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Abstract 

Metacognition is the ability to weigh the quality of our own cognition, such as the confidence that our perceptual decisions are correct. 
Here we ask whether metacognitive performance can itself be evaluated or else metacognition is the ultimate reflective human faculty. 
Building upon a classic visual perception task, we show that human observers are able to produce nested, above-chance judgements 
on the quality of their decisions at least up to the fourth order (i.e. meta-meta-meta-cognition). A computational model can account 
for this nested cognitive ability if evidence has a high-resolution representation, and if there are two kinds of noise, including recursive 
evidence degradation. The existence of fourth-order sensitivity suggests that the neural mechanisms responsible for second-order 
metacognition can be flexibly generalized to evaluate any cognitive process, including metacognitive evaluations themselves. We define 
the theoretical and practical limits of nested cognition and discuss how this approach paves the way for a better understanding of 
human self-regulation.
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Introduction
Metacognition, the ability to monitor and report on the quality of 
our own cognitive processes, is essential for all forms of human 
behaviour, from decision-making (Balsdon et al. 2020) and infor-
mation seeking (Desender et al. 2018) to learning (Guggenmos et al.
2016; Hainguerlot et al. 2018) and communication (Bahrami et al.
2012; De Martino et al. 2017). Impaired metacognition has been 
linked to multiple clinical conditions (Vaghi et al. 2017; Rouault 
et al. 2018), and metacognition-based treatments are proving 
promising (Wells 2008). Metacognitive judgements are also being 
implemented in artificial intelligence, where ‘learning to learn’ 
is becoming a foundation for complex functions (Wang 2021). 
Metacognitive ability is often assessed by asking for a confidence 
rating, which rates the likelihood that the decision was correct 
(Nelson 1990; Beran et al. 2012; Mamassian 2016; Fleming and Daw 
2017). Visual perception tasks have been a valuable tool in study-
ing metacognition, where the accuracy of confidence ratings (how 
certain an observer is that they made a correct decision) can be 
quantified using extensions of well-defined perceptual decision-
making models (Mamassian 2016), in particular, Signal Detection 
Theory (SDT; Green and Swets 1966; Macmillan and Creelman 

2005). A crucial domain of research has been determining the 
neural mechanisms of metacognition (Fleming and Daw 2017), 
which is thought to compute confidence as a ‘common currency’ 
(De Gardelle and Mamassian 2014) across tasks, modalities, and 
contexts, as a driving signal for adaptive behaviour.

There is an appealing advantage in not limiting metacogni-
tion to second-order judgements. A student who predicts they 
will perform well on an exam, and subsequently fails, would 
benefit not only from additional study but also from understand-
ing why their confidence was miscalibrated. Future improvement 
requires assessing the quality of their confidence that they will 
perform well in the exam. Here, a judgement about the quality 
of their confidence represents a third-order decision. Repeating 
this process further can form nested decisions that might theo-
retically be extended to higher and higher orders. In this work, 
we will use the term ‘nested cognition’ to refer to any cognitive 
process or judgement targeting a preceding decision, excluding 
the first-order decision itself. In order to extend the notion of 
metacognitive ability to decisions beyond the second order, we 
will also use the generic term ‘nested cognitive ability’ to refer 
to the objective accuracy of any decision above the first order.
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While fourth- and higher-order judgements are arguably rarely 
encountered, third-order judgements are very common. In per-
ceptual decision-making, perceptual confidence alone fails to 
distinguish between two equally important sources of uncer-
tainty: a lack of sensory evidence and high levels of sensory 
noise (Zylberberg and Yang 2021). Despite low second-order confi-
dence in both situations, information seeking is valuable in the 
first scenario, but useless in the second. A third-order signal, 
beyond confidence evidence, is required to arbitrate the appropri-
ate behavioural response.

Based on current models of second-order judgements, it would 
not be a trivial task for an observer to compute higher-order deci-
sions. The evidence used for second-order judgements does not 
strictly reduce to first-order sensory evidence, but can rely on 
additional processing (Baranski and Petrusic 1994; Pleskac and 
Busemeyer 2010), additional information (Denison et al. 2018), and 
incur additional noise (Shekhar and Rahnev 2021). Given that the 
previous literature suggests additional noise is inherent to the re-
evaluation of the evidence used at the second order, one could 
hypothesize that this same limitation applies to third- and higher-
order re-evaluations. In this case, there would be a steady decline 
in human behaviour relative to the ideal confidence observer (who 
does not incur additional noise beyond sensory noise) that would 
place a fundamental limit on the usefulness of nested cognition: 
at a certain point, the evidence being re-evaluated would be over-
whelmed by noise and provide no useful distinction for guiding 
behaviour. In addition, some studies have found that observers 
retain only discrete confidence levels (high vs low confidence, 
Lisi et al. 2021; or several bins, Zhang et al. 2015), neglect evi-
dence contrary to their decision (Peters et al. 2017), and compress 
uncertain information (Zhang and Maloney 2012). While these 
abbreviations of the evidence may be more efficient in terms of 
neural resources, they would severely impair third- (and higher-
) order cognition. Evaluating higher-order cognition will provide 
evidence of the limits of the resolution of confidence evidence, 
and how fine-grained a resolution could be re-evaluated in nested
cognition.

If the human capacity for third- and higher-order cognition 
were proven, it would place new constraints on the study of the 
neural mechanisms of metacognition. While second-order deci-
sions have been proposed to require higher-order brain areas 
to integrate lower-order information (such as various subregions 
of the prefrontal cortex, see Vaccaro and Fleming (2018) for a 
review), it would be unrealistic to propose increasingly higher- 
and higher-order brain areas to achieve third- and fourth-order 
decision-making. Instead, higher-order cognition could reuse the 
same mechanisms in a nested manner. This brings into ques-
tion how the information for recursively re-evaluating lower-order 
decisions can be progressively encoded and decoded in a useful 
way. An analogy can be drawn with the literature on Theory of 
Mind (ToM), where studying higher-order ToM (‘I think that you 
think that I think’) has been a pivotal step in examining the under-
lying neural mechanisms and their development (Gallagher and 
Frith 2003; Liddle and Nettle 2006).

Previous work has naturally concentrated on first-order 
decision-making and recently on second-order judgements, so far 
neglecting the very possibility of third- or even fourth-order cog-
nition. Despite the above-mentioned advantage for such nested 
cognitive ability, a human’s capacity for higher-order decisions 
remains an issue waiting to be properly addressed. Yet, the 
empirical investigation of nested cognition would provide valuable 
insights into the understanding of the empirical limits of metacog-
nition and the nature of metacognitive noise in decision-making. 

In the present work, we propose to tackle this question by com-
bining a classic perceptual discrimination task with a succession 
of confidence reports: one confidence judgement for the precision 
of the perceptual discrimination, a second for the precision of the 
confidence judgement, and a third for the precision of this preci-
sion. Our main aim was to test the hypothesis that observers have 
the capacity to make reliable third- and fourth-order judgements 
and to investigate the potential suboptimalities affecting high-
order cognition. We also wanted to assess how demanding recur-
sive judgements could affect lower-order cognition. While such 
nested judgements might at first sound difficult to apprehend, we 
found—in addition to the classic second-order ability—evidence 
for above-chance third-order and even fourth-order judgements. 
These abilities likely rely on the recursive recruitment of a general 
metacognitive mechanism which must be capable of representing 
a sufficiently fine-grained representation of the lower-level evi-
dence. However, computational modelling suggested at least two 
sources of noise affecting high-order cognition, which places an 
upper bound on nested cognition, making judgements beyond the 
fourth order unlikely to be usable in the real world.

Materials and methods
Experimental design
Participants
Participants were 12 experienced observers (including three of the 
authors), recruited by word of mouth. All participants had normal 
or corrected to normal vision and gave informed consent before 
beginning the experiment. Ethical approval for this experiment 
was granted by the local ethical committee (Comité d’Ethique 
pour les Recherches en Santé (CERES)).

Apparatus and stimuli
Participants sat 57 cm from a 24-inch (1280 × 720 pix) LCD monitor 
(ViewSonic), with their head supported by a chin rest. Stimuli were 
vertically oriented Gabor patches subtending 6∘, presented at 35% 
Michelson contrast, centred 5∘ on either side of a central fixation 
dot. Stimulus presentation was controlled using MATLAB 2017b 
and the Psychophysics Toolbox (Brainard and Vision 1997; Pelli and 
Vision 1997; Kleiner et al. 2007).

Procedure
The first-order task was a two-alternative forced-choice (2AFC) 
task, where participants had to discriminate the spatial frequency 
of visual stimuli. On each trial, two Gabor patches were presented 
at either side of fixation (both vertically oriented, but with a ran-
dom phase), and observers were asked to report which Gabor (left 
or right) was of lower spatial frequency. One Gabor was the stan-
dard, with a spatial frequency of 1 cyc/deg, while the other was 
the target with a lower spatial frequency corresponding to each 
observer’s discrimination threshold. The position of the standard 
and the target was pseudo-randomized from trial to trial, such 
that it was presented on the left and right with equal frequency. 
Each observer’s spatial frequency discrimination threshold (75% 
correct) was first estimated using an adaptive staircase procedure 
(accelerated stochastic approximation; Kesten 1958), with four 
interleaved staircases of 30 trials each (two starting at the min-
imum spatial frequency difference and two at the maximum). If 
the first run of staircases did not converge, a second run of the 
staircase procedure was performed.

The first experiment involved 800 trials of this first-order task, 
at threshold, while observers also reported second-, third-, and 
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fourth-order decisions. The second-order decision was a stan-
dard metacognitive confidence rating: observers reported whether 
they had high or low confidence that they chose the correct 
Gabor. The third-order decision was a 2AFC confidence decision 
(Mamassian 2020) comparing two consecutive second-order deci-
sions: after two consecutive trials of the first- and second-order 
judgements (spatial frequency discrimination and the confidence 
rating), observers chose which of the previous two second-order 
decisions better reflected their first-order performance. For sim-
plicity, we will refer to the second-order decisions that were 
chosen as better reflecting the first-order performance as ‘cho-
sen’, and the other decision as ‘declined’. Some scenarios were 
described to the observers to help them understand the third-
order task. For example, ‘Imagine on one trial you were really 
uncertain, perhaps even guessing, and so you gave low confidence. 
Then on the next trial, you were more confident than on average, 
so you gave high confidence, but you weren’t very confident in this 
high confident judgement. At the third order, your first (low) confi-
dence judgement is probably the better one and you should choose 
that.’ The fourth-order decision was another confidence rating, 
concerning the third-order decision: observers reported whether 
they had high or low confidence that they chose the best second-
order rating. This full sequence of decisions is shown in Fig. 1A. 
The main task was completed in 16 blocks of 50 trials. Observers 
were encouraged to take breaks regularly, and the experiment was 
completed in ∼1 h.

Experiments 2 and 3
To test whether asking participants to make higher-order deci-
sions could affect their ability to perform at lower-order decisions, 
10 participants returned to complete two additional experiments. 
The apparatus and stimuli were exactly the same as in Exper-
iment 1. In Experiment 2, observers performed only the first- 
and second-order decisions. In Experiment 3, observers performed 
the first-, second-, and third-order decisions. However, the types 
of confidence reports in the second- and third-order decisions 
were swapped relative to Experiment 1: the second-order deci-
sion was a 2AFC confidence decision where observers chose the 
trial in which they were more likely to have chosen the correct 
Gabor, and the third-order decision was a rating of how certain 
observers were that they had chosen the best trial. Observers per-
formed 400 trials of Experiment 2 and 800 trials (400 pairs) of
Experiment 3.

Statistical analysis
Proportion correct
We first analysed the effect of high-order decisions on first-
order decision accuracy. A generalized linear mixed effects 
model was used to examine the effect of higher-order decisions 
(high vs low second-order confidence; chosen vs declined third-
order decisions; and high vs low fourth-order confidence) on 
first-order decision accuracy. However, this analysis does not 
account for response biases (nor for differences in first-order
sensitivity).

Sensitivity
Proportion correct was normalized using the inverse of the stan-
dard cumulative Gaussian function for trials where the stimulus 
was presented on the left (𝑝𝑠1) and right (𝑝𝑠2) separately. Sensitiv-
ity was calculated as the average of S1 and S2 trials (to account 
for interval bias—see Green and Swets 1966; Klein 2001), with a 
square root of 2 correction for the 2AFC design (Macmillan and 

Creelman 2005; since observers are provided with two indepen-
dent samples of evidence for making their perceptual decision): 

This measure gives an unbiased measure of performance that 
is properly scaled to examine differences in performance (a dif-
ference between 90% and 95% correct is much greater than a 
difference between 50% and 55% correct). The number of S1 and 
S2 trials, 𝑛𝑠1 and 𝑛𝑠2, was the same at the first order but could 
differ at higher orders. Performance in the second-order decision 
was quantified as: 

where 𝑑′
1𝐻 is 𝑑′

1 on high-confidence second-order trials, and 𝑑′
1𝐿 on 

low-confidence second-order trials. Following similar logic, 

quantifies performance at the third-order decision, where C
stands for chosen and D for declined trials. Finally, at the fourth 
order, 

3𝐻 3𝐿

where H stands for high-confidence fourth-order trials, and L for 
low-confidence fourth-order trials.

Ideal confidence observer model
The difference in sensitivity an observer can achieve at a higher 
order is dependent on their perceptual sensitivity. Despite the ini-
tial staircase procedure, there were some differences in perceptual 
sensitivity across participants. To fairly compare participants, we 
scaled participants’ performance by the performance of an ideal 
confidence observer. The ideal confidence observer has access to 
a perfect representation of the distribution of the evidence used 
to make their perceptual decisions and uses this to compute the 
probability of a correct decision on each trial (in line with classi-
cal ideal observer principles; Geisler 1989). We take the minimal 
assumptions of SDT: on each trial, the observer receives two sam-
ples of evidence (from the stimuli presented on the left, S1, and 
the right, S2), where the mean difference in the strength of the 
evidence (

√
2𝑑′) is disrupted by Gaussian noise of unit variance. 

The 2D distribution of evidence is shown in Fig. 2A. The observer 
chooses the stimulus with the greater evidence (or a difference in 
evidence greater than a biased criterion, for participants who have 
some interval bias).

To estimate the metacognitive performance of the ideal con-
fidence observer for each participants’ perceptual sensitivity, we 
simulated higher-order responses based on 10 000 samples of 
noisy sensory evidence for each trial (given the presented stimuli, 
the perceptual response of the observer and their underlying sen-
sitivity and interval bias). Although the ideal confidence observer 
could make their metacognitive decisions using a number of 
different computations, the simplest description of consecutive 
confidence decisions is shown in Fig. 2B–D.

We then evaluated the ideal confidence observer’s perfor-
mance according to Equations (2)–(4). The ratio of the participant 
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Figure 1. Task procedure and higher-order modulations of first-order performance (Experiment 1). (A) On each trial, the observer is presented with the 
stimulus for 500 ms and then cued to respond to whether the lower spatial frequency was presented on the left or the right. They then rated their 
confidence (high or low) that their decision was correct. Two consecutive trials (A and B) were used for the third-order decision, where observers chose 
the trial in which their confidence rating better reflected their first-order performance. They then rated their confidence (high or low) in this 
third-order decision. The input to each confidence decision is indicated with blue arrows. (B) Theoretical performance at the second order: trials rated 
with high confidence should have better first-order performance than trials rated with low confidence (distance from the diagonal). (C) Theoretical 
performance at the third order: chosen trials should better discriminate first-order performance than declined trials (declined trials should be closer 
to the diagonal). (D) Theoretical performance at the fourth-order: High-confidence trials should reflect better third-order decisions (there should be a 
greater difference in the distance from the diagonal for high confidence compared to low confidence). (E–G) Average performance of participants 
plotted in the same manner as the theoretical plots in (B–D). Error bars show the standard error of the mean

compared to the ideal confidence observer gives an estimate of 

metacognitive performance that equates to perceptual sensitiv-
ity (see Supplementary Note S2). At the second order, this is 

equivalent to a measure of ‘metacognitive efficiency’ (meta-d′/d′; 
Maniscalco and Lau 2012; Fleming and Lau 2014).

Computational model
We used a simple computational model to examine the contribu-
tions of response bias and noise to participants’ behaviour. Aiming 
to take the minimal assumptions, the model estimated additional 
sensory noise to best maximize the probability of the participants’ 
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Confidence at the limits of human nested cognition  5

higher-order decisions and set biased criteria to match the par-
ticipants’ response tendencies. For the second- and fourth-order 
responses, the criteria were set to match the probability of a high- 
vs low-confidence rating. For the third-order task, we identified 
two forms of bias: a bias to choose the second interval over the first 
interval and a bias to choose the high-confidence second-order 
choice when a high-confidence rating was given on only one of 
the two intervals (for further details, see Supplementary Note S3).

The units of the noise were standardized across participants by 
first normalizing the perceptual decision evidence by the standard 
deviation of the perceptual noise. The evidence is then represented 
as being drawn from two Gaussian distributions of unit variance, 
with means separated by 

√
2𝑑′. The standard deviation of the 

noise parameterized in the model is that added to the noise from 
the lower levels, further disrupting the representation of the evi-
dence. In this way, the noise can be compared across participants, 
and across levels, where a higher value at a higher level suggests 
that whatever processing was responsible for the computation at 
the higher level incurred relatively more noise than at the lower
level.

The model was fit hierarchically: first, to minimize the negative 
log-likelihood of the observer’s second-order responses given the 
presented stimuli, their perceptual decision, and the underlying 
perceptual decision noise (based on their sensitivity, 𝑑′); second, 
to minimize the negative log-likelihood of the observer’s third-
order responses, given the pairs of stimuli, perceptual decisions, 
and second-order confidence ratings; and finally, to minimize the 
negative log-likelihood of the fourth-order responses, given the 
previous stimuli and responses.

The best fitting parameters were chosen as the median of 
the posterior of 50 iterations of Monte Carlo Markov Chains, 
taking 10 000 samples of Gaussian distributed noise, with the 
initial parameter sampled from N(1, 0.1) (truncated at 0). The 
parameters were constrained to [0.5, 5] (corresponding to half, 
and five times, the perceptual noise) to prevent local minima 
at unreasonable values. The fit was conducted using Bayesian 
adaptive direct search (Acerbi and Ma 2017; see Supplementary 
Note S5 for parameter recovery). The final model log-likelihood 
was calculated based on the probability of all four metacognitive 
responses (pairs of second-order followed by third- and fourth-
order judgements), given the pairs of stimuli and perceptual
decisions.

Results
We tested the ability of human participants (N = 12, 9 600 trials 
total) to recursively re-evaluate their decisions in a classic percep-
tual task. The first-order (perceptual) decision required observers 
to discriminate which of two Gabor patches (Fig. 1A), presented 
simultaneously to the left and right of fixation, had lower spatial 
frequency. Before beginning the experiment, a staircase procedure 
(accelerated stochastic approximation; Kesten 1958) was used to 
set the relative spatial frequency of the Gabors for each partic-
ipant to produce ∼75% accuracy (average performance was 78% 
correct, 6%, SD). After each first-order response, observers made a 
second-order (metacognitive) decision, reporting high or low con-
fidence that they chose the correct Gabor. Then, a third-order 
decision was made on a pair of consecutive first- and second-
order responses: observers chose which confidence rating better 
reflected their first-order performance (confidence forced-choice 
paradigm). The second-order decisions chosen as better reflect-
ing the first-order performance were labelled as ‘chosen’, and the 
other decision as ‘declined’ in the analyses. Finally, a fourth-order 

decision was made to rate high or low confidence in the third-
order response (confidence that the third-order choice was the 
second-order rating that better reflected first-order accuracy). This 
sequence is depicted in Fig. 1A.

Nested cognitive ability up to the fourth order
Nested cognitive ability can be quantified based on relative per-
formance in higher-order decisions: high-confidence perceptual 
decisions should be more likely to be correct than low-confidence 
decisions. Following this line of reasoning, chosen second-order 
decisions should be better than declined second-order decisions: 
there should be a greater difference in high- and low-confidence 
perceptual decision accuracy on chosen trials. This difference 
should be the greatest when observers report high confidence 
in their third-order choice. This theoretical pattern is shown 
in Fig. 1B–D: at the second order, there is greater perceptual deci-
sion accuracy for high compared to low-confidence trials (the aver-
age is above the diagonal); at the third order, chosen trials show 
better second-order decisions (the average is further from the 
diagonal than declined trials); and at the fourth order, high con-
fidence better separates third-order decisions (there is a greater 
difference between chosen and declined trials with high than low 
confidence). This predicts an interaction between higher-order 
responses and perceptual decision accuracy.

Figure 1E–G shows the average measured proportion correct in 
first-order decisions split by higher-order responses. We found a 
significant three-way interaction between higher-order responses 
and perceptual decision outcome (correct/incorrect) based on a 
generalized linear mixed effect model (including an intercept at 
the level of participant; Wald 𝜒2(1) = 18.163, P < 0.01). We con-
firmed that even fourth-order responses significantly interact with 
lower-order performance by showing a significant improvement 
in the goodness-of-fit of the full model in comparison with a 
model only including up to the third-order responses (𝜒2(4) = 20.7, 
P < 0.01, ΔAIC = 13, ΔBIC = 16).

The participants were instructed at each higher order to 
re-evaluate the evidence with respect to the decision at the 
order below. Had participants been treating the higher-order 
judgements as additional second-order discriminations (setting 
additional criteria on the second-order evidence; Fig. 2B), their 
third-order choice would be the trial they felt more confident 
in: the more confident of two high-confidence trials or two 
low-confidence trials, or always the high-confidence trial where 
second-order confidence differed across the pairs. Participants 
would never choose a low-confidence second-order decision at the 
third order (this would be inconsistent with their interpretation of 
the instructions). That participants did not misinterpret instruc-
tions in this way is evident from the fact that all participants chose 
a low-confidence second-order response as more accurate than a 
high-confidence response on a substantial proportion of trials (on 
average, 34% of trials, ±15% SD; further details in Supplementary 
Note S1).

Quantifying higher-order cognition
The extent to which higher-order decisions can discriminate 
lower-order performance depends on lower-order performance 
itself (and ultimately, perceptual decision accuracy). To quan-
tify higher-order performance within-subjects, we therefore com-
pared human behaviour to a simple ideal confidence observer 
model (Geisler 1989). The ideal confidence observer was defined 
based on the minimal assumptions of SDT. On each trial, the 
observer compares a noisy sample of evidence from each Gabor 
and chooses the sample (S1 or S2) with more evidence for 
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6 Recht, Jovanovic et al.

Figure 2. Theoretical decision evidence of the ideal confidence observer and ROCs. (A) The perceptual decision involves comparing two samples of 
evidence drawn from independent Gaussian distributions, the ideal confidence observer chooses the greater evidence. Hits and false alarms 
(distributions shown below) are defined as choosing interval S1 when the target stimulus was presented in S1 (hits) and S2 (false alarms). (B) The ideal 
second-order decision is made by comparing the absolute difference in the evidence for S1 and S2 to some criterion (c2) above which a 
high-confidence rating is given. Hits and false alarms (below) are defined as reporting high confidence when the first-order decision was correct and 
incorrect, respectively. (C) At the third order, the ideal confidence observer chooses the trial with greater second-order evidence. A hit was defined as 
choosing Trial A when the second-order decision on Trial A was correct (second-order hit or correct rejection), and a false alarm was defined as 
choosing Trial A when the second-order decision on Trial B was correct, trials with equal second-order decision accuracy were treated as half a hit and 
half a false alarm. (D) At the fourth order, the ideal confidence observer takes the absolute difference in the evidence for the two third-order intervals 
and compares this to a criterion (c4), allocating high confidence to evidence above the criterion. Hits and false alarms were then defined in the same 
manner as for second-order ratings. In (A–D), the markers show an example pair of trials. The filled marker corresponds to Interval 1 (Trial A), where 
the observer does have a lot of evidence in favour of S1; the open marker corresponds to Interval 2 (Trial B), where the observer does not have much 
more evidence for S1 than S2 (A). For the second-order decision (B), the evidence from Interval 2 just surpasses the criterion to give high confidence, 
while Interval 1 is definitely low confidence. For the third-order decision (C), the second-order evidence from Interval 1 (x-axis) is plotted against 
Interval 2 (y-axis). Perhaps counterintuitively, there is more evidence in favour of the low-confidence second-order decision (this was far from the 
criterion) in comparison with the high-confidence second-order decision for Interval 2 that only just surpassed the criterion. (D) Corresponding 
evidence for the fourth-order decision, which falls just short of high confidence. (E–H) Theoretical ROCs of an observer with a standard perceptual 
sensitivity (d′’ = 1) for first-order decision (E), who responds based on exactly the perceptual evidence (ideal confidence observer) at the second-order 
(F), third-order (G), and fourth-order (H) decisions. Curves were generated by incrementally adjusting the criteria and recalculating the hits and false 
alarms. The black points show the unbiased criteria (equal proportions of each response), which were used to generate the decisions for the next 
order. (I–J) ROCs for the ideal confidence observer with each participants’ perceptual sensitivity. Points show the hit and false alarm rates for 
individual participants (corresponding colours)
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Confidence at the limits of human nested cognition  7

lower spatial frequency as their perceptual decision (Fig. 2A). 
The second-order confidence rating takes the absolute difference 
in evidence between the samples and allocates high confidence 
above a certain criterion (Fig. 2B). At the third-order, the ideal 
confidence observer chooses the trial where the evidence is fur-
ther from their second-order criterion (Fig. 2C). They then allocate 
high confidence at the fourth order if the absolute difference 
in third-order evidence (between the two trials) exceeds their 
criterion (Fig. 2D).

This description allows us to define second-, third-, and fourth-
order hits and false alarms, analogous to first-order hits (choosing 
S1 when S1 was the target stimulus) and false alarms (choosing S1 
when S2 was the target stimulus). The receiver operating charac-
teristics (ROCs), based on these definitions of hit and false alarm 
rates, are shown in Fig. 2E–H, for an ideal confidence observer with 
a first-order sensitivity (d′) of 1. Of note, the deviation of the ideal 
ROC away from the diagonal decreases with higher-order judge-
ments. This trend highlights the inherent limit on the usability 
of recursive evaluation, even for the ideal observer. It also lim-
its our ability to measure high-order cognition: up to 8 000 trials 
would be required to discriminate an ideal observer from a ran-
dom observer at the fifth order with similar precision as the third 
order (see Supplementary Note S6). At the fourth order, 800 tri-
als is sufficient so long as the observer’s first-order sensitivity is 
between 1 and 1.5 (all but three of our observers; Supplementary
Note S6).

Figure 2I and J shows the hit and false alarm rates of partic-
ipants compared to a simulated ideal confidence observer with 
each participants’ first-order sensitivity. Comparing the points 
to the respective curves shows that higher-order performance 
cannot be examined in isolation but must account for first-
order sensitivity (see Supplementary Note S2 for more detail). 
The spread of the points across the theoretical curves also high-
lights the idiosyncratic response biases displayed by observers (see 
Supplementary Note S3 for more detail).

Both the cascading effect of first-order sensitivity and the 
response biases observed in Fig. 2I and J confirm the need to 
account for these effects when considering nested cognitive abil-
ities. To quantify higher-order cognition independently of percep-
tual sensitivity, we can compare human observers’ performance 

relative to the ideal confidence observer with the same perceptual 
sensitivity and interval bias (simulated based on the distributions 
of evidence plotted in Fig. 2A–D). For the second-order decision, 
this is calculated as the difference in first-order sensitivity for 
high and low-confidence trials. For the third- and fourth-order 
decisions, we took the difference at the lower order in the same 
manner [Equations (1)–(4) in the ‘Materials and Methods’ section]. 
Participant performance is then divided by the performance of 
the ideal observer with the same first-order sensitivity (and first-
order interval bias). A relative performance of 1 indicates that the 
participant performed as well as expected given their first-order 
performance; a relative performance of <1 indicates that the par-
ticipant performed less well than expected; a relative performance 
of >1 indicates that they had greater insight into their lower-order 
decisions than predicted by their first-order performance; and a 
relative performance of <0 indicates that that their responses at 
a higher order predicted the opposite pattern of performance at 
the lower order (e.g. giving high confidence more frequently to 
incorrect than correct trials).

Two types of noise affecting human nested 
cognition
The performance of human observers relative to the ideal observer 
is plotted in Fig. 3A. There is a trend for decreasing relative per-
formance with each re-evaluation. However, there are also inter-
esting individual differences: for most observers, the decrease in 
relative performance is not linear, and for some observers, relative 
performance at the third or fourth order is better than at a lower 
order.

We used a simple computational model to characterize 
these patterns of suboptimal behaviour for each observer. The 
model assumes that suboptimal responses result from additional 
(Gaussian distributed) noise disrupting the representation of the 
evidence used at each re-evaluation. To standardize the param-
eters so that they are comparable across participants, we first 
normalized the decision space such that the target and non-
target stimulus evidence was drawn from Gaussian distributions 
with unit standard deviation (and means separated by 

√
2𝑑′ for 

each participant, normalized sensitivity—see Fig. 1A; Macmillan 
and Creelman 2005). The model accounted for response biases 

Figure 3. Relative performance and modelled suboptimalities. (A) Performance of each participant (difference in lower-order sensitivity) relative to an 
ideal confidence observer with the same first-order sensitivity as the participant. Markers show individual participants, and the thick black line shows 
the average. The solid red line shows the average model prediction of the winning model, the dashed red line shows the model with constant noise at 
each re-evaluation. (B) Standard deviation of the perception-like and decision-like noise fitted to individual participants at each decision order. The 
unit is normalized across observers, such that it is relative to a perceptual decision space with unit variance. (C) Relative performance of participants 
in each decision order compared to the prediction from the fitted model parameters. Opaque markers show the second-order relative performance, 
semi-opaque markers show the third-order relative performance, and open markers show the fourth-order relative performance. (D) Difference in the 
BIC model for the model using a fine-grained evidence representation compared to a discrete evidence model with different numbers of bins. The 
thick black line shows the average. The open and closed red markers correspond to a 75% and 25% bias in bin limit placement, respectively. Colours 
correspond to the same participants across plots
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by fixing criteria to match the proportion of each response 
the participant gave (for third-order decisions, two biases were 
included: one describing the tendency to choose the second 
trial and another describing the tendency to choose the high-
confidence second-order response; see Supplementary Note S3 
for further details). The model was fit hierarchically to maxi-
mize the log-likelihood of each response at each decision order, 
given the responses at lower orders (for further details, see 
the ‘Materials and Methods’ section). By maximizing the log-
likelihood of all responses, this model avoids the assumptions of
fitting ROCs.

A single parameter, quantifying the standard deviation of the 
noise added at each re-evaluation, was unable to appropriately 
capture the data (this model predicted overall worse performance, 
in attempting to capture the greater noise at any order; the dashed 
red line of Fig. 3A predicts a continual decrease in relative per-
formance with high-order decisions). Using three parameters to 
quantify the noise drawn from distributions with independent 
standard deviations at each re-evaluation was also inappropriate 
(this model predicts relative performance at a higher order cannot 
exceed relative performance at a lower order). The solution that 
best described the data was to assume different types of noise, 
allowing some noise to affect the decision without being carried 
on to the representation of the evidence at the next level. The 
model used three parameters to quantify the standard deviation 
of the total noise added to the representation of the perceptual 
evidence at each order, which was divided into ‘perceptual-like’ 
noise (affecting the representation of the evidence carried on to 
the next re-evaluation) and ‘decision-like’ noise (affecting the cur-
rent output of the decision to the response without disrupting 
the evidence carried on to the next re-evaluation). ‘Decision-like’ 
noise was taken as the proportion of noise at a lower order that 
exceeded the noise at a higher order (see Supplementary Note S4 
for further details). The exceedance probability of this model over 
the model with a single noise parameter and the model with 
additive independent noise was 0.59 (vs 0.31 for the single noise 
model and 0.09 for the model with no ‘decision-like’ noise; or pro-
tected exceedance probabilities of 0.38, 0.33, and 0.29 respectively; 
the mean BICs were 1859, 1856, and 1859, respectively). Model 
recovery analysis suggested that had observers’ behaviour been 
modulated by a single source of noise, the single parameter model 
would have been found superior to the three parameter mod-
els (winning 98.4% of simulations, with an average exceedance
probability of 0.94, and protected exceedance probability
of 0.82).

The standard deviations of the ‘perception-like’ and ‘decision-
like’ noise fit to each observer are shown in Fig. 3B; these values 
represent the standard deviation of the noise added at each order 
to a perceptual decision space normalized to have unit variance 
(meaning the values are relative to the perceptual decision noise, 
such that comparisons across observers are unaffected by differ-
ences in first-order performance). The predictions of the model in 
comparison to human relative performance are shown in Fig. 3C. 
The stability of these parameter values within participants was 
measured using 10-fold resampling, showing the ratio of within-
subject to between-subject variance to be on average 0.19, 0.31, 
and 0.20 at second-, third-, and fourth orders (more details in 
Supplementary Note S5).

The resolution of high-order evidence
Another possible source of suboptimality is whether the observer 
can maintain a fine-grained representation of the evidence, as 
suggested in previous work (Zhang et al. 2015; Lisi et al. 2021). 

Discretizing the decision evidence into several bins reduces the 
information observers have to maintain as they re-evaluate their 
performance. This would impair higher-order performance, espe-
cially at the third order, where observers may encounter pairs 
of trials with very little difference in the evidence. We there-
fore tested how fine-grained observers’ representation must be 
to explain their performance. We simulated a model with differ-
ent numbers of uniform discretized evidence bins and compared 
the negative log-likelihood of participants’ responses to that of 
the model with a continuous representation of the underlying 
evidence. Averaged across participants, 50 discrete bins were 
required to meet the explanatory power of the continuous evi-
dence model (Fig. 3D). Nonuniform (biased) bin limit placement 
could improve the description of behaviour based on discretized 
evidence, as demonstrated in the two-bin condition in Fig. 3D 
(open and closed discs in Fig. 3D indicate 75% and 25% bias 
in bin placement) but the full resolution model is still superior, 
and the additional parameters would not make this description 
parsimonious.

Limited retrospective effects of re-evaluation
Requesting high-order decisions could affect observers’ ability 
to perform at lower-order decisions: performance could suffer 
from increasing the cognitive resources required by the task; cog-
nitive resources might be unevenly traded off across decision 
levels; or there could be a benefit from the additional atten-
tional effort. We tested whether a third- or fourth-order task 
could affect performance in a second-order task by examining 
second-order performance in Experiment 2 (where the second-
order task was performed without the third- and fourth-order
tasks).

As shown in Fig. 4A, we observed some differences in percep-
tual performance across the three experiments. To investigate 
the effects of making higher-level judgements, we therefore used 
the computational model, which takes into account changes in 
first-order sensitivity and interval bias between experiments. Rel-
ative performance in the second-order decisions is plotted in
Fig. 4B.

We found that the standard deviation of the noise fit to 
observers’ second-order responses in Experiment 1 was sufficient 
to describe their second-order responses in Experiment 2. This 
was a more parsimonious description of the data than employ-
ing an additional parameter quantifying independent noise in 
Experiment 2 (model exceedance probability > 0.99, protected 
exceedance probability = 0.95, with the average BICs of 1434 and 
1376, as shown in Fig. 4D), meaning that second-order perfor-
mance across experiments did not substantially vary, once dif-
ferences in first-order performance were appropriately accounted 
for. Model recovery analyses suggested that these exceedance 
probabilities would only be possible with a true difference in 
parameters of <0.1, with evidence in favour of the indepen-
dent noise model at differences of 0.21 (Supplementary Note S5). 
Thus, second-order performance was not substantially affected 
by requesting higher-order judgements: there were limited retro-
spective effects of re-evaluation.

Evidence for task-specific suboptimalities
In Experiment 1 we found that behaviour could not be described 
by a single additive noise parameter, but rather, each re-evaluation 
was accompanied by some additional ‘perception-like’ noise cor-
rupting the evidence and a certain amount of noise affecting the 
output to response. These differences could be attributable to 
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Figure 4. Results of Experiments 2 and 3. (A) First-order sensitivity (d′) across Experiments 1–3. (B) Relative performance in the second-order decision 
(participant divided by ideal) across Experiments 1–3 (where Experiments 1 and 2 used a confidence rating and Experiment 3 used a forced-choice 
confidence decision). (C) Relative performance in the forced-choice confidence task in Experiment 1 (third order) and Experiment 3 (second order). In 
(A–C), markers show individual subjects, with the average in the thick black line. (D) Average BIC of the model fitting independent parameters to 
responses at the second order in Experiment 2 (open bar), compared to using the same parameters as fit in Experiment 1 (filled bar). Error bars show 
95% within-subject confidence intervals. (E) Average BIC of the model fitting independent parameters to responses at the second and third orders of 
Experiment 3 (open bar), compared to using the parameters fit to responses at the second and third orders of Experiment 1 (same order, light-filled 
bar) and the parameters fit to responses at the third and fourth orders of Experiment 1 (same tasks, dark-filled bar). Error bars show 95% 
within-subject confidence intervals

the order of evaluation or to the task required of the observer. 
We tested this in Experiment 3, where a forced-choice confidence 
judgement was used at the second order (as opposed to the third 
order). The relative performance in the forced-choice confidence 
task is shown for Experiment 1 (third order) in comparison to 
Experiment 3 (second order) in Fig. 4C.

We compared whether observers’ responses in Experiment 3 
were more parsimoniously described by (i) independent parame-
ters (two additional parameters fit to quantify the standard devi-
ation of the total noise at the second and third orders); (ii) the 
parameters fit to the second- and third-order responses of Exper-
iment 1 (different tasks but matching order of re-evaluation); or 
(iii) the parameters fit to the third- and fourth-order responses of 
Experiment 1 (same tasks but at different orders of re-evaluation). 
The parameters fit to the third- and fourth-order responses of 
Experiment 1 were the most parsimonious description of the 
responses at the second and third orders in Experiment 3 (model 
exceedance probability = 0.98, protected exceedance probabil-
ity = 0.89, the average BICs of 2 795, 2 716, and 1 958, as 
shown in Fig. 4E). Model recovery analyses suggested that these 
exceedance probabilities would only be possible with a true dif-
ference in parameters of <0.1, with evidence in favour of the 
independent noise model at differences of 0.68 (Supplementary 
Note S5). This indicates that some of the noise affecting observers’ 
ability to re-evaluate their decisions is affiliated with task require-
ments. In combination with the evidence from Experiment 1, 
that some of the noise disrupting responses are not inherited at 
the next re-evaluation, this indicates that there are likely sepa-
rable processes involved in metacognitive evaluations: one that 
encodes the decision evidence relevant for evaluating confidence 
(affected by ‘perception-like’ noise) and another that decodes this 
evidence for formulating the behavioural response (affected by 
‘decision-like’ noise). While ‘perception-like’ noise quantifies the 
observers’ ability to accurately assess their own decision evi-
dence, ‘decision-like’ noise could be due to independent factors 
such as working memory load, attention, or other factors lead-
ing to criterion instability, as opposed to nested cognitive ability
per se.

Discussion
We found that human participants were not only able to accu-
rately weigh their discrimination performance (second-order cog-
nition) but also above chance in judging the accuracy of their 
metacognition (third-order cognition) and even the accuracy of 
their meta-metacognitive accuracy (fourth-order cognition). An 
ideal confidence observer model, constrained by participants’ 
individual perceptual sensitivity and bias, was used to quantify 
metacognitive sensitivity at each order of recursive metacogni-
tive judgement. Most participants were below, albeit close to, 
ideal performance in their second-order judgements, and the gap 
increased for third- and fourth-order judgements. Computational 
modelling suggested that this ability relies on a fine-grained rep-
resentation of the evidence, corrupted by both ‘perception-like’ 
noise and ‘decision-like’ noise. While the presence of additional 
nested judgements did not significantly alter performance, we 
found differences in performance between judgements types (rat-
ing vs 2AFC), suggesting that some aspects of nested cognition 
are dependent on the re-evaluation task. To gain a comprehen-
sive understanding of individual observers’ metacognitive abili-
ties, the use of multiple tasks, if not nested re-evaluations, may be 
required.

By examining metacognitive ability across consecutive nested 
re-evaluations, we found evidence supporting a model in which 
types of noise affect confidence judgements. This implies at least 
two subprocesses: the transformation of evidence and the fol-
lowing inference(s) for enacting behavioural responses. What evi-
dence should be considered relevant for confidence depends on 
the situation, and the same confidence evidence can have differ-
ent relevance for the following inference (80% confidence could 
be considered ‘high’ for playing Mario Kart, but ‘low’ for actu-
ally driving). Moreover, while in some situations high confidence 
means one should act more quickly and decisively, in other sit-
uations it could mean one should wait longer for a reward (Lak 
et al. 2014). The variety of behaviour metacognition supports 
might require various combinations of subprocesses, rather than 
a single pipeline. This could imply a network of brain regions flex-
ibly recruited for multiple metacognitive subprocesses, according 
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to the contextual demands. Thus, the challenge for researchers 
in metacognition is not only identifying neural and computa-
tional correlates of confidence but also isolating their function 
within the multiple processes contributing to the behavioural 
response, and defining which functions should count as truly
metacognitive.

Our results highlight the fact that while there are different 
tasks and measures of meta—and nested—cognitive ability, ‘one 
size will not fit them all’. Higher-order performance was at least 
partially dependent on the re-evaluation task: the forced-choice 
confidence task appeared to be affected by greater noise but was 
also more resilient to bias (resulting in more consistent measures 
across experiments). Task requirements certainly play a role: in 
the forced-choice confidence task, there may be many difficult 
decisions where confidence is very similar across both trials of the 
pair, and the task can be taxing on working memory. Whereas for 
the confidence rating task, often the evidence is far from the con-
fidence criteria and so easily classified, although some difficulty 
may arise from setting and maintaining appropriate criteria. Dif-
ferent requirements could also affect the quality of metacognitive 
evidence: our findings suggest a fine-grained representation of the 
evidence in nested cognition, contrary to some previous findings 
(Zhang et al. 2015; Lisi et al. 2021). Our results imply that the 
granularity of higher-order evidence can be maintained when task 
demands require it, or there is an appropriate incentive (Lebreton 
et al. 2018).

In this way, researchers should be mindful of task require-
ments and how these can affect estimates of metacognitive and 
nested cognitive ability. This is especially important when the 
aim is to relate metacognitive ability to other functions, traits, or 
conditions (e.g. ageing, Palmer et al. 2014; psychiatric disorders, 
David et al. 2012). An individual’s performance in a metacogni-
tive task may depend on aspects of the task that should not be 
considered strictly metacognitive, such as the demands on work-
ing memory, their ability to maintain stable criteria, or—as shown 
in the present work—their incentive to maintain a fine-grained 
representation of the evidence.

We observed multiple limits to nested cognition. Beyond noise 
corruption, we found nested cognition to be limited by the reduc-
tion in available evidence, which is tied to the underlying first-
order evidence. Very low first-order sensitivity limits the quality of 
the evidence available for re-evaluation, while very high first-order 
sensitivity limits the benefit of nested cognition (there is little dif-
ference in performance to discriminate at the higher order). This 
could be circumvented by the use of additional information or 
heuristics (e.g. attention; Denison et al. 2018; Recht et al. 2019). Fur-
ther questions therefore include how, and how efficiently, humans 
adjudicate whether a decision deserves a re-evaluation or whether 
a different action is more appropriate (such as seeking additional 
sensory information).

This highlights an important area of further research in the 
field. Increasing the order of nested cognition inevitably comes 
with decreasing usefulness, which needs to be weighed against the 
resources required for these kinds of judgements. The detrimen-
tal use of nested judgements relates to a variety of maladaptive 
thinking patterns displayed in psychiatric disorders, such as over-
rumination in depression and anxiety (which could be described 
as too much re-evaluation) and, at the opposite end, feelings 
of a lack of control in schizophrenia (which could be described 
as under-confidence at the third order, precluding further re-
evaluation). While recent research into metacognitive behavioural 
therapy has shown promising applications in these conditions 
(Fisher and Wells 2008; Jordan et al. 2014; Lysaker et al. 2018; 

Nordahl et al. 2018), benefit may be gained not only from train-
ing metacognitive insight but also from learning when to apply 
re-evaluation.

Conclusion
The work reported here shows that second-order metacognitive 
judgements are part of a broader family of nested, inferential 
judgements. The use of recursive re-evaluations may well depend 
on both the limits inherent to sensory systems and the resource 
trade-offs imposed by task demands. It is crucial to better under-
stand the neural mechanisms and computational architecture of 
nested (meta)cognition for translational applications, such as in 
psychiatry and artificial intelligence. We present here the first 
step in addressing this issue, demonstrating how the use of 
nested judgements can help us understand the nature of the evi-
dence used for metacognitive decisions and disentangle different 
sources of suboptimalities in metacognitive decision-making.
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Supplementary data is available at NCONSC online.
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