2

e−(2n−1)2/4t <

∫ ∞

1

e−x2/4t dx =
√
πt erfc

(
1

2
√
t

)
.

Note that we may re-write (3.8) in the form

Figure 5.2: Schematic drawing illustrating the area under the curve e−x2/4t and an approximation to this
area using lower (a) and upper (b) Riemann sums.
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κ2 =
1√
πt

(
e−1/4t +

∞∑
n=2

e−(2n−1)2/4t

)
,

so it follows that
κ2 <

1√
πt

e−1/4t +
1

2
erfc

(
1

2
√
t

)
.

Thus, we have

1

2
erfc

(
1

2
√
t

)
< κ2 <

1√
πt

e−1/4t +
1

2
erfc

(
1

2
√
t

)
.

As t → 0,

erfc

(
1

2
√
t

)
=

2
√
t√
π
e−1/4t (1− 2t+ · · · )

is exponentially small, and e−1/4t decays faster than 1/
√
πt grows. Therefore, as t → 0, κ2 is

exponentially small and the coupled Volterra integral equations (3.9) and (3.10) become

c(0, t) ∼ 1 + µ

∫ t

0

κ1(t− τ)
[
1− c(0, τ)

]
dτ,

c(1, t) ∼ 1− α

∫ t

0

κ1(t− τ)
c(1, τ)

1 + βc(1, τ)
dτ. (5.2)

Using result (5) in [14], it may be shown that

1√
πt

(
1 + 2

∞∑
n=1

e−n2/t

)
= 1 + 2

∞∑
n=1

e−n2π2t,

or κ1 = k0(1, t). Thus, for small t, (5.2) is equivalent to (3.6), the Volterra integral equation derived
for the special case when µ = 0. This means the small t approximate solution that we are about to
derive will be independent of µ. This makes sense: in order for mass transfer to take place across
the fluid/air interface (i.e. for the flux to be non-zero), a gradient of solute must first be generated
via diffusion and metabolism. However, for very early times, no such gradient will yet exist and
this is equivalent to setting µ = 0.

Now, for t → 0, we consider the following expansion:

c(1, t) = a1 + a2t
1/2 + a3t+ a4t

3/2 +O(t2). (5.3)

Substituting (5.3) into (5.2) and making use of (5.1) yields
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a1 + a2t
1/2 + a3t+ a4t

3/2 +O(t2)

= 1− α√
π

∫ t

0

(t− τ)−1/2
[
a1 + a2τ

1/2 + a3τ + a4τ
3/2 +O(t2)

]
×
[

1

a1β + 1
− a2β

(a1β + 1)2
τ 1/2 +

(a22 − a1a3)β
2 − a3β

(a1β + 1)3
τ +O(τ 3/2)

]
dτ.

Multiplying out the brackets, collecting terms and integrating, then finally equating powers of t
gives

a1 = 1,

a2 = − 2α√
π(β + 1)

,

a3 =
α2

(β + 1)3
,

a4 = − 4α3(π − 4β)

3π3/2(β + 1)5
.

Thus, from (5.3), the approximate solution for t → 0 is given by

c(1, t) = 1− 2α√
π(β + 1)

t1/2 +
α2

(β + 1)3
t− 4α3(π − 4β)

3π3/2(β + 1)5
t3/2 +O(t2). (5.4)

5.2 Steady-state solution

As t → ∞, the solution of the diffusion equation subject to (2.7) and (2.8) is given by

c(x,∞) = A− µ(1− A)x, (5.5)

where A is the positive root of the following quadratic equation:

µβ(µ+ 1)A2 +
[
µ(1− β(1 + 2µ)) + α(µ+ 1)

]
A+ µ(µβ − α− 1) = 0. (5.6)

Note that for the special case when µ = 0, (5.6) reduces to A = 0 and thus the steady-state solution
is equal to zero; this is intuitive, since without replenishment the solute will fully deplete due to
metabolism by the cells.

6 Results and discussion

In this section, we compare the numerical solution of the Volterra integral equation (3.5), or (3.6) for
the special case when µ = 0, with the small β, large β, small t and steady-state solutions. It is noted
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that our approach of obtaining solutions by solving the integral equations numerically provides the
solutions directly at the cell surface. Moreover, since (3.5) and (3.6) are convolution Volterra
integral equations, solving these via product integration methods is more computationally efficient
(both in terms of storage as well as operation count) than using standard numerical techniques to
solve the original PDE system (see, e.g. [15]). For details of the numerical methods employed to
obtain the solutions of the Volterra integral equations (including those that appear in the c1(1, t)

term of the small β solutions), the reader is referred to the supplementary information.
We begin by exploring numerically the influence of µ on the cell surface solute concentration

given by (3.5), or (3.6) for the special case when µ = 0, assuming baseline values of α = β = 1. In
Fig. 6.1, we observe the independence of the cell surface solute concentration on µ at early times,
in agreement with (5.4). Moreover, as expected, increasing the value of µ results in higher cell
surface solute concentrations at later times. It is notable that, in line with (5.5), c(1, t) appears to be
tending towards a non-zero steady-state value as µ → ∞, and towards zero as µ → 0; computations
performed over a larger time interval confirm that the steady-state solutions are reached.

Figure 6.1: Numerical solution of the Volterra integral equation (3.5) with µ = 0.1 − 100, and numerical
solution of the Volterra integral equation (3.6) for the case when µ = 0, for 0 ≤ t ≤ 1 with α = β = 1.

Next, we explore numerically the effect of α on the cell surface solute concentration given by
(3.5), assuming baseline values of µ = β = 1. Since α is the ratio of the metabolic rate and the
diffusion rate, it is expected that as α increases, and therefore as the metabolic rate increases, the
rate of solute depletion will increase. This behaviour is observed in Fig. 6.2, where it is clear
that for the smallest value of α, i.e. for negligible metabolism, the solute concentration remains
high, whereas for the largest value of α, i.e. for high metabolism, the solute concentration rapidly
decreases. It is noted that Fig. 6.2 can also be used to anticipate changes to the solute concentration
in the event of a cell population increase: since the cell density is incorporated within Vmax, an
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increase in cell population and therefore cell density will lead to an increased metabolic rate, i.e.
an increased value of α.

Figure 6.2: Numerical solution of the Volterra integral equation (3.5) with α = 0.01 − 100, for 0 ≤ t ≤ 1
with µ = β = 1.

Now, for both extremes of µ, we compare the small β solutions with the numerical solutions
to the Volterra integral equations, for a baseline value of α = 1. For the case when µ = 0, the
numerical solution of (3.6) is compared with the small β solution (4.7) (Fig. 6.3, left), and for the
case when µ → ∞, the numerical solution of (3.5) is compared with the small β solution (4.6) (Fig.
6.3, right). Note that, in practice, µ = 106 was used to generate plots for the case when µ → ∞.
In Fig. 6.3, we observe that as β is reduced from 1 to 0.01, the agreement between the numerical
solutions and the approximate small β solutions improves. It is noted that, whilst there is a large
discrepancy between the numerical solutions and the small β solutions up to O(1) for β = 1, the
approximate solutions up to O(β) are good, with only a small discrepancy evident at early times.
For β = 0.1, the O(β) solutions are in excellent agreement with the numerical solutions, whilst for
β = 0.01, the O(1) solutions are sufficient.

Similarly, for a baseline value of α = 1, we compare the numerical solutions of (3.6) and (3.5)
with the large β solutions (4.11) and (4.10), for the case when µ = 0 (Fig. 6.4, left) and µ → ∞
(Fig. 6.4, right) , respectively. Note that, in practice, µ = 106 was used to generate plots for the
case when µ → ∞. In Fig. 6.4, the large β approximate solutions vary substantially from the
numerical solutions to the Volterra integral equations when β = 1. However, we observe that as
β is increased to 10, and subsequently 100, the agreement between the approximate solutions and
the numerical solutions notably improves. For β = 10, whilst there is a small discrepancy between
the numerical solutions and the large β solutions up to O(1/β), the approximate solutions up to
O(1/β2) are excellent. For β = 100, the O(1/β) solutions are sufficient.
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Figure 6.3: Comparison between the numerical solution of the Volterra integral equation (3.6) and the small
β approximate solution (4.7) for the case when µ = 0 (left), and comparison between the numerical solution
of the Volterra integral equation (3.5) and the small β approximate solution (4.6) for µ → ∞ (right), for
0 ≤ t ≤ 1 with α = 1, and β = 1 (upper), β = 0.1 (middle) and β = 0.01 (lower). Note that, in practice,
µ = 106 was used to generate plots for the case when µ → ∞.
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Figure 6.4: Comparison between the numerical solution of the Volterra integral equation (3.6) and the large
β approximate solution (4.11) for the case when µ = 0 (left), and comparison between the numerical solution
of the Volterra integral equation (3.5) and the large β approximate solution (4.10) for µ → ∞ (right), for
0 ≤ t ≤ 1 with α = 1, and β = 1 (upper), β = 10 (middle) and β = 100 (lower). Note that, in practice,
µ = 106 was used to generate plots for the case when µ → ∞.
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Now, using baseline values of α = β = µ = 1, Fig. 6.5 compares the numerical solution of
the Volterra integral equation (3.5) with the small t solution (5.4). As expected, as we increase
the number of terms in the approximate solution, we observe better agreement with the numerical
solution. While there is a small discrepancy between the numerical solution and the small t solution
up to O(t1/2), the inclusion of the O(t) term results in excellent agreement.

Figure 6.5: Comparison between the numerical solution of the Volterra integral equation (3.5) and the small
t approximate solution (5.4), for 0 ≤ t ≤ 1 with α = β = µ = 1. The inset plot highlights the excellent
agreement between the solutions for 0 ≤ t ≤ 0.1.

Finally, we use realistic parameter values from the literature (listed in Table 2.2) to compare the
numerical solutions of the Volterra integral equations with the approximate solutions and steady-
state solutions. For the parameter values relating to O2 metabolism (case 1), Fig. 6.6 shows ex-
cellent agreement when comparing the numerical solution of the Volterra integral equation (3.5)
with the large β approximate solution (4.10) and the non-zero steady-state solution (5.5). For the
parameter values relating to drug metabolism (case 2), Fig. 6.7 compares the numerical solution of
the Volterra integral equation (3.6) with the small β approximate solution (4.7) and the steady-state
solution of zero. For this case, some discrepancy is noted between the numerical solution and the
small β solution up to O(1), but the small β solution up to O(β) provides excellent agreement. In
both cases, the steady-state solutions are obtained.
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Figure 6.6: Comparison between the numerical solution of the Volterra integral equation (3.5), the steady-
state solution (5.5) and the large β approximate solution (4.10), using the parameter values from Table 2.2
that correspond to O2. Note that µ = 106 was chosen to represent a constant supply of O2 from the air, and
the maximum non-dimensional time corresponds to 6 hours.

Figure 6.7: Comparison between the numerical solution of the Volterra integral equation (3.6), the steady-
state solution (i.e. zero) and the small β approximate solution (4.7) using the parameter values from Table
2.2 that correspond to drugs primarily metabolised in the liver. Note that µ = 0 was chosen to represent no
supply of drug from the air, and the maximum non-dimensional time corresponds to 2 days.

7 Utility of the model

In this paper, Volterra integral equations were derived for estimating the solute concentration at the
surface of a layer of cells cultured within a petri dish. Whilst solutions can be obtained by solving
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(3.5) and (3.6) directly using numerical schemes (see supplementary information), this does not
provide a detailed insight into the dependency of the solution on key model parameters; instead,
this information was gained by applying analytical methods to derive approximate solutions, valid
for small β, large β and small t, as well as the steady-state solution. The analytical solutions can
be used to quickly obtain details of the cell culture environment that could not be uncovered by
numerical solutions alone, without requiring the implementation of complicated numerical tech-
niques.

To expand upon the utility of the results presented here, further simple relationships are pro-
vided for answering key questions that could lead to the improvement of in vitro cell culture con-
ditions. This would be of particular relevance to experimental researchers who wish to reap the
benefits of modelling without requiring a deep understanding of the underlying mathematical tech-
niques.

Question 1: How much solute has been metabolised at each stage of the experiment?

In dimensional parameters, the total amount of solute that has been metabolised in a given time
may be calculated by integrating the M-M reaction term as follows:

m(T ) = A

∫ T

0

Vmaxc(d, t)

Km + c(d, t)
dt,

where m(T ) (mol) is the total amount of solute that has been metabolised in a given time, T (s)
is the time of interest, and A (m2) is the area covered by the cells. In order to make use of the
solutions presented in this chapter, we non-dimensionalise this expression using the scalings

c = c0c
′, t =

d2

D
t′,

to obtain

m(T ) =

∫ T

0

αc(1, t)

1 + βc(1, t)
dt,

where the primes have been dropped for convenience. In general, m(T ) may be calculated by
solving (3.5) numerically to obtain c(1, t), and then performing the integration. However, it is
noted that when β is either small or large, M-M reduces to linear kinetics and so

m(T ) ∼


∫ T

0

αc(1, t) dt, β → 0∫ T

0

α

β
dt, β → ∞

.

For the case when β → 0, we can approximate m(T ) by replacing c(1, t) by the small β solution
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(4.6) before performing the integration to obtain

m(T ) ∼ α

(
µT

αµ+ α + µ

+
∞∑
n=1

2
[
µ cos(λn)− λn sin(λn)

][
1− e−λ2

nT
]

λ2
n

[
(αµ+ α + µ− λ2

n) cos(λn)− λn(2 + α + µ) sin(λn)
] +O(β)

)
.

(7.1)

For the special case when µ = 0, c(1, t) can be replaced by (4.7) and the integration can be per-
formed to give

m(T ) ∼ α

(
∞∑
n=1

2 sin(χn)
[
1− e−χ2

nT
]

χ2
n [χn cos(χn) + (χ+ 1) sin(χn)]

+O(β)

)
. (7.2)

For the case when β → ∞, solute metabolism is approximately constant and so m(T ) is simply
approximated by

m(T ) ∼ α

β
T. (7.3)

Thus, the non-dimensional amount of solute that has been metabolised in a given time may be
approximated by

• (7.1) when β is small, for a general value of µ, or

• (7.2) when β is small, for the special case when µ = 0, or

• (7.3) when β is large.

The dimensional amount of solute that has been metabolised in a given time can then easily be ob-
tained by multiplying m(T ) by Adc0, recalling that d (m) is the depth of the fluid and c0 (mol m−3)
is the initial solute concentration.

Question 2: How can the experiment be configured so that the cell surface solute concentration
remains above a desired concentration for a given time?

To ensure that the solute concentration at the cell surface remains above a desired amount for
a specified duration of time, the underlying model parameters must be configured such that the
following inequality is satisfied:

c(1, T ) > cD, (7.4)

where cD is the non-dimensional desired cell surface solute concentration. When β is either small
or large, we can replace c(1, T ) by the approximate analytical solutions derived in sections 4.1 and
4.2, and the values of α, β and/or µ should be adjusted such that (7.4) is satisfied. In practice, this
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means altering the depth of the fluid and/or the initial solute concentration, since the remaining
dimensional parameters that α, β and µ are comprised of relate specifically to the cell type and
solute under consideration.

Question 3: How long does it take for the cell surface solute concentration to reach steady-state?

The non-dimensional time taken for the solute concentration at the cell surface to reach a desired
amount may be obtained by solving

c(1, t) = cD. (7.5)

In general, we can solve this equation by using the numerical solution of the Volterra integral equa-
tion, but again, when β is either small or large, we can instead replace c(1, t) by the approximate
analytical solutions. Thus, the non-dimensional time taken to reach a desired cell surface solute
concentration may be approximated by solving (7.5) for t, with c(1, t) replaced by

• (4.6) when β is small, for a general value of µ, or

• (4.7) when β is small, for the special case when µ = 0, or

• (4.10) when β is large, for a general value of µ, or

• (4.11) when β is large, for the special case when µ = 0.

The time in seconds can then easily be obtained by simply multiplying t by d2/D, recalling that D
(m2 s−1) is the diffusion coefficient of the solute.

To calculate how long it takes for the solute concentration at the cell surface to reach steady-
state, the above steps may be followed with cD replaced by the cell surface solute concentration as
t → ∞, given by (5.5). Recall that for the special case when µ = 0, the steady-state cell surface
solute concentration is equal to zero, and so the non-dimensional time taken to reach steady-state
may be calculated by solving c(1, t) = 0, or equivalently, m(t) = 1, since the solute will be fully
depleted when the amount of solute metabolised is equal to the initial amount of solute.
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Solutions to the linear PDE models

For β ≪ 1 and β ≫ 1, the nonlinear M-M kinetics may be linearised and the following PDE
models can be solved directly to obtain approximate solutions that are valid for small and large β:

∂c

∂t
(x, t) =

∂2c

∂x2
(x, t), 0 < x < 1, t > 0, (1)

c(x, 0) = 1, 0 < x < 1, (2)
∂c

∂x
(0, t) = −µ

[
1− c(0, t)

]
, t > 0, (3)

∂c

∂x
(1, t) =

−αc(1, t), β ≪ 1, (4)

−α

β
, β ≫ 1. (5)

Solving (1) subject to (2) and (3) gives

c̄(x, s) = a(s) cosh(
√
sx) +

µa(s)√
s

sinh(
√
sx) +

1

s
. (6)

and taking the inverse Laplace transform yields

c(x, t) = 1 + L−1

{
a(s)

[
cosh(

√
sx) +

µ√
s
sinh(

√
sx)

]}
. (7)

We may now apply (4) and (5) in turn to obtain small and large β solutions.
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Small β solution. Here, we obtain a(s) by differentiating (6) with respect to x and applying the
Laplace transform of (4):

a(s) = − α
√
s
[
(s+ αµ) sinh(

√
s) +

√
s(α + µ) cosh(

√
s)
] .

Then, from (7), it follows that

c(x, t) = 1− αL−1

{ √
s cosh(

√
sx) + µ sinh(

√
sx)

s
[
(s+ αµ) sinh(

√
s) +

√
s(α + µ) cosh(

√
s)
]} . (8)

It may readily be shown that no branch points exist, so the residue theorem is used to evaluate the
inverse Laplace transform. The poles are given by

s = 0 and (s+ αµ) sinh(
√
s) +

√
s(α + µ) cosh(

√
s) = 0,

and, for convenience, setting
√
s = iλ in the transcendental equation gives

(αµ− λ2) sin(λ) + λ(α + µ) cos(λ) = 0. (9)

Hence, there is a simple pole at s = 0 and infinitely many simple poles at sn = −λ2
n for n ∈ N,

where λn are the roots of (9). Using L’Hôpital’s rule to calculate the residues gives

Res
s=0

=
µx+ 1

αµ+ α + µ
,

Res
s=sn

=
2
[
λn cos(λnx) + µ sin(λnx)

]
λn

[
(αµ+ α + µ− λ2

n) cos(λn)− λn(2 + α + µ) sin(λn)
]e−λ2

nt.

Then, by applying the residue theorem, it follows from (8) that

c(x, t) = 1−α

(
µx+ 1

αµ+ α + µ
+

∞∑
n=1

2
[
λn cos(λnx) + µ sin(λnx)

]
λn

[
(αµ+ α + µ− λ2

n) cos(λn)− λn(2 + α + µ) sin(λn)
]e−λ2

nt

)
.

Re-arranging (9) to obtain

−α
[
λn cos(λn) + µ sin(λn)

]
= λn

[
µ cos(λn)− λn sin(λn)

]
,

and choosing x = 1 results in

c(1, t) =
µ

αµ+ α + µ
+

∞∑
n=1

2
[
µ cos(λn)− λn sin(λn)

]
(αµ+ α + µ− λ2

n) cos(λn)− λn(2 + α + µ) sin(λn)
e−λ2

nt,
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i.e. the small β solution (4.6), to leading-order.

Large β solution. Here, we obtain a(s) by differentiating (6) with respect to x and applying the
Laplace transform of (5):

a(s) = − α

βs
[√

s sinh(
√
s) + µ cosh(

√
s)
] .

Then, from (7), it follows that

c(x, t) = 1− α

β
L−1

{ √
s cosh(

√
sx) + µ sinh(

√
sx)

s3/2
[√

s sinh(
√
s) + µ cosh(

√
s)

}
. (10)

It may readily be shown that no branch points exist, so the residue theorem is used to evaluate the
inverse Laplace transform. The poles are given by

s = 0 and
√
s sinh(

√
s) + µ cosh(

√
s) = 0,

and, for convenience, setting
√
s = iγ in the transcendental equation gives

µ cos(γ)− γ sin(γ) = 0. (11)

Hence, there is a simple pole at s = 0 and infinitely many simple poles at sn = −γ2
n for n ∈ N,

where γn are the roots of (11). Using L’Hôpital’s rule to calculate the residues gives

Res
s=0

= x+
1

µ
,

Res
s=sn

= −
2
[
γn cos(γnx) + µ sin(γnx)

]
γ2
n

[
γn cos(γn) + (µ+ 1) sin(γn)

]e−γ2
nt.

Then, by applying the residue theorem, it follows from (10) that

c(x, t) = 1− α

β

(
x+

1

µ
−

∞∑
n=1

2
[
γn cos(γnx) + µ sin(γnx)

]
γ2
n

[
γn cos(γn) + (µ+ 1) sin(γn)

]e−γ2
nt

)
.

Choosing x = 1 results in

c(1, t) = 1− α

β

(
1 +

1

µ
−

∞∑
n=1

2
[
γn cos(γn) + µ sin(γn)

]
γ2
n

[
γn cos(γn) + (µ+ 1) sin(γn)

]e−γ2
nt

)
,

which may be shown to be equivalent to the large β solution (4.10), to first-order.
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Solutions to the linear PDE models for the case when µ = 0

For the special case when µ = 0, we have a zero flux boundary condition at the fluid/air interface.
Thus, the following PDE models can be solved directly to obtain approximate solutions that are
valid for β ≪ 1 and β ≫ 1:

∂c

∂t
(x, t) =

∂2c

∂x2
(x, t), 0 < x < 1, t > 0, (12)

c(x, 0) = 1, 0 < x < 1, (13)
∂c

∂x
(0, t) = 0, t > 0, (14)

∂c

∂x
(1, t) =

−αc(1, t), β ≪ 1, (15)

−α

β
, β ≫ 1. (16)

Solving (12) subject to (13) and (14) gives

c̄(x, s) = a(s) cosh(
√
sx) +

1

s
. (17)

and taking the inverse Laplace transform yields

c(x, t) = 1 + L−1
{
a(s) cosh(

√
sx)
}
. (18)

We may now apply (15) and (16) in turn to obtain small and large β solutions.

Small β solution. Here, we obtain a(s) by differentiating (17) with respect to x and applying the
Laplace transform of (15):

a(s) = − α

s
[√

s sinh(
√
s) + α cos(

√
s)
] .

Then, from (18), it follows that

c(x, t) = 1− αL−1

{
cosh(

√
sx)

s
[√

s sinh(
√
s) + α cosh(

√
s)
]} . (19)

It may readily be shown that no branch points exist, so the residue theorem is used to evaluate the
inverse Laplace transform. The poles are given by

s = 0 and
√
s sinh(

√
s) + α cosh(

√
s) = 0,
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and, for convenience, setting
√
s = iχ in the transcendental equation gives

χ sin(χ)− α cos(χ) = 0. (20)

Hence there is a simple pole at s = 0 and infinitely many simple poles at sn = −χ2
n for n ∈ N,

where χn are the roots of (20). After a trivial calculation, it is clear that

Res
s=0

=
1

α
,

and, using L’Hôpital’s rule, the residue at s = sn is given by

Res
s=sn

= − 2 cos(χnx)

χn

[
χn cos(χn) + (α + 1) sin(χn)

]e−χ2
nt.

Then, applying the residue theorem, it follows from (19) that

c(x, t) =
∞∑
n=1

2α cos(χnx)

χn

[
χn cos(χn) + (α + 1) sin(χn)

]e−χ2
nt.

Re-arranging (20) to obtain
α cos(χn) = χn sin(χn),

and choosing x = 1 results in

c(1, t) =
∞∑
n=1

2 sin(χn)

χn cos(χn) + (α + 1) sin(χn)
e−χ2

nt,

i.e. the small β solution (4.7), to leading-order.

Large β solution. Here, we obtain a(s) by differentiating (17) with respect to x and applying the
Laplace transform of (16):

a(s) = − α

β
[
s3/2 sinh(

√
s)
] .

Then, from (18), it follows that

c(x, t) = 1− α

β
L−1

{
cosh(

√
sx)

s3/2 sinh(
√
s)

}
. (21)

It may readily be shown that no branch points exist, so the residue theorem is used to evaluate the
inverse Laplace transform. The poles are given by

s = 0 and sinh(
√
s) = 0,

5



i.e. there is a pole of order 2 at s = 0 and infinitely many simple poles at sn = −n2π2 for n ∈ N.
Using L’Hôpital’s rule to calculate the residues gives

Res
s=0

=
x2

2
+ t− 1

6
,

Res
s=sn

=
2 cos(nπx)

(−1)n+1n2π2
e−n2π2t.

Then, applying the residue theorem, it follows from (21) that

c(x, t) = 1− α

β

(
x2

2
+ t− 1

6
+ 2

∞∑
n=1

cos(nπx)

(−1)n+1n2π2
e−n2π2t

)
.

Choosing x = 1 and noting that cos(nπ) = (−1)n results in

c(1, t) = 1− α

β

(
t+

1

3
− 2

∞∑
n=1

1

n2π2
e−n2π2t

)
,

i.e. the large β solution (4.11), to first-order.

Numerical method for solving (3.5)

Product integration methods are applied to derive an implicit numerical scheme for solving (3.5),
given by

c(1, t) = 1− α

∫ t

0

∞∑
n=1

σne
−γ2

n(t−τ) c(1, τ)

1 + βc(1, τ)
dτ,

where σn is a constant defined as

σn =
2
[
γn cos(γn) + µ sin(γn)

]
γn cos(γn) + (µ+ 1) sin(γn)

.

Replacing t by ti = i∆t, where i = 1, 2, . . . , T such that T∆t is the final time of interest, the
integral can be written as a sum of integrals over smaller intervals:

c(1, ti) = 1− α
i−1∑
j=0

∫ tj+1

tj

∞∑
n=1

σne
−γ2

n(ti−τ) c(1, τ)

1 + βc(1, τ)
dτ.

This can be re-written as

c(1, ti) ≈ 1− α

i−1∑
j=0

(∫ tj+1

tj

∞∑
n=1

σne
−γ2

n(ti−τ) dτ

)
c(1, tj+1)

1 + βc(1, tj+1)
,
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assuming the following approximation over [tj, tj+1]:

c(1, τ)

1 + βc(1, τ)
≈ c(1, tj+1)

1 + βc(1, tj+1)
.

Now, performing the integration with tj = j∆t gives

∫ tj+1

tj

∞∑
n=1

σne
−γ2

n(ti−τ) dτ =
∞∑
n=1

σn

γ2
n

(
e−γ2

n∆t(i−j−1) − e−γ2
n∆t(i−j)

)
,

and so

c(1, ti) ≈ 1− α
i−1∑
j=0

[
∞∑
n=1

σn

γ2
n

(
e−γ2

n∆t(i−j−1) − e−γ2
n∆t(i−j)

)] c(1, tj+1)

1 + βc(1, tj+1)
.

It is noted that

i−1∑
j=0

[
∞∑
n=1

σn

γ2
n

(
e−γ2

n∆t(i−j−1) − e−γ2
n∆t(i−j)

)] c(1, tj+1)

1 + βc(1, tj+1)

=

[
∞∑
n=1

σn

γ2
n

(
1− e−γ2

n∆t
)] c(1, ti)

1 + βc(1, ti)

+
i−2∑
j=0

[
∞∑
n=1

σn

γ2
n

(
e−γ2

n∆t(i−j−1) − e−γ2
n∆t(i−j)

)] c(1, tj+1)

1 + βc(1, tj+1)
,

so an approximation to c(1, ti) may be obtained by finding the roots, ci, of the following implicit
equation:

ci + α

[
∞∑
n=1

σn

γ2
n

(
1− e−γ2

n∆t
)] ci

1 + βci

= 1− α

i−2∑
j=0

[
∞∑
n=1

σn

γ2
n

(
e−γ2

n∆t(i−j−1) − e−γ2
n∆t(i−j)

)] cj+1

1 + βcj+1

.

.
Numerical method for solving (3.6)

Similarly, product integration methods are applied to derive an implicit numerical scheme for solv-
ing (3.6), given by

c(1, t) = 1− α

∫ t

0

k0(1, t− τ)
c(1, τ)

1 + βc(1, τ)
dτ,
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where

k0(1, t) = 1 + 2
∞∑
n=1

e−n2π2t.

For the following derivation, k0(1, t) is re-written as

k0(1, t) =
1√
πt

(
1 + 2

∞∑
n=1

e−n2/t

)
,

using result (5) in [1]. Using this form for k0(1, t), (3.6) becomes

c(1, t) = 1− α√
π

∫ t

0

1√
t− τ

(
1 + 2

∞∑
n=1

e−n2/(t−τ)

)
c(1, τ)

1 + βc(1, τ)
dτ.

Replacing t by ti = i∆t, where i = 1, 2, . . . , T such that T∆t is the final time of interest, the
integral can be re-written as a sum of integrals over smaller intervals:

c(1, ti) = 1− α√
π

i−1∑
j=0

∫ tj+1

tj

1√
ti − τ

(
1 + 2

∞∑
n=1

e−n2/(ti−τ)

)
c(1, τ)

1 + βc(1, τ)
dτ.

This can be re-written as

c(1, ti) ≈ 1− α√
π

i−1∑
j=0

(∫ tj+1

tj

1√
ti − τ

dτ

)(
1 + 2

∞∑
n=1

e−n2/(ti−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)
,

assuming the following approximation over [tj, tj+1]:(
1 + 2

∞∑
n=1

e−n2/(t−τ)

)
c(1, τ)

1 + βc(1, τ)
≈

(
1 + 2

∞∑
n=1

e−n2/(t−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)

Performing the integration with tj = j∆t gives∫ tj+1

tj

1√
ti − τ

dτ = 2
√
∆t
(√

i− j −
√

i− j − 1
)
,

and so

c(1, ti) ≈ 1− 2α
√
∆t√
π

i−1∑
j=0

(√
i− j −

√
i− j − 1

)(
1 + 2

∞∑
n=1

e−n2/(ti−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)
.
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It is noted that

i−1∑
j=0

(√
i− j −

√
i− j − 1

)(
1 + 2

∞∑
n=1

e−n2/(ti−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)

=
c(1, ti)

1 + βc(1, ti)
+

i−2∑
j=0

(√
i− j −

√
i− j − 1

)(
1 + 2

∞∑
n=1

e−n2/(ti−tj+1)

)
c(1, tj+1)

1 + βc(1, tj+1)
,

so an approximation to c(1, ti) may be obtained by finding the roots, ci, of the following implicit
equation:

ci +
2α

√
∆t√
π

ci
1 + βci

= 1− 2α
√
∆t√
π

i−2∑
j=0

(√
i− j −

√
i− j − 1

)(
1 + 2

∞∑
n=1

e−n2/(ti−tj+1)

)
cj+1

1 + βcj+1

.

.
Numerical method for solving (4.3)

An explicit Euler numerical scheme is derived for solving (4.3), given by

c1(1, t) = −α

∫ t

0

k(1, t− τ)
[
c1(1, τ)− c0(1, τ)

2
]
dτ,

where

c0(1, t) =
µ

αµ+ α + µ
+

∞∑
n=1

2
[
µ cos(λn)− λn sin(λn)

]
e−λ2

nt

(αµ+ α + µ− λ2
n) cos(λn)− λn(2 + α + µ) sin(λn)

,

and λn are the roots of
(αµ− λ2) sin(λ) + λ(α + µ) cos(λ) = 0.

Replacing t by ti = i∆t, where i = 1, 2, . . . , T such that T∆t is the final time of interest, the
integral can be re-written as a sum of integrals over smaller intervals:

c1(1, ti) = −α
i−1∑
j=0

∫ tj+1

tj

k(1, ti − τ)
[
c1(1, τ)− c0(1, τ)

2
]
dτ.

Then, using the argument of Riemann sums gives

c1(1, ti) ≈ −α∆t

i−1∑
j=0

k(1, ti − tj)
[
c1(1, tj)− c0(1, tj)

2
]
.
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Thus, an approximation to c1(1, ti) may be obtained by finding the roots, c1,i, of the following
explicit equation:

c1,i = −α∆t

i−1∑
j=0

k(1, ti − tj)
[
c1,j − c20,j

]
.

Similarly, an explicit Euler numerical scheme can be used to obtain c1(1, t) for the case when
µ = 0, given by

c1(1, t) = −α

∫ t

0

k0(1, t− τ)
[
c1(1, τ)− c0(1, τ)

2
]
dτ,

where

c0(1, t) =
∞∑
n=1

2 sin(χn)e
−χ2

nt

χn cos(χn) + (α + 1) sin(χn)
,

and χn are the roots of
χ sin(χ)− α cos(χ) = 0.

As before, the integral can be re-written as a sum of integrals over smaller intervals, then using the
argument of Riemann sums gives

c1(1, ti) ≈ −α∆t
i−1∑
j=0

k0(1, ti − tj)
[
c1(1, tj)− c0(1, tj)

2
]
.

Thus, for the case when µ = 0, an approximation to c1(1, ti) may be obtained by finding the roots,
c1,i, of the following explicit equation:

c1,i = −α∆t
i−1∑
j=0

k0(1, ti − tj)
[
c1,j − c20,j

]
.
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