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SUMMARY

Many organisms need to respond to complex, noisy
environmental signals for developmental decision
making. Here, we dissect how Arabidopsis plants
integrate widely fluctuating field temperatures over
month-long timescales to progressively upregulate
VERNALIZATION INSENSITIVE3 (VIN3) and silence
FLOWERING LOCUS C (FLC), aligning flowering
with spring. We develop a mathematical model for
vernalization that operates on multiple timescales—
long term (month), short term (day), and current
(hour)—and is constrained by experimental data.
Our analysis demonstrates that temperature sensing
is not localized to specific nodes within the FLC
network. Instead, temperature sensing is broadly
distributed, with each thermosensory process re-
sponding to specific features of the plants’ history
of exposure to warm and cold. The model accurately
predicts FLC silencing in new field data, allowing us
to forecast FLC expression in changing climates.
We suggest that distributed thermosensing may be
a general property of thermoresponsive regulatory
networks in complex natural environments.

INTRODUCTION

Alignment of plant development to favorable environmental con-

ditions requires mechanisms for sensing and integrating the

environmental cues that indicate seasonal change. One of the

key seasonal indicators is temperature, and many plant species

need to experience winter chilling in order to flower (Andrés and

Coupland, 2012; Shrestha et al., 2014). In the Brassicaceae fam-

ily, including Arabidopsis thaliana, the transcriptional regulator

FLOWERING LOCUS C (FLC) represses the transition to flower-

ing (Aikawa et al., 2010; Irwin et al., 2016; Kemi et al., 2013; Kiefer

et al., 2017; Michaels and Amasino, 1999; Sheldon et al., 1999;

Wang et al., 2009). FLC is downregulated by prolonged cold
Cell Systems 7, 643–655, Decem
This is an open access article under the CC BY-N
and epigenetically silenced to maintain this state into the spring

to allow the plant to be maximally responsive to floral-promoting

long-day photoperiods (reviewed in Bloomer and Dean [2017]).

To accomplish this objective, the regulatory network controlling

FLC must distinguish a clear seasonal signal over months,

despite daily temperature fluctuations that can exceed average

seasonal differences.

Previous work has shown that FLC downregulation during the

cold is the result of at least two separate thermosensory path-

ways. The first pathway acts to downregulate FLC transcription

and is responsive to transient low temperatures, such as autumn

cold (Hepworth et al., 2018; Swiezewski et al., 2009). The second

pathway enacts epigenetic silencing of FLC and requires the ac-

tion of the conserved Polycomb Repressive Complex 2 (PRC2)

combined with members of a PHD protein family, including

VERNALIZATION INSENSITIVE3 (VIN3; De Lucia et al., 2008;

Sung and Amasino, 2004). VIN3 is a key thermosensory compo-

nent of the vernalization response, with VIN3mRNA levels slowly

rising with increasing weeks of cold exposure but rapidly

decreasing in the warm (Bond et al., 2009a; De Lucia et al.,

2008; Finnegan et al., 2011; Sung andAmasino, 2004). These dy-

namics are consistent with control of VIN3 itself by (at least) two

upstream thermosensitive inputs. VIN3 expression is very sensi-

tive to spikes of warm temperature during the day, and so epige-

netic silencing only occurs once winter temperatures prevail

(Hepworth et al., 2018).

Investigation of such a complex phenomenon requires

interdisciplinary approaches, exploiting mathematical modeling

as well as experiments (Aikawa et al., 2010; Chew et al., 2012;

Kudoh, 2016; Satake et al., 2013; Wilczek et al., 2009). This

approach has been used to forecast flowering responses

(Aikawa et al., 2010; Chew et al., 2012; Satake et al., 2013). How-

ever, it is unclear how VIN3 and FLC expression are controlled by

a plant’s history of warm and cold exposure (Finnegan et al.,

2011; Hepworth et al., 2018; Kim et al., 2010; Wollenberg and

Amasino, 2012). Here, we systematically investigate the tem-

perature dependencies for VIN3 and FLC dynamics, using a

repeated cycle of hypothesis generation via mathematical

modeling, followed by experiments under both controlled and

natural field conditions (see Figure S1A). This methodology iden-

tifies multiple thermosensing inputs into both VIN3 and FLC
ber 26, 2018 ª 2018 The Author(s). Published by Elsevier Inc. 643
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expression that respond to distinct features of the fluctuating

temperature profile. The resulting mathematical model also

successfully predicts VIN3/FLC expression dynamics for newly

acquired field measurements. More broadly, our data, with

numerous temperature-dependent steps for VIN3/FLC, support

the general hypothesis that temperature sensitivity will be

distributed throughout thermally responsive regulatory networks

in biological systems, rather than being concentrated at partic-

ular steps with the rest of the network being temperature

compensated. We emphasize that this distributed property of

temperature sensing does not refer to a spatial distribution but

rather to the distribution of the temperature response over

many nodes of the network that regulates VIN3/FLC, a feature

which is likely to be a general property of temperature sensing

in biology. Overall, this work greatly extends our ability to under-

stand and predict the thermal responses of biological systems to

complex, real-world environmental conditions.

RESULTS

Initial Mathematical Model for Temperature-Sensitive
VIN3 Dynamics
In order to fully understand how noisy field temperatures are in-

tegrated at FLC, we investigated the nature of the temperature

inputs to the expression of the epigenetic regulator, VIN3. VIN3

expression is influenced by at least two separate thermosensi-

tive processes (Hepworth et al., 2018). One promotes expression

while in the cold, providing the memory of cold duration with a

long timescale of weeks, while a second reduces expression in

the warm, with a fast-acting timescale of hours. The molecular

basis of these processes is currently unknown but could include,

for example, temperature-sensitive accumulation, depletion,

conformational changes, or altered covalent modifications to

proteins, RNA, or chromatin.

To investigate the properties of these thermosensitive pro-

cesses without knowledge of their biophysical identities, we

developed a mathematical model of VIN3 dynamics. We were

primarily constrained by the two very different timescales of

the VIN3 response. We proceeded by fitting the temperature de-

pendencies in the model at each timescale based on our and

others’ previous experimental work (Bond et al., 2009a; De Lucia

et al., 2008; Duncan et al., 2015; Finnegan et al., 2011; Greb

et al., 2007; Hepworth et al., 2018; Sung and Amasino, 2004;

Wollenberg and Amasino, 2012; Yang et al., 2017).

One temperature-sensitive pathway holds the memory of the

duration of the cold. We termed this long term (L). For L to hold

stable quantitative memory, an attractive hypothesis is a digital

system similar to the one employed by FLC regulation (Angel

et al., 2011, 2015; Berry et al., 2015), in which individual cells

show bimodal expression of FLC (either some or none). How-

ever, single molecule RNA fluorescence in situ hybridization

(FISH) (Figure S1B) clearly showed an analog increase in the

VIN3 RNA levels distributed evenly across different cells (Figures

S1C–S1E). Hence, the effect of this thermosensitive process is

graded, rather than all or nothing, at the level of VIN3 RNA.

To produce the long-term, graded accumulation shown exper-

imentally in Figures S1B–S1E, Lmust have a very slow degrada-

tion timescale (weeks) in the cold (defined here as less than

approximately 15�C; Duncan et al., 2015; Hepworth et al.,
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2018; Wollenberg and Amasino, 2012). We previously showed

that the long-term thermosensitive process is able to accumu-

late in conditions where the temperature fluctuates above 20�C
for 4 hr daily (Hepworth et al., 2018). Therefore, the decay rate

of Lmust also be relatively slow inwarm temperatures, on a time-

scale of more than a few hours.

Wemodeled L such that it is produced only in the cold and de-

grades very slowly in both the cold and the warm, thereby inte-

grating over the period of cold that the plant has experienced.

To test this property, plants were grown in warm conditions for

different lengths of time. When these plants were transferred to

the cold for 1 day, they showed no evidence of increased L, since

very low levels of VIN3 expression were observed regardless of

the duration of the growth time (Figure S1F). L does not, there-

fore, accumulate at high (�20�C) temperatures.

The second thermosensitive pathway, which here we term

current (C), measures current temperature and has fast-acting

dynamics. C is responsible for the rapid reduction in VIN3 levels

observed at high temperatures (Bond et al., 2009a; Finnegan

et al., 2011; Greb et al., 2007; Hepworth et al., 2018; Sung and

Amasino, 2004; Yang et al., 2017), so that it can reproduce the

‘‘absence of warm’’ response seen in Hepworth et al. (2018).

However, there is also a graded response to cold in an interme-

diate temperature range, taking higher values at lower tempera-

tures (Duncan et al., 2015; Hepworth et al., 2018;Wollenberg and

Amasino, 2012). For simplicity, we modeled both these behav-

iors here as part of C (Figure S2A, equation for C), such that

above this intermediate temperature range, it has a very low

value, regardless of the temperature, and below this range, it

takes its maximal value.

Additionally, transcription of VIN3 is regulated by the circadian

clock, with a peak of transcription in the afternoon in constant

temperature conditions (Hepworth et al., 2018). For this aspect,

we require an additional component ofVIN3 regulation, whichwe

term diurnal (D), which we assume within this model to be tem-

perature independent. We use a simplified function to represent

the circadian clock (Figure S2A) as a mechanistic representation

of this complex system is beyond the scope of this study and has

been investigated in detail elsewhere (Locke et al., 2006; San-

chez and Kay, 2016). Both C and D must act directly on VIN3

rather than on L due to the very different timescales of C and D

(fast) as compared to L (slow) (Hepworth et al., 2018).

In principle, these pathways could act on VIN3 transcription

initiation, splicing, or degradation. However, we previously found

similar expression patterns for both spliced and unspliced VIN3

RNA (Hepworth et al., 2018). To explain this result, if splicing and

degradation were modulated, these two processes would need

to be altered in exactly the sameway in response to temperature.

In addition, the degradation rate of VIN3mRNA is observed to be

fast in both the warm and the cold, with an estimated timescale

of hours (Finnegan et al., 2011; Greb et al., 2007; Hepworth et al.,

2018; Sung and Amasino, 2004), arguing against temperature

regulation of degradation. In the model, we therefore assume

the simpler hypothesis that only transcription initiation is altered

by temperature, which naturally generates the same response

for both spliced and unspliced VIN3 levels.

We combined these observations to generate a simple ordi-

nary differential equation model for temperature-dependent

VIN3 expression (Figure S2A). The three pathways operate
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Figure 1. Experimental Method for Field Experiments
(A) Field sites in North Sweden (Ramsta), South Sweden (Ullstorp), and UK (Norwich). At the Swedish sites, plants were grown in trays bedded in the soil in the

field. In Norwich, the plants were grown inside an unlit, unheated greenhousewith air-inlets, in trays bedded in vermiculite, ensuring the containment of transgenic

lines while the plants still experienced natural conditions.

(B) Example of sowing and sampling setup in the field experiments, showing the Norwich site 2014–2015. The temperature profile is shown together with the dates

of sampling. Above the temperature plot, the approximate plant size throughout the experiment is shown, together with the tissues that were collected in the

samples depending on the plants’ size (outlined in red), and the number of plants collected for each replicate. In Norwich, when plants were larger, only the

youngest tissues were harvested, as indicated. 6 replicate samples were taken per time point, though some were lost in processing or unusable due to envi-

ronmental factors, e.g., mudslides.

See also Table S6.
such that the rate of ‘‘production’’ of VIN3 in the model is propor-

tional to the product of L, C, and D (STAR Methods). This model

was fitted to previously published data from controlled condi-

tions (Hepworth et al., 2018). We found that the data could in

all cases be successfully described by the LCD model (Figures

S2B–S2G). To further test our understanding, we then designed

further experiments and tried to interpret the results using this

model, as described in the next section.

Additional Short-Term Memory of Absence of Warm Is
Needed to Explain VIN3 Dynamics
To understand temperature sensing in natural conditions, we

carried out experiments in field sites in three different climatic

locations: North Sweden field (two plantings, 2 weeks apart),

South Sweden field, and an unheated, unlit greenhouse in Nor-

wich, UK (Figure 1A; Hepworth et al., 2018). We sampled plants

at regular intervals (Figure 1B), giving a high-resolution time se-

ries dataset for FLC and VIN3 RNA (Hepworth et al., 2018). In

field experiments, temperatures often spiked to high levels dur-

ing the day in the autumn (Figure 1B), while, at the same time, the

plants showed low VIN3 levels, despite low average tempera-

tures (Hepworth et al., 2018). High VIN3 levels instead occurred

later in the season when high temperature spikes were absent.

We dissected this absence of warmth response by testing if a

short spike of high temperature, applied daily in controlled con-

ditions, would be sufficient to reproduce this behavior. We used

a spike of 2 hr since we had observed that, post-cold, in constant

warm conditions (above 20�C), VIN3 levels were significantly

reduced after this time period (Hepworth et al., 2018). We addi-
tionally tested whether the spike would produce different re-

sponses if it was received during the day or night. We therefore

designed conditions in which plants remained at constant 12�C
except for 2 hr at 21�C, with the spike in temperature during the

day (midday spike, 2 hr after dawn) when VIN3 levels were high,

but also during the night (night spike, 6 hr after dusk) when VIN3

levels were low (Figure 2A). We compared these conditions with

constant 12�C, as well as with the constant and fluctuating tem-

perature conditions (both with average 14.2�C) used previously

(Hepworth et al., 2018).

We found that 2 hr of warm temperatures were sufficient to

reduce VIN3 expression levels, as expected given the known

fast response of VIN3 to warmth (Figures 2A–2C, midday spike

versus constant 12�C). However, the timing of the temperature

spike was not important for its effect on expression: the night

spike had a similar effect on the following day’s VIN3 profile as

a midday spike during the day of sampling (Figures 2A–2C, night

spike versus midday spike). Immediate temperature sensing (C)

is insufficient to explain this phenomenon, as the night spike

occurred 10 hr before VIN3 reduction is greatest. Potentially,

the temperature spikes could have caused a reduction in the

long-term response. However, the influence of the spikes did

not continue for longer than 24 hr: when plants were moved

from 4 weeks in spike conditions back to constant 12�C, these
plants behaved similarly to those with 12�C constant treatment

without spikes (Figures 2A–2C, spike memory versus constant

12�C), indicating that L is unaltered.

It is important to note that, in our reasoning above, although

we referred to L and C, we did not use any of the specific
Cell Systems 7, 643–655, December 26, 2018 645
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Figure 2. Short Duration Spikes to High

Temperature Affect VIN3 Expression

(A) Temperature conditions given daily for 4 weeks

(left) and then on day of sampling (right). Plants

were grown in 20�C (night) or 22�C (day) 16-hr

photoperiod for 1 week and then transferred to the

conditions shown on the left. Dark background

indicates nighttime (8-hr photoperiod).

(B) VIN3 spliced expression during the day of

sampling, sampled every 3 hr over a 12-hr period

as shown. The green background indicates the

time of the high temperature spike in the midday

spike conditions. n = 1–9; average > 6.

(C) VIN3 unspliced expression from experiment

in (B). n = 1–9; average > 6.

(D) VIN3 expression after 4 weeks cold in indicated

conditions. ‘‘Before’’ refers to samples taken at

18:30 on sampling day, in the conditions indicated.

‘‘After’’ refers to samples that after 4 weeks cold in

indicatedconditionswere further treatedwith, first,

a further 4 days in the conditions indicated and

then transferred in the afternoon (before dark) to

constant 8�C conditions for approximately 24 hr

before sampling at 18:30. n = 2–8; average = 4.4.

(E) FLC expression averaged over all the time

points of sampling day after 4 weeks cold. Krus-

kal-Wallis with Dunn’s post hoc test between

midday spike, night spike and spike memory

(conditions with similar VIN3 expression for the

4 weeks of the treatment to test for VIN3-inde-

pendent effect only) gives p<0:05 significant dif-

ference (* in plot) between night spike and midday

spike and between night spike and spike memory

(no significant difference between midday spike

and spike memory). Boxplots show median and

25th and 75th percentiles of the samples. Ends of

whiskers show maximum and minimum values.

n = 12–38; average > 30. In all cases, circle and

bars show mean and standard error, respectively.

RNA levels normalized to UBC, PP2A.

See also Figures S3 and S4.
properties assigned to them in the model presented in Fig-

ure S2A, other than the timescales that we knew they must

satisfy from experimental data. Therefore, we found that an

LCD model with temperature input at two timescales cannot

reproduce the effect of the temperature spikes. To further

demonstrate this point, we used the specificmodel of Figure S2A

as an example and showed where it fails (Figures S3A–S3C).

This deficiency suggests the need for a further thermosensi-

tive process: a short-term memory (S) of the temperature expe-

rienced by the plant. S reduces VIN3 levels if warm temperatures

have been experienced since the previous afternoon, consistent

with the spike memory experiment and with the fact that a spike

instead given the previous evening is still remembered the next

day (Figures S4A and S4B). A more complicated alternative
646 Cell Systems 7, 643–655, December 26, 2018
thermosensing structure might also be

able to explain these data, for example,

if C, as well as directly affecting VIN3

transcription, also feeds into D (thus indi-

rectly introducing temperature sensing at

a third timescale, through D). However,
here we define a more general case by introducing S, as

described above.

Smust act on VIN3 transcription, since similar effects are seen

for both spliced and unspliced VIN3 (Figures 2B and 2C). More-

over, since unspliced VIN3 levels respond immediately during

and after the spike (Figure 2C, 12:30 data point in midday spike

versus constant 12�C), this result still requires the presence of an

immediate response (C) in addition to the short-term memory

response of S. These two temperature-sensitive processes

together combine to give the ‘‘absence of warmth response’’

that plants exhibit in vernalization thermosensing.

Our experiments also allowed us to derive further understand-

ing about L and C. After a fixed period of constant temperature,

levels of VIN3 are anticorrelated with temperature (the graded



response mentioned in the previous section; Figures 2A–2D,

‘‘before’’; Duncan et al., 2015; Wollenberg and Amasino, 2012).

Conceptually, this effect could arise from either L building up

more slowly at higher temperatures with a similar C or from C

differentially affecting the transcription rate of VIN3 at different

temperatures but with the underlying L dynamics being similar

(provided the temperature is sufficiently low). To distinguish be-

tween these possibilities, we studied plants treated with different

cold temperature regimes but then brought together for a final

day at a common temperature. We found that VIN3 levels were

different in the initial cold treatment (Figure 2D, ‘‘before’’), as ex-

pected, but became similar on the final day (Figure 2D, ‘‘after’’).

This result clearly favors similar L dynamics but with fast-acting

C responsible for higher VIN3 transcription rates at lower

temperatures.

Our results reveal distributed thermosensory inputs into VIN3

expression, involving slow (L), intermediate (S), and fast (C) dy-

namics, as well as inputs from the circadian clock (D). The overall

effect of the LSCD regulation of VIN3 is a long-term memory of

the length of cold, through L, which controls the amplitude of

the diurnal VIN3 peak (D) and which is further adjusted by daily

temperature values, either immediate (C) or since the previous

afternoon (S).

The LSCD Model for VIN3 Thermosensing Can Explain
VIN3 Expression in the Lab and in the Field
We next added the short-term memory of warm spikes (S) pro-

cess to our mathematical model for VIN3 dynamics. The func-

tional forms we chose to represent L, S, C, and D in our LSCD

model are defined in Figures 3A, 3B, and S5 and STARMethods.

These functional forms and other parameters were fitted based

on existing data from the literature (Hepworth et al., 2018; Fig-

ures 3C, 3D, 3E and S6A), as well as the data from Figures 2

and S7 (STAR Methods). This overall dataset includes both

controlled and field experiments.

We chose forms for the temperature sensitivity that fitted our

data and were simple to implement, but these are not unique,

and indeed other forms could have been chosen, provided they

had a similar shape in the ranges we investigated. More con-

straining were the timescales at which each pathway responded.

Any plausible model must have temperature sensing at three

timescales (long—month; short—day; current—hour), as well

as diurnal variation, in order to explain our experimental observa-

tions. These three timescales are not tightly defined, with the

exception of S, which appears to be tied to the 24-hr diurnal cy-

cle. A 20% change in the timescale of L resulted in only a modest

change in the agreement between the model and data (<5%

change in relative error; see STAR Methods). Furthermore, C is

heremodeled as instantaneous, but the splicing rate ofVIN3 con-

strains the observed timescale of the current response, giving

only an upper bound for the timescale of C. Therefore, a wide

range of ‘‘Long’’ and ‘‘Current’’ timescales may be tolerated,

but the two must be very well separated, being much longer

and much shorter than a day, respectively.

The model could substantially reproduce the observed VIN3

behavior in constant and complex temperature conditions, both

in controlled and field conditions (Figures 3C, 3D, 3E, S6A, and

S7). In particular, the model could recapitulate the VIN3 behavior

observed in thewarm spike experiments (Figures S3D–S3F; rela-
tive likelihood of LCD compared to LSCD based on Akaike’s in-

formation criterion: 5 3 10�7; Figures S7E and S7F). In addition,

the model also captured the substantial delay of VIN3 upregula-

tion in Norwich due to warm autumn days (Figure 3C), as well

as a subtler delay in the first North Sweden planting (Figure 3D).

However, the field experiments also exhibited phenomena not

seen in the controlled environment data that the model was un-

able to capture, including variable VIN3 levels in the later stages

of the 2014–2015 South Sweden data (Figure 3E). Field notes

subsequently revealed that these plants had been buried under

a mudslide during this time (Figure 3F), likely accounting for

the divergence, since both hypoxia and light (indirectly, via circa-

dian dynamics) regulate VIN3 (Bond et al., 2009b; Hepworth

et al., 2018). We were also unable to reproduce an apparent

age effect between the two plantings in North Sweden 2014–

2015 (Figures 3D and S6A), which we could not account for by

temperature sensing alone since the plants were experiencing

the same temperature conditions. Furthermore, the older plants

(Figure 3D), which had experienced cold for longer, showed

lower VIN3. Stress due to extreme cold conditions may have

affected the younger plants more strongly than their older coun-

terparts, leading to the observed effect.

The model predicted large fluctuations from day to day in the

‘‘model daily’’ VIN3 levels in the spring (Figures 3C–3E). How-

ever, we do not have samples at high enough resolution to test

if this was indeed the case in the field. Nevertheless, our predic-

tions are consistent with the spring field samples we do have,

as well as with results from our controlled experiments, such

as for single days without a spike (spike memory) (Figure 2B),

and also when a spike is introduced for the first time on the

day of sampling (5�C with single spike) (Figure S7E and S7F).

FLC Downregulation Is Sensitive to Diurnal Timing,
while VIN3 Dynamics Are Not
We next turned to investigate the effect of temperature on FLC

expression, mediated either through VIN3-dependent or -inde-

pendent pathways. Above, we found that VIN3 expression was

reduced by a spike of high temperature regardless of when

that spike was applied, provided the spike occurred since the

previous afternoon. We therefore examined the response of

FLC to such spikes. In a previous study, we found that FLC is

downregulated more in fluctuating 14.2�C conditions than con-

stant 14.2�C, despite fluctuating 14.2�C conditions having lower

VIN3 levels. This is due to the effect of the VIN3-independent

pathway, which represses FLC at low temperatures, with lower

temperatures being more repressive (Figure 2E; Hepworth

et al., 2018). Consistently, we found that fluctuating 14.2�C con-

ditions had a similar level of downregulation as both constant

12�C andmidday spike conditions (Figure 2E). However, despite

having the same mean temperature and similar VIN3 expression

profile as the midday spike (and also spike memory, which is

treated identically to the midday spike for the 4 weeks prior to

the day of sampling), the shift of the spike by 12 hr in the night

spike impeded FLC repression (Figure 2E; Kruskal-Wallis

with Dunn’s post hoc test p < 0.05) Furthermore, in the vin3-4

mutant, the night spike treatment also impeded repression (Fig-

ure S4D). These results suggest that the pathway controlling

VIN3-independent transcriptional downregulation of FLC is

gated in a diurnal, light-dependent, or circadian manner.
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rate of spliced VIN3.

Figure 3. Description and Fitting of LSCD

Model for VIN3 Dynamics

(A) Diagram of the LSCD model showing the pri-

mary signals registered by each component, their

temperature dependence, and how they affect

VIN3 transcription. Element L increases slowly in

the cold (<17�C) and decreases slowly in the warm.

Element S remembers the presence of a high

temperature spike until the evening and, during

that time, remains decreased. Element C is high at

low temperatures and low at high temperatures,

changing linearly with temperature between 8�C
and 15.4�C. Element D cycles each day, peaking in

the afternoon.

(B) Mathematical description of LSCD model

showing the temperature and time dependency of

each component.

(C) Comparison of LSCD model and fitted experi-

mental VIN3mRNA data for Norwich in 2014–2015.

Data from Hepworth et al. (2018), bars show mean

and standard error, respectively. Model at sam-

pling shows the mean of the predicted values of

VIN3 mRNA in the sampling time window, which is

defined as the period from 2 hr before the recorded

sampling time to 2 hr after due to the long duration

of sampling. The error bars show themaximum and

minimum values of VIN3 mRNA during that time

window. Model daily shows the predicted value for

VIN3mRNA at the same time every day (chosen as

the time of the final sampling) to demonstrate the

changes in amplitude of the VIN3 daily peak.

(D) Comparison of model and experimental data

from North Sweden (early planting) in 2014–2015,

as described for Norwich in (C).

(E) Comparison of model and experimental data

from South Sweden in 2014–2015, as described for

Norwich in (C). The late time points of the South

Swedish data (brown bar) could not be fitted by our

model, likely due to a mudslide (time given by start

of brown bar) that damaged the plants and affected

their VIN3 expression.

(F) Mudslide at the South Swedish site covered the

plants and caused sample losses.

See also Figures S1–S3 and S5–S7.
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Figure 4. Description and Fitting of Model for FLC Dynamics

(A) Diagram of the FLC model showing switching between digital states in the

FLC silencing pathway during vernalization.

(B) Mathematical description of FLC model showing the temperature de-

pendency of the switches.

(C) Comparison of FLC model and fitted experimental FLC mRNA data for

Norwich, in 2014–2015 (data from Hepworth et al. [2018]).

(D) Comparison of FLC model and experimental data for North Sweden (early

planting) in 2014–15 (data from Hepworth et al. [2018]).

(E) Comparison of FLC model and experimental data for South Sweden in

2014–15 (data from Hepworth et al. [2018]).

(F) Comparison of FLC model and fitted experimental FLC mRNA data for

Constant 5�C (combined data from Figure S9B).

In all cases, squares and bars show mean and standard error, respectively.

See also Figures S5, S6, S8, and S9.
To distinguish between these possibilities, we designed

further temperature spike regimes with spikes in the morning,

just before subjective day, or in the evening, just after the onset

of subjective night (both in the dark). While these spikes again

affected VIN3 similarly, they had different effects on FLC (Fig-

ure S4): the morning spike and midday spike conditions were

as effective for FLC downregulation as constant 12�C, despite
the former treatments having higher average temperatures

(12.75�C). However, the evening spike conditions were less

repressive, and the night spike conditions repressed significantly

less than the morning and midday spikes (Figures S4C–S4F;

Kruskal-Wallis with Dunn’s post-hoc test, p < 0.05). The similar

effects on FLC expression of the morning (in the dark) and

midday (in the light) spikes suggest that light is not the gating fac-

tor. Overall, these results support a role for diurnal or circadian

dynamics in the VIN3-independent pathway, with FLC repres-

sion being particularly sensitive to night-time temperatures.

Mathematical Model for FLC Must Include Multiple
Thermoresponsive Steps
We next constructed a more extensive vernalization model, rep-

resenting the dynamics of FLC, incorporating both VIN3-depen-

dent (derived from the VIN3model above) and VIN3-independent

pathways. A conceptual outline of the FLC module is shown in

Figure 4A, based on previous experimental results (Angel et al.,

2011, 2015). Unlike the LSCDmodel, which represents the action

of inferred thermosensory processes on VIN3 transcription, the

FLC model consists of a series of digital states of the FLC gene

that define its transcriptional state (Angel et al., 2011, 2015; Berry

et al., 2015), together with various transitions between the states.

Only the first state (H, high transcription) is transcriptionally

active.Gene copies in theH state can switch to a transcriptionally

inactive state I, inactive) through a VIN3-independent pathway

(Csorba et al., 2014; Helliwell et al., 2011; Hepworth et al., 2018;

Swiezewski et al., 2009). Themechanistic basis of the VIN3-inde-

pendent pathway is still to be fully resolved but is likely to involve

the functionality of non-coding COOLAIR antisense transcription

or of the resulting transcripts (Csorba et al., 2014; Rosa et al.,

2016; Swiezewski et al., 2009). Gene copies in the I state can

then switch irreversibly to an epigenetically stable OFF state

(E, epigenetically silenced) with a rate that depends on the cold-

induced VIN3 level (Yang et al., 2017). We also included an addi-

tional VIN3-dependent transition directly from H to E to allow

epigenetic silencing of FLC in the absence of VIN3-independent

FLC downregulation, but at a much slower rate than for the I to

E transition (Buzas et al., 2011). Ordinary differential equations

were used to capture the dynamics of the relative proportions

of gene copies in each state over the whole plant (Figure 4B).

Each gene copy switches states independently of other copies

within the same cell or in surrounding cells (Berry et al., 2015).

The FLCmodel was parameterized using awide variety of data

from the literature (Duncan et al., 2015; Hepworth et al., 2018;

Yang et al., 2017; Figures 4C, 4D, 4E, 4F, S6B, and S8), including

2014–2015 field data and the data presented in this paper (Fig-

ures 2, S4, and S9). The VIN3-independent part of the model

was parameterized based on data from the vin3-4, vrn5-8, and

vrn2-1 mutants (Figures S4 and S8; Hepworth et al., 2018;

Yang et al., 2017), where the PRC2-based switches to E are

blocked. The VIN3-independent transition from H to I is
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Figure 5. Validation of VIN3/FLC Model

(A and B) Validation of VIN3/FLC model by pre-

diction of (A) VIN3 and (B) FLC behavior under new

field conditions in Norwich 2016–2017. n = 4–6;

average > 5.4.

(C and D) As for (A) and (B) for new field condi-

tions in North Sweden 2016–2017. n = 3–6;

average > 4.6. For data, squares and bars show

mean and standard error, respectively, while

for the model, circles show the mean of the pre-

dicted values of VIN3 mRNA in the sampling time

window and bars show the maximum and mini-

mum values during that time window.

See also Figures S6 and S10.
reversible, since in the absence of epigenetic silencing, FLC

levels reactivate in the warm (Gendall et al., 2001; Helliwell

et al., 2011; Yang et al., 2017). Additionally, as shown above in

Figures 2 and S4, VIN3 levels are the same in the case of the

midday and night spike treatments, but FLC levels are lower if

the spike occurs during the day. The temperature-sensitive

VIN3-independent dynamics of FLC (shown in the STAR

Methods to be the I to H transition, r) are therefore taken to be

controlled by night-time temperatures, defined as the 6 hr either

side of subjective midnight. The rate of r is positively correlated

with temperature in the range of ‘‘cool’’ temperatures (Figure 4B

and STAR Methods), as can be inferred from the faster rate of

shutdown at colder temperatures in Figure S8.

In addition to the temperature dependence of VIN3 dynamics,

the I to E and H to E transitions are also directly temperature

dependent. This feature is necessary to explain the absence of

silencing in the warm in lines overexpressing VIN3 (Kim and

Sung, 2017; Lee et al., 2015), suggesting cold is necessary for

the nucleation of epigenetic silencing. We also observed a

difference in the rate of FLC downregulation at the different field

sites, with the Swedish sites having slower downregulation

despite higher levels of VIN3 compared to Norwich (Hepworth

et al., 2018). Consistently, vernalization has previously been

found tobehinderedby temperaturesaround0�Cor less (Duncan

et al., 2015; Napp-Zinn, 1957; Wilczek et al., 2009). The model

therefore incorporated direct temperature dependency in the I

to E andH to E transitions, with an optimal temperature for epige-

netic silencing and no silencing either above 18�Cor below�1�C.
The overall mathematical model (Figure 4B; full description in

STAR Methods) was successfully fitted to experimental FLC

data for mutants (Figure S8) and wild-type plants (ColFRISF2)

from the first field experiment (Figures 4C, 4D, 4E and S6B), as

well as laboratory experiments (Figures 4F and S9). As in the

VIN3 model, temperature sensitivities enter in multiple places
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in the FLC model, supporting a hy-

pothesis of distributed thermosensing,

with routes to silenced FLC requiring

temperature responsiveness at almost

every step.

VIN3/FLC Model Can Predict
Responses in the Field
To fully test our parameterized model, we

challenged it with a second set of field
data from winter 2016–2017. Experiments were repeated in

North and South Sweden, as well as Norwich, UK but brought

forward by 2 weeks to ensure that warmer field temperatures

would fully test our predictions on temperature sensitivity. The

effectiveness of the model was demonstrated by our ability to

predict the behavior of VIN3 and FLC in Norwich (Figures 5A

and 5B), North Sweden (Figures 5C and 5D), and South Sweden

(Figures S6C and S6D), without reparameterization.

Nevertheless, there were still aspects of these new datasets

that could not be accounted for, in particular for VIN3 (Figure 5C,

late time points). Every day, VIN3 levels start very low and peak in

the afternoon. Therefore, the sampling time relative to this diurnal

pattern is critical to correctly estimate the amplitude of the oscil-

lations. In North Sweden 2016–2017, we found that the diurnal

pattern of VIN3 was shifted by several hours from that observed

in controlled conditions or in Norwich 2016–2017 (Figures S10B,

S10E, and S10H). This change meant that the peak of VIN3

expression wasmuch later than our sampling time, and therefore

we were greatly underestimating its amplitude. This effect could,

in part, explain the difference between our data and the model

prediction after �60 days in North Sweden (Figure 5C). The

amplitude of the circadian clock gene EARLY FLOWERING3

(ELF3) and both the amplitudes and phases of LATE

ELONGATED HYPOCOTYL (LHY) and especially CIRCADIAN

CLOCK ASSOCIATED1 (CCA1) show differences between

experimental sites and over time (Figure S10), which could be

related to the cold (Bieniawska et al., 2008; Box et al., 2015;

Gould et al., 2006) and which may explain this shift. However,

due to the uncertainties regarding the behavior of the circadian

clock under these fluctuating field conditions, we did not attempt

to explain this changed behavior with a more complex model for

D. Overall, despite some discrepancies, we conclude that the

model could predict VIN3 behavior, even in extremely chal-

lenging heterogeneous field conditions.



The results of the temperature fluctuations in the field are

visible in the VIN3 profile (e.g., Figure 5A), where short-term tem-

perature dynamics feed through to influence VIN3 expression.

However, the slow, digital switching dynamics of FLC loci lead

to noise filtering and to a smooth overall FLC expression profile,

where sustained fluctuations affect the overall long-term rate of

downregulation, but without a significant response of FLC to any

specific temperature fluctuation event. Initially, VIN3 levels are

low, and therefore the VIN3-independent pathway dominates

the FLC dynamics. In a later phase, where VIN3 levels increase

significantly, the rate of shut-down of FLC also tends to increase.

Both years in Norwich and in North Sweden 2016–2017, the tem-

perature conditions are such that an increase from low to high

VIN3 levels happens abruptly, leading to a clear separation of

the two phases (Figures 3C, 4C, and 5). In 2014–2015 in Sweden,

levels of VIN3 increase quickly right from the start of measure-

ment (Figures 3D, 3E, 4D, 4E, S6A, and S6B). Small changes

to the rate of FLC repression do subsequently occur in Sweden

due to further increase ofVIN3 levels. However, at the same time,

lower temperatures directly reduce the efficiency of the transi-

tion to an epigenetically silenced state. These two effects

substantially cancel out, effectively leading to a single, approxi-

mately exponential, FLCmRNA decay profile in the field (Figures

4D, 4E, and S6B).

In summary, we found substantive agreement between the

model and our experiments, with the model showing significant

predictive skill despite the intricate, fluctuating nature of the field

temperature signal. Naturally, we cannot exclude the existence

of other mechanisms that could explain this behavior. Neverthe-

less, the fact that our model can reproduce data collected from a

wide range of conditions (including from field and various

controlled-temperature profiles, from this paper, and from the

literature) demonstrates that the model can be a powerful pre-

dictive tool.

Both Warmer and More Variable Temperatures Affect
Vernalization
Having established that the VIN3/FLC combined model can pre-

dict responses to field conditions, we next examined which fea-

tures of the field temperature profile it is most sensitive to by

altering the temperature input. We first compared the results

from the full temperature profile for Norwich 2014–2015 with

that under a simplified treatment (day-mean) where the temper-

ature profile each day is replaced by the mean value of that day

(Figures 6A, 6B, 6C, 6D, 6E, 6F and S11A) for ColFRISF2 (the wild-

type line, ‘‘ColFRI’’). We find that, over an early period (Figure 6F),

the absence of cold temperatures in the day-mean profile (Fig-

ure 6D) leads to slower simulated FLC downregulation, partly

due to the VIN3-independent pathway being less activated.

However, later in winter, the absence of daily warm spikes in

the day-mean treatment (Figure 6A) causes simulated VIN3

levels to be higher (Figure 6C), leading to lower simulated FLC

levels (Figure 6E).

To more clearly distinguish these differing effects of the VIN3-

dependent and -independent pathways, we also simulated the

behavior of a vin3 null mutant (Figures 6E and 6F). In this case,

as expected, we observed a significant impediment in the later

simulated downregulation of FLC, as this mutant was blocked

in epigenetic silencing. Once again, the day-mean treatment
gave slower simulated downregulation in early winter (Figure 6F),

confirming that this was due to the VIN3-independent pathway.

Furthermore, a decrease in the frequency of low temperatures in

the late period (Figure 6D) led to simulated reactivation of FLC in

the vin3-4 mutant much earlier under the day-mean treatment

(Figure 6E).

We then modified the temperatures measured in the field to

test what type of future climate changesmight have themost sig-

nificant effects on FLC expression. We first changed the mean

temperatures while keeping the absolute size of the temperature

fluctuations the same by adding 3�C to the entire field tempera-

ture profile (with the exception of temperatures around 0�C,
when the plants are mainly covered by snow; STAR Methods).

Such a change is within the predicted range of temperature in-

creases for the end of this century (IPCC, 2014). In Norwich,

this intervention strongly impeded simulated upregulation of

VIN3 and downregulation of FLC expression, as expected (Fig-

ures 6G, 6H, 6I and S11B) since both the frequency and magni-

tude of high temperature spikes were increased (Figure 6G),

while the frequency and magnitude of low temperature dips

were reduced (Figure 6H). On the other hand, in North Sweden

(Figure S11D), there was very little difference in the presence

of cold (Figure 6J) or warm (Figure 6K) following this modifica-

tion. As a result, simulated VIN3 and FLC both behaved similarly

in the modified and original temperature profiles (Figure 6L).

Interestingly, in the late phase of vernalization in Sweden (after

�100 days), slightly faster simulated FLC shutdown could be

observed in the case of added 3�C. This effect arose because

temperatures close to 0�C and lower hinder vernalization

(Duncan et al., 2015; Napp-Zinn, 1957; Wilczek et al., 2009).

Therefore, the increased but still low temperatures of the modi-

fied profile for Sweden are closer to the optimal range for FLC

downregulation.

In comparison, stretching the field temperature profile T

above and below the daily mean temperature (Tm) for each

day ðT/23 ðT � TmÞ + TmÞ, i.e., keeping the mean tempera-

tures unchanged while increasing the fluctuations, had a

smaller but still visible effect (Figures 6G, 6H, 6I, 6J, 6K, 6L,

S11C, and S11E). This effect was even smaller in the case

of the vin3-4 mutant, where FLC decreased only due to the

VIN3-independent pathway, for which the presence of cold

was the driving mechanism. The stretch treatment did not in-

crease the proportion of cold in the profile by much and there-

fore had little effect on the VIN3-independent pathway (Figures

6H and 6K). However, in Norwich, simulated VIN3 expression

was lower in the stretch treatment, especially at later times

due to the increase of the warm spikes, and this effect led to

a slower simulated shutdown of FLC in the wild-type. The simu-

lated epigenetic shutdown of FLC was even further impeded by

the very low temperatures in the stretch treatment at those late

times (Figure S11C).

For both modifications to the temperature profile, we see an

effect on simulated FLC shutdown. A 10-fold decrease in FLC

mRNA concentration compared to its starting level is predicted

to be reached on the 87th day in Norwich for 2014–2015. In

the 32 treatment, this is reached with a 4-day delay, while in

the +3 treatment a 22-day delay is predicted. For a 100-fold

decrease in FLC level, which in Norwich 2014–2015 is predicted

to be reached on the 126th day, the delays have increased to 14
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Figure 6. Assessment of Climate Sensitivity

of FLC and VIN3 Dynamics

(A–F) Norwich 2014–2015 prediction for ColFRISf2

(ColFRI, green) compared to the prediction where

the temperature at each time point is replaced by

the 24-hr average temperature of that day (ColFRI

day-mean, blue). The same is shown also for the

vin3-4 mutant (pink and orange, respectively).

(A) shows ‘‘presence of warm’’ features in the two

temperature profiles, green for measured tem-

perature, and blue for day-mean temperature.

Presence of color stripe corresponds to a high

temperature spike on that day (day maximum

above 15�C). (B) Figure legend for (A)–(F). (C) VIN3

mRNA prediction, for ColFRI. (D) shows ‘‘presence

of cold’’ features in the two temperature profiles,

green for measured temperature and blue for

day-mean temperature. Presence of color stripe

corresponds to a low temperature dip on that

day (day minimum below 10�C). (E and F) FLC

mRNA prediction, for ColFRI and vin3-4 mutant.

(F) shows the same predictions as (E) but only

for the first 60 days, as indicated by dashed line

square in (E).

(G) ‘‘Presence of warm’’ features in three temper-

ature profiles, Norwich 2014–2015 (orange), the

Norwich profile modified by adding 3�C (‘‘+3,’’

blue) or by stretching the temperatures around the

daily mean (‘‘x2,’’ pink).

(H) ‘‘Presence of cold’’ features in the modified

temperature profiles as described in (G).

(I) FLC and VIN3 mRNA predictions based on

Norwich 2014–2015 temperature (orange) com-

pared to the modified profiles as in (G) and (H).

Dashed lines are for vin3-4 mutant.

(J) ‘‘Presence of warm’’ features in three temper-

ature profiles, North Sweden 2014–2015 (orange),

the North Sweden profile modified by adding 3�C
(‘‘+3,’’ blue) or by stretching the temperatures

around the daily mean (‘‘x2,’’ pink).

(K) ‘‘Presence of cold’’ features in the modified

temperature profiles as described in (J).

(L) FLC and VIN3 mRNA predictions based on

North Sweden 2014–2015 temperature (orange)

compared to the modified profiles as in (J) and (K).

Dashed lines are for vin3-4 mutant.

In all cases, temperatures are fromHepworth et al.,

(2018).

See also Figure S11.
and 27 days, respectively. These results suggest that two poten-

tial effects of climate change, general warming and increased

temperature fluctuations, will both negatively affect the effi-

ciency of vernalization.

DISCUSSION

In thiswork, we investigated the temperature sensitivity of thema-

jor regulators of vernalization, VIN3 and FLC, and then exploited

this information to construct a modular mathematical model

of the vernalization process. We used an experiment-driven

approach, logically extracting fromour data the features and time-

scales thatanunderlyingmodelmust include.Wechose functional

forms in the model that could reproduce our data and represent

the observed varied temperature sensing. Our VIN3/FLC model
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could then in most circumstances accurately predict VIN3 and

FLC response to temperature in the field, although we were not

able to capture some aspects of age and diurnal response.

In developing the model, we identified a need for multiple,

distributed thermosensory inputs into VIN3 and FLC and

progressed our understanding of which aspects of the tempera-

ture signal each step was sensitive to. In fact, we found that most

steps (L, S, C, VIN3-independent (r), VIN3-dependent (s2,s3)) of

the vernalization pathway had to be temperature sensitive. For

the remaining steps, it was not necessary to include temperature

sensitivity, but there was no evidence to suggest that such sensi-

tivity could not exist. Multiple temperature sensitivities have also

been found in the regulation of the gene FT (Kinmonth-Schultz

et al., 2018). Such distributed thermosensing is in contrast to

an alternative hypothesis where thermal response is proposed



to be governed by a small number of core thermosensors (Quint

et al., 2016; Wigge, 2013). We find this latter hypothesis to be

generally less likely due to the global temperature dependence

of biochemistry. Furthermore, an isolated thermosensor would

require the remainder of the network to be temperature compen-

sated, a situation that would not be straightforward to achieve.

For these reasons, we expect that temperature sensing will be

fundamentally different from sensing other environmental signals

such as light perception, where isolated, specialized sensors are

certainly required.

In our analysis, we identified a new thermosensing element:

short-termmemory of warm spikes (S). Its behavior is consistent

with a response to warm temperatures that resets its short-term

memory every evening. Indeed, in Figure 2B, at the first time

point after dusk, the levels of VIN3 in treatments with a temper-

ature spike were reset to the levels of treatments with constant

background temperature, suggesting that the circadian clock

is involved. VIN3 is also regulated directly by the clock, through

D, consistent with the known binding of the circadian regulator

CCA1 to the VIN3 promoter (Nagel et al., 2015).

From our analysis, we cannot exclude the possibility that there

is cross-talk between the thermosensor pathways L, S, and C

and indeed that some factors may be common between them.

However, the key result is that they must be distinct in their

response, as they sense temperature at different timescales.

At present, there are no clear candidates for L, S, and C (Bond

et al., 2009a, 2009b, 2011; Finnegan et al., 2011). Instead,

focused genetic screens in specific temperature regimes will

need to be undertaken to identify these components. However,

we expect that the detailed dissection of their properties carried

out here should greatly facilitate their molecular identification.

This work also confirms our earlier proposal (Hepworth et al.,

2018) that the L element acts similarly to the ‘‘day-degree’’

element used in agricultural cropmodeling, recording timewithin

a temperature interval rather than the temperature itself (Aikawa

et al., 2010; Chew et al., 2012; Wang et al., 2002, 2017; Weir

et al., 1984). Elements C and S then add information on current

and recent temperatures to the VIN3 system, responding rapidly

to current and recent conditions. This combination of long-term

(L) and shorter-term (C and S) temperaturemonitoring provides a

sophisticated mechanism to distinguish between autumn and

winter, even in the presence of large seasonal temperature fluc-

tuations. This ability is generated by multiplicative regulation of

VIN3 by the thermosensing elements; if any are low, then the

VIN3 levels are also low. Under normal conditions, in autumn,

plants have not experienced cold for long enough to accumulate

high levels of L. However, should L accumulate to high levels

early due to inadvertent early germination, the fast response

due to S andCwill be sufficient to keep VIN3 levels low until tem-

peratures stop spiking to high levels daily. On the other hand, in

the case of an unusually cold autumn, when S and C may be

high, low levels of the L thermosensor will act as a break early

on, delaying the response of VIN3.

The importance of deepening our understanding of how fluc-

tuations affect temperature responses has been widely recog-

nized (Chew et al., 2012; Hepworth et al., 2018; Sidaway-Lee

et al., 2010; Topham et al., 2017). The slow dynamics of L and

the digital nature of the epigenetic pathway of FLC shutdown

combine to give a highly effective integration over the noisy tem-
perature signal. However, we also find that the warm sensitivity

of S and C combine to make the VIN3-dependent pathway

particularly sensitive to warm spikes in temperature during the

autumn in the field. In the present climate, this effect is largely

compensated for by the VIN3-independent pathway, which re-

sponds to the cold nights of autumn and represses FLC

transiently. In modeling future climates, we find that higher tem-

peratures due to global warming are likely to lead to a decrease

in repression provided by both the VIN3-dependent and VIN3-in-

dependent pathways in climates such as Norwich (Figures 6G–

6I). However, the same temperature change in Sweden is not

predicted to have as strong an effect on vernalization in the syn-

thetic accession we analyzed in this study (Figures 6J–6L). In

fact, the model shows that an increase of temperature would

lead to less extreme cold temperatures, bringing the tempera-

ture profile closer to the vernalization optimum and therefore

paradoxically accelerating FLC shutdown.

To make more realistic predictions of vernalization under

future climates, it will be informative to utilize climate model pro-

jections. However, we find that warm temperature spikes of even

a short duration can have dramatic effects on vernalization. It will

therefore be necessary to use very high temporal resolution tem-

perature profiles for the predictions. Furthermore, it will be

important to consider the local microenvironment of the vernaliz-

ing plant tissues. ForArabidopsis, it will be the temperature at the

soil surface that is most relevant and often in direct sunlight.

Temperatures in such a microenvironment may be significantly

different from the temperatures observed even 1 m above the

soil or in the shade, particularly with reference to the absence

of short-term warm spikes. Integrating models of the type

described in this paper with appropriate climate projections

will therefore be a significant challenge for future studies.
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qPCR (Table S1)

Hepworth et al. (2018);
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design-software/stellaris-probe-designer
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Wales and Doye (1997)
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Other
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Replicate Numbers
Numbers of biological replicates that passed quality control (see Hepworth et al., 2018 for details) and were used for analysis are

presented for all experiments in Table S6.

Field Experiments
The standard vernalization reference accession Col FRISF2 andmutant vin3-4 FRI have been described previously (Bond et al., 2009a;

Lee and Amasino, 1995). Field experiments were carried out as described in Hepworth et al. (2018) and Figure 1. For all field sites and

sowing dates, for each timepoint, six replicate tray-cells were sown in a block-randomised design, with at least three plants sampled

per replicate. Tissues sampled in Norwich were as shown in Figure 1; for Sweden, whole plants were sampled throughout. For Fig-

ure S8F, Norwich 2014-15 winter, plants were moved from the unlit, unheated ‘field’ glasshouse on 3rd December 2014 (65 days after

sowing), or 7th January 2015 (100 days after sowing), to a greenhouse set to 22�C/18�C, 16 light/8 hour dark, and continued to be

sampled with 3 replicates per timepoint.

For the 2016-2017 season, in Norwich plants were sown on 15th September 2016. In Sweden, plants were sown at Mid Sweden

University (North Sweden) on 12th August 2016, and moved to the test site on 24th August 2016, and for South Sweden plants were

sown on 6th September 2016 at Lund University andmoved on 21st September 2016. For the 48hr sampling in the field, samples were

prepared and randomised as for the long-term trials, with three replicates for Norwich and six for each Sweden site, and samples

were taken once every four hours over the 48hr period of sampling.

Temperature was recorded at plant level at each site with TinyTag Plus 2 dataloggers (Gemini Data Loggers (UK) Ltd).

Laboratory Experiments
Plant Material for RNA Experiments

The aerial parts of whole plants were sampled at all times for controlled-condition experiments, with at least three plants sampled per

replicate. Unless otherwise specified, plants were grown on soil as described in Hepworth et al. (2018). Plants were initially grown at

22�C 16hr day/20�C 8hr night for one week (‘NV’), before moving to Panasonic MLR-352 series growth cabinets set to 37-52 mmol

light (setting 3) for 8 hours per day and the described temperature setting.

For Figures 2 and S4, plants were cycled between cabinets once a week to avoid differences in light quality influencing the exper-

iments. For Figure 2, temperature conditions were: SpikeMemory (bright blue), midday spike, 2 hr spike to 21�C, daily 2 hr after dawn,

otherwise at 12�C, for 4 weeks, moved to constant 12�C for day of sampling. Night Spike (pink), 2 hr-spike to 21�C every night, 6 hr

after dusk, otherwise at 12�C. Midday Spike (green), 2 hr-spike to 21�C every day, 2 hr after dawn, otherwise at 12�C. 12�C constant

(dark blue). 14 �C constant (yellow). 14�C fluctuating (red), fluctuating temperature profile as shown in Figure 2A with average tem-

perature of 14.2�C. For Figure S4, temperature conditions were: Night Spike (pink), 2 hr-spike to 21�C every night, 6 hr after dusk,

otherwise at 12�C. Evening Spike (purple), 2 hr-spike to 21�C every evening, starting at dusk, otherwise at 12�C. Midday Spike

(green), 2 hr-spike to 21�C every day, 2 hr after dawn, otherwise at 12�C. Morning Spike (brown), 2 hr-spike to 21�C every morning,

ending at dawn, otherwise at 12�C. 12�C constant (dark blue). 14�C fluctuating (red), fluctuating temperature profile as shown, with

average temperature of 14.2�C.
For Figures S9B, S9D, S9E, and S9F (yellow) temperature conditions for vernalization were: constant 5�C, 12�C, 14�C and 22�C

respectively.

For Figure S9F (blue) plants were continuously grown at 22�C 16hr day/20�C 8hr night and sampled at the timepoints indicated.

For Figures S9A–S9E (orange and blue) seeds were stratified for 3 days on soil at 5�C. Conditions for vernalization were 2, 4, 8, or

12 weeks at 14�C, 12�C, 8�C (in Panasonic cabinets), 5�C (walk-in vernalization room) or 2�C (Liebherr KP2130 with addition of a

controlled lighting system), with low light (�30mmol m-2 s-1) and 70% ± %10% Relative Humidity.

For Figure S9B (green), plants were grown on petri dishes and experiments were carried out as described in Q€uesta et al. (2016).

For Figure S1F, plants were initially grown at 22�C 8hr day/16hr night for the indicated length of time (‘No cold’ – red) in Panasonic

MLR-352 series growth cabinets and then transferred for one day (‘+1 day cold’ – yellow) to another cabinet of the same make, set

to 8�C.
Plant Material for smFISH

Plant root tips were imaged for the smFISH experiments. Plants were sown on petri dishes containing Murashige and Skoog (MS)

media minus glucose. They were stratified for 3 days at 5�C and were then grown vertically in growth cabinets at 22�C 16hr day/

8hr night for 1 week. Finally, the plants were vernalized at 5�C (walk-in vernalization room), on the vertically oriented petri dishes.

METHOD DETAILS

RNA Preparation and QPCR
RNA extraction and QPCR were used to measure plant average RNA levels (Figures 2, 3, 4, 5, S1F, and S2–S10). Unless otherwise

specified, these were performed as described in Hepworth et al. (2018). Gene specific primers used for reverse transcription and

primers used for QPCR are listed in Table S1. Samples were normalised to the geometric mean of two standard genes, PP2A

(At1g13320) andUBC (At5g25760). For FLCmeasurements under lab conditions, there was a further normalisation to the ‘NV’ levels,
Cell Systems 7, 643–655.e1–e9, December 26, 2018 e2



sampled before the start of the vernalization treatment. For field experiments (Figures 3, 4, 5, S6, S8F, and S10) and Figure S4 the

output was analysed using LinRegPCR (Ruijter et al., 2009). Field experiments 2016-7 were tested for consistency using a new con-

trol sample synthesised as in Hepworth et al. (2018).

For Figures S9A–S9E (orange), RNA extraction and QPCR was performed as described in Duncan et al. (2015), using Roche Uni-

versal Probe Library (UPL) #65with primers sFLC_UPL_F and sFLC_UPL_R and expression was normalized to UBC (At5g25760) with

primers UBC_UPL_F, UBC_UPL_R and UPL#9 (Table S2).

For Figure S9B (green), samples were normalised to UBC.

smFISH
smFISH was used to count VIN3 mRNA molecules in single cells (Figures S1B–S1E).

Probe Design
We used the online program Stellaris Probe Designer version 2.0 from LGC Biosearch Technologies (California, USA) to design 48

probes complimentary to VIN3 (At5g57380) exons (see Table S3). Each probe underwent a BLAST assessment to ensure specificity.

Sample Preparation
smFISHwascarriedout forArabidopsis roots asdescribed inDuncanandRosa (2018) andDuncanet al. (2016). Briefly, seedlingswere

removed from the media and the root tips were cut and fixed in 4% paraformaldehyde for 30 min. The roots were washed twice with

nuclease free 1XPBS (ThermoScientific, Lutterworth,UK) and thenplacedonto aPoly-L-Lysine slide (ThermoScientific,) andcovered

byaglass coverslip (R&LSlaughter,Upminster,UK). Themeristemswere then squashedunder thecoverslip, before being submerged

in liquid nitrogen until frozen. The coverslips were removed using a razor blade and the roots were left on the slide to dry at room tem-

perature for 30min. Tissue permeabilizationwas then carried out by immersing the samples in 70%ethanol for aminimumof one hour.

Probe Hybridization
Following removal from ethanol, slides were left at left room temperature for 5 min before two washes were carried out with wash

buffer (10% formamide and 2x saline-sodium citrate buffer; SSC). 100 mL of hybridization solution (10% dextran sulfate, 2x SSC

and 10% formamide) containing VIN3 probes (at a final concentration of 250 nM), was added to each slide. Coverslips were placed

over the samples to prevent evaporation and the probes were left to hybridize at 37 �C overnight in the dark. Excess hybridization

solution (containing unbound probes) was pipetted off the following morning. Each sample was washed twice with wash buffer,

with the second wash left to incubate for 30 min at 37�C in the dark. After wash buffer removal, 100 mL of the nuclear stain DAPI

(4’,6-diamidino-2-phenylindole, 100 ng/ mL) was added to each slide and left to incubate at 37�C for 30 minutes. Following DAPI

removal, a 100 mL 2x SSC wash was carried out before 100 mL GLOX buffer (0.4% glucose in 10 mM Tris, 2x SSC) was added to

each slide and left to equilibrate at room temperature for 2 min. This was pipetted off and replaced with an anti-fade solution con-

taining 100 mL of GLOX buffer, 1 mL glucose oxidase (#G0543, Sigma) and 1 mL catalase (#C3155, Sigma). The samples were then

covered by 22mm x 22mm No.1 coverslips (R&L Slaughter, Upminster, UK), sealed with nail varnish and immediately imaged.

Image Acquisition
For imaging we used a Zeiss Elyra PS1 inverted microscope, with a x100 oil-immersion objective (1.46 NA) and cooled EM-CCD

Andor iXon 897 camera (512x512 QE>90%). VIN3 probes were labelled with Quasar570 dye and they were excited using a

561 nm laser and detected at 570-640 nm. For DAPI, an excitation line of 405 nm was used and signal was detected at 420-480 nm.

smFISH RNA Count Quantification
Cellular count quantification of VIN3 mRNA dots was determined from the z projection of optical sections of cells as described in

Duncan et al. (2016). Briefly, we first used Bio-Formats (Linkert et al., 2010) to separate microscopy images into individual

channel/z-stack pairs and then implemented the open FISHcount pipeline (available at https://github.com/JIC-CSB/FISHcount) to

generate annotated output images showing counts of mRNA per cell. The presence or absence of VIN3 mRNA within each cell

was checked manually using ImageJ (Schneider et al., 2012) or ZEN (proprietary software from Zeiss).

Mathematical Models
Multiple models are presented in this work. Here we first present the LCD model for VIN3 and then build on this by describing

the S component that was added to it to create the LSCD model. We then describe how this was combined with a model for FLC

to make the VIN3/FLC model.

LCD Model

The rates of change in the concentration of unspliced VIN3 (v) and spliced VIN3 (V) are controlled by the ‘‘production’’ rate ðpvÞ, the
splicing rate ðsvÞ and the degradation rate of the spliced transcript ðdVÞ.

dv

dt
=pvðL;C;DÞ � svv
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dV

dt
= svv � dVV :

The concentration of spliced VIN3 depends on the concentration of unspliced VIN3. In experiments the two show very similar dy-

namics (Hepworth et al., 2018; Figure 2) and so the degradation rate must be fast. The splicing rate can be estimated in terms of the

degradation rate from the ratio of spliced to unspliced VIN3. Assuming that the system is at quasi-steady state, V
v =

sv
dV
z4:4 (Fig-

ure S5A). The good fit of a single straight line to data at various temperatures supports our observation that splicing and degradation

of VIN3 must depend on temperature in the same way, so that the ratio of the rates is not temperature dependent.

Initially, we propose that there are three pathways regulating VIN3 ‘‘production’’ ðpvÞ: Long-term ðLðThisÞÞ, Current (C(T)) and
Diurnal (D(t,tm)), where This is the temperature history since sowing, T is the current temperature, t is the time of day and tm is the

time at dawn. For simplicity, we do not treat initiation, elongation and degradation (non-productive transcription) of nascent transcript

separately, but combine all three in pv. The ‘‘production’’ of VIN3 depends on L,C,D, in the form

pvðL;C;DÞ= LðThisÞCðTÞDðt; tmÞ:
The relationship between L,C,D is chosen to be multiplicative, as opposed to additive, because if any of the three is very low, the

VIN3 levels are also very low, regardless of the (obviously bounded) values of the other two. Amore complicated relationship between

the three pathways may also reproduce our observations, but we chose the simplest form that would be sufficient.

Long-Term Temperature Memory (L)
To allow appropriate accumulation of VIN3, Lmust accumulate in the cold and not be strongly affected by temperature fluctuations.

As daily maximal VIN3 levels rise only very slowly in the cold, and moreover L’s influence only decays very slowly in the warm (Bond

et al., 2009a), L’s dynamics must be very slow in all cases. To match these observations, we assume that the degradation/removal of

L, ðdLÞ, is very slow and temperature insensitive, with L only produced/added in the cold ðT<TLÞ. Our data supports L having a roughly

similar response in the range 8 – 14�C (Figure 2D). We therefore use a step function to model L, so that there is a single rate of pro-

duction/addition with value 1 day-1 in the cold ðT<TLÞ, and value 0 otherwise,

dL

dt
=

�
1� dLL; T <TL

�dLL; TRTL
;

where TL and dL are parameters defined in the parameter section (Table S4).

Diurnal Regulation ðDÞ
The periodic pattern of transcription of VIN3 each day (D) is given by

D=

�
pD + sin

�
2p

�
t � tm � 1

24

���2
;

where tm is the time at dawn, a known input to the model, and pD is a parameter defined in the parameter section (Table S4). This

formwas chosen because it always takes positive values and, given certain constraints on the parameters, reproduces the observed

narrow peak of transcription (Figures 2, S2, S4, S5B, and S7; Hepworth et al., 2018). We did not attempt to model the circadian clock

in a more mechanistic way, as that would require a far more complicated model which lies outside the scope of this work. Instead we

simply use a functional form that replicates the observed dynamics.

Current Temperature (C)

The observed VIN3 levels are different at different temperatures and change quickly in response to temperature changes (Figure 2C).

Wemodel this as a temperature dependent change in the VIN3 transcription rate through the regulatorC. We found that L responds in

a roughly similar way for all temperatures tested up to 14�C (Figure 2D). Therefore, after the same cold exposure (same L), and at the

same time of day (same D), any remaining differences must be due to C. We looked at data sampled between 14:30 and 17:30 after

4 weeks at different constant temperatures (Figure S5C) to determine an appropriate functional form of the temperature sensitivity

of C. We used a piecewise linear function of the form

CðTÞ=
8<
:

pC1; T%TC1

cðTÞ; TC1 <T <TC2

pC1 � pC2; TRTC2

;

where

cðTÞ=pC1 � T � TC1

TC2 � TC1

pC2;

and TC1; TC2; pC1; pC2 are parameters defined in the parameter section (Table S4).

LSCD Model

From the work presented in Figure 2, we found that a further pathway that regulates transcription of VIN3 in response to temperature

needed to be added to the LCDmodel. We termed this the Short-termmemory (SðTmaxÞ, where Tmax is defined below) and developed
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the LSCDmodel. The equations for v, V, L, C, D are the same in this model as in the LCDmodel, with the only difference being that the

‘‘production’’ rate of VIN3 now becomes

pvðL;S;C;DÞ= LðThisÞSðTmaxÞCðTÞDðt; tmÞ:
Short-Term Memory (S)
We observed that a spike to high temperature regulated VIN3 immediately through C, but also decreased the levels of VIN3 over a

longer but limited time window. Here we used a purely phenomenological approach with the simplest form, a step function, with a

high value for no spike to high temperature, and a lower value if there was such a spike since the previous evening. Our assumption is

that this short-termmemory is wiped (actively forgotten) every evening. Indeed, in Figures 2B and 2C, at the 18:30 timepoint, just after

the lights are turned off, the levels of treatments with a temperature spike appear to be ‘‘reset’’ to the levels of the treatments with the

constant background temperature. We take S to have the explicit form

S=

�
1; Tmax <TS

S1; TmaxRTS
;

where Tmax is the maximum temperature since the last resetting, which was chosen to occur each day at 4pm. TS and S1 are param-

eters defined in the parameter section (Table S4).

We now examine whether the addition of S might permit the removal of C from the model. We have already observed that in

response to cold we see an immediate response (Figure 2C). We can further see a partial recovery from the effect of the warm spike

upon return to cool temperatures in the spike treatments (Figures 2B and 2C). Conversely, if the warm period persists, as it does in the

post-cold experiment of Figure S2B (data from Hepworth et al., 2018), the VIN3 levels do not recover. In both these treatments S is

triggered, while L and D are similar, yet different VIN3 levels are observed. Therefore, thermosensors S and C are both required.

FLC Model

The principle behind this model is that vernalization is controlled by a sequence of cell-autonomous switches between digital

states: H (High transcription), I (Inactive) and E (Epigenetically silenced). Switches between these states involve the VIN3-indepen-

dent pathway (H4I switch) and the VIN3-dependent pathway (principally the I/E switch, but also the weaker H/E switch), and

may be controlled by temperature directly or indirectly though the concentration of regulatory factors. The fraction of gene copies in

each of these states is represented by the variables H, I and E in the model, respectively, so that H + I + E = 1. Ordinary differential

equations were used to describe the dynamics of H, I and E, and take the form

dH

dt
= � s1H+ rðTnÞI� s3ðV ; TÞH
dI

dt
= s1H� rðTnÞI� s2ðV ;TÞI
dE

dt
= s2ðV ; TÞI+ s3ðV ;TÞH;

where s1; rðTnÞ; s2ðV ;TÞ; s3ðV ;TÞ determine the rates of the transitions and are explained in detail in the following sections.

VIN3-Independent Pathway

In the VIN3-independent pathway, we found that it is necessary for at least the I to H transition (r, Figures 4A and 4B) to be temper-

ature regulated. Examining the data for the vin3-4 mutant (Yang et al., 2017), we see that FLC decreases slowly in the cold over

many weeks, but reactivates at a much higher rate in the warm. This must mean that H also decreases slowly in the cold and

increases rapidly in the warm. For vin3-4, there is no VIN3 protein and therefore the I to E and H to E transitions are blocked

ðs2 = 0; s3 = 0Þ. Consequently, the epigenetically silenced state E cannot be reached in this mutant (E = 0 at all times) and so

only two states exist, I and H. Because the variables (H,I,E) are defined as fractions, we can replace I = 1� H, and so the equation

for H becomes

dH

dt
= r � ðr + s1ÞH:

If r is not temperature sensitive, and because any increase in H is limited by this parameter, rmust take a high value to permit the

rapid increase in the warm. In that case, regardless of the value or temperature sensitivity of s1, it is impossible to have slow dynamics

in the cold. Therefore, we conclude that r must be temperature sensitive. A low value of r in the cold could reflect the presence of

antisense COOLAIR foci, impeding the return to a high FLC sense transcription state (Rosa et al., 2016). It is of course possible

that s1 is also affected by temperature but, as we attempt to minimise the number of processes controlled by temperature to only

those where it is strictly required, we assume here that s1 is temperature independent.

We further found that the VIN3-independent pathway is sensitive to night-time temperatures ðTnÞ. Night-time is defined as the time

from 6 hr before midnight to 6 hr after midnight. The duration of this time range was selected to approximately match the average
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night temperature in the night spike experiment with 14�C, the constant temperature that gives similar downregulation of FLC (Fig-

ure 2E). The experiment of Figure S4 further supports this assumption, since the morning and evening spikes, which were during the

dark but outside of the 12 hrs of ‘‘night-time’’ did not significantly decrease the rate of shutdown due to the VIN3-independent

pathway. For simplicity we used a piecewise linear function for the temperature sensitivity of rðTnÞ,

rðTnÞ=

8>>><
>>>:

0; Tn%Tr1

pr

Tn � Tr1

Tr2 � Tr1

; Tr1 <Tn < Tr2

pr ; TnRTr2

;

where Tr1; Tr2 and pr are parameters defined in the parameter section (Table S4).

VIN3-Dependent Pathway

For the VIN3-dependent transitions to the E state (I to E and H to E), we assumed that the rates of the transitions ðs2; s3Þ depend on

the concentration of VIN3 protein, which we approximated with our predicted VIN3 mRNA levels since we know that, at least in the

warm, the protein dynamics are fast (Yang et al., 2017). Indeed, in the absence ofVIN3, epigenetic silencing does not occur (Sung and

Amasino, 2004), or occurs only very slowly (Buzas et al., 2011). Additionally, in constant conditions, the fraction of epigenetically

silenced FLC copies increases slowly at first, before accelerating (Angel et al., 2015). Both of these cases are consistent with

increasing VIN3 levels affecting the rates of these transitions.

The rates s2; s3 were also assumed to depend directly on temperature. It has been reported that, in the warm, overexpression of

VIN3 does not lead to epigenetic silencing of FLC (Kim and Sung, 2017; Lee et al., 2015). Additionally, at temperatures close to 0�C,
vernalization was found to be less effective (Duncan et al., 2015; Napp-Zinn, 1957; Wilczek et al., 2009). In field experiments, the

slope of the FLC shutdown was anticorrelated with mean temperature at the three sites (Figure S5D; data from Hepworth et al.,

2018), meaning higher temperatures gave a faster rate of shutdown, despite similar VIN3 levels (Figure S5E; data from Hepworth

et al., 2018). Therefore, we take the epigenetic silencing rate (I to E switch) to be of the form

s2ðV ;TÞ=
�

psV ðT � T1ÞðT2 � TÞ; T1 <T <T2

0; T%T1 or TRT2
;

where T is temperature, V is the VIN3 concentration and T1; T2; ps are parameters defined in the parameter section (Table S4), thus

reflecting the absence of epigenetic silencing at high or very low temperatures (Figure S5F).

We also allow for a direct transition fromH to E ðs3Þ in the absence of the VIN3-independent pathway. For this direct transition, we

choose a lower maximum rate but the same form as for s2 in terms of the temperature and VIN3 concentration,

s3ðV ; TÞ=ps3s2ðV ;TÞ;
where ps3 is a parameter defined in the parameter section (Table S4).

This transition gives the acceleration of silencing observed in the later timepoints in Norwich 2014-15 after VIN3 upregulation (Fig-

ures 3C and 4C), and explains the difference in FLC shutdown rate between the vin3-4 mutant and ColFRISF2 plants at low temper-

atures (Figures S8 and S9).

FLC mRNA Dynamics in the Model

FLC is transcribed only in the H state of the FLC gene. We modelled the normalised FLCmRNA concentration, [FLC], using the form

d½FLC�
dt

=pf

�
H

H0

� ½FLC�
�
;

where H0 is the initial condition of H and pf is a parameter defined in the parameter section (Table S4).

Initial Conditions and Numerical Simulation

The initial conditions of our system were chosen such that the system is at steady state in the warm, with the normalised FLCmRNA

concentration, [FLC], equal to 1. Therefore, at t = 0,

H=H0 =
pr

s1 +pr
I=
s1

s1 +pr
E = 0
½FLC�= 1;
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for the FLC model and

B= 0
v = 0
V = 0;

for the LSCD model.

Matlab version R2016a was used to solve the models numerically with solver ode15s (Shampine and Reichelt, 1997).

Parameters

The parameter values used for the LCDmodel in Figure S2 are given in the figure legend. In all other cases, the parameters used are

shown in Table S4.

Temperature Modifications

To test the effect of different features of the temperature profile on the model, we modified the measured temperature profiles and

predicted VIN3 and FLC levels with these new modified profiles. These profiles were:

Day-mean (Figure S11A): The average temperature for each day (midnight to midnight) was calculated and the temperature be-

tween midnight and 0.01 days (�15min) before the next midnight was set to this average value. Outside those times (in the transition

time between days), linear interpolation was used to determine the temperature.

+3 (Figures S11B and S11D): We added 3�C to each temperature measurement in the entire field temperature profile, with the

exception of temperatures below 0.5�C and above -0.5�C, when the plants and the temperature loggers were often covered by

snow and so our measurements were not reflecting the air temperature. Only temperatures in Sweden were affected by this excep-

tion. Since we do not have measurements for the air temperature at that time, we made the conservative assumption that the snow

cover will not be affected by warming. Without this assumption, the temperatures in Sweden would rise for long periods from 0�C to

3�C. This change would not affect VIN3 expression but would increase s2 and s3 due to their temperature sensitivity.

x2 (Figures S11C and S11E): For each day (midnight tomidnight) we calculated the daily mean temperature ðTmÞ, and stretched the

field temperature profile T above and below this value, so that themean temperature over that 24 hr was not changed. For eachmea-

surement, we replaced the temperature T with a stretched value ðTx2Þ, where

Tx2 = 2ðT � TmÞ+Tm:

QUANTIFICATION AND STATISTICAL ANALYSIS

All replicate numbers are reported in the supplementary table file and figure legends.

Experimental Data Comparison
For Figures 2E, S4E, and S4F, the non-parametric Kruskal-Wallis test with Dunn’s post-hoc test was performed on FLC expression

values to test for the effect on the VIN3-independent pathway, by testing conditions with similar VIN3 levels (i.e., all the spike and

spike-memory treatments) using GraphPad Prism version 5.04 for Windows, GraphPad Software, San Diego, California, USA,

www.graphpad.com.

Mathematical Model Optimisation
The model was optimised in parts as shown in Table S4: the LSCDmodel was compared to VIN3 experimental data (parameters dV ;

S1; TL; dL; TC1; TC2; pC1; pC2; pD), the VIN3-independent switch of the FLC model was compared to vin3-4 , vrn2-1 and vrn5-8

mutant FLC experimental data (parameters s1; Tr1; Tr2; pr ; pf ) and the VIN3-dependent switch was optimised last and compared

to the FLC experimental data for the wild-type ColFRISF2 (parameters T1; T2; ps; ps3), using the values from the two previous opti-

misation results for the other parameters. This separation was natural in terms of the variables and conditions being compared and it

also allowed us to optimise only a few parameters at any time (no more than 10). For each group of parameters, there is a large set of

experimental data used to constrain them (LSCD: 999measurements, VIN3-independent FLC: 478measurements, VIN3-dependent

FLC: 1574 measurements).

For the LSCDmodel, each of the components could initially be fit separately, by using combinations of data that differed in only one

of L, S, C or D, thus further reducing the number of parameters that were fit together. Optimisation was then performed manually in

the first instance, by visual comparison of the data to the model predictions (‘‘fitted’’ data plots in Figures 3, 4, S6, S7, S8, and S9), in

order to capture primarily the ‘‘qualitative features’’ of the data, as described below. The parameters obtained in this way already

showed a good fit to the data.

We then moved to an automated optimisation method, using the SciPy basin-hopping algorithm in Python (Jones et al., 2001;

Wales and Doye, 1997). For the local minimisation, the Nelder-Meadmethod was used with a maximum allowed number of iterations
e7 Cell Systems 7, 643–655.e1–e9, December 26, 2018

http://www.graphpad.com


of 10. The number of basin hopping iterations was 200 and a random displacement of the coordinates (sampled from a uniform dis-

tribution Uð� stepsize; stepsizeÞ) was used for the step taking routine with an initial step size (take_step.stepsize) of 0.05. At every

step, the parameter bounds were applied, as shown in Table S4.

To evaluate the model FLC and VIN3 levels for comparison to the experimental data, we used the Scipy odeint solver (Jones et al.,

2001). Two cost functions were minimised in separate runs of the algorithm. The first was the sum of squared errors (SSE)

SSE =
X
i

ðyi � fðxiÞÞ2;

where yi are the data and fðxiÞ are the corresponding model predictions. The second cost function additionally included the fold-dif-

ferences, to improve the fit to small values of the data:

SSElog =
X
i

�
ðyi � fðxiÞÞ2 + ðlogðyiÞ � logðfðxiÞÞÞ2

�
:

Both cost functions were tested for the optimisation of the LSCD model parameters, while only the second was used for the FLC

model, where fold-differences are more important, especially at later times.

Automated optimisation allowed us to explore the parameter space more fully. The optima obtained by the optimisation algorithm

were compared visually to the data and to the manually fitted model. Again, priority was given to capturing qualitative features (listed

below), which the automated optimisation could not test.

In the case of the LSCDmodel and the VIN3-dependent part of the FLCmodel, only the manually selected parameters could cap-

ture all the qualitative features. In the automatic optimisation, to achieve a lower value of the cost function, it was often ‘‘optimal’’ to

ignore some data points and improve the fit of themajority. However, in some cases, such as the Spike conditions, single data points

gave important qualitative behaviour that was lost in the ‘‘optimised’’ fit. It was not possible to develop an appropriate cost function to

avoid such losses, due to the large number and complexity of the qualitative features that we wanted to reproduce in these models.

For this reason, the manually optimised parameters were finally used in further work for the LSCD and VIN3-dependent FLCmodels.

On the contrary, in the case of the VIN3-independent part of the FLC model, the qualitative features were simpler and could be

captured by the cost function. Therefore, the automated optimisation allowed an improvement of the qualitative fit in that case.

The parameter values that were chosen manually, and the improved parameter set after the automatic optimisation, were both

tested against the new data and successfully captured the observed behaviour. This success satisfied the intended purpose of

the modelling, which was to show that the structure of the model could reproduce and predict FLC dynamics, thus supporting

our underlying mechanism.

‘‘Qualitative features’’ for the LSCD model:

1. Slow increase of VIN3 over weeks in the cold (Figure S7B).

2. Lower levels of VIN3 for higher constant cold temperatures above 8�C (Figures S7B, S7E, and S7F).

3. Very low levels of VIN3 in the warm and, in particular, for unspliced VIN3 immediately during a warm temperature spike (Figures

S7A, S7E, and S7F).

4. Diurnal pattern of VIN3 with low levels in the morning and night, and peak levels in the afternoon (Figures S7C–S7F).

5. Similar VIN3 levels between 8�C fluctuating and 8�C constant, but different levels between 14�C fluctuating and 14�C constant

(Figures S7C and S7D).

6. Similar VIN3 levels between Midday spike and Night spike, and similar VIN3 levels between Spike memory and 12�C constant

(Figures 2, S3, S4, S7E, and S7F).

7. Low VIN3 levels early in Norwich 2014-15, and rapid increase to high levels at approximately 55 days (Figure 3C).

‘‘Qualitative features’’ for the FLC model

1. VIN3-independent (comparing with the vin3-4, vrn2-1, vrn5-8 mutants)

a.Different rate of FLC downregulation at different temperatures (Figure S8).

b.Slow rate of shutdown over many weeks in the cold (Figure S8).

c.Faster rate of reactivation over �10 days in the warm (grey in Figures S8A and S8F).

d.Decrease in the rate of FLC downregulation in the case of night spikes but not Midday spikes (Figures 2 and S4).

2. VIN3-dependent (using previously determined parameters for the VIN3-independent part and LSCD model, and now

comparing with ColFRISF2 data)

a.Different rate of FLC downregulation at different temperatures, faster than for the vin3-4 mutant (Figure S9).

b.Different rates of FLC downregulation at different field sites (Figures 4C, 4D, 4E, S5D, S6B) and in particular for Norwich,

different rates before/after VIN3 induction (�55 days) (Figure 4C).

c.No reactivation in post-cold warm conditions (Hepworth et al., 2018; Sung and Amasino, 2004).

d.No decrease of FLC in the warm (Figure S9F).
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Model Sensitivity to the Long-Term Timescale
An approximate 20% change in the timescale of L was implemented using the parameter dL, by adding or subtracting 20% from its

central value, and calculating the system sensitivities SSE and SSElog in both cases. For all other parameters, the values from Table

S4 were used. The relative change in SSE was calculated as shown:

DSSE+

SSEðdLÞ=
jSSEð1:2dLÞ � SSEðdLÞj

SSEðdLÞ = 0:0419;
DSSE�
SSEðdLÞ=

jSSEð0:8dLÞ � SSEðdLÞj
SSEðdLÞ = 0:0185;
DSSElog+

SSElogðdLÞ=
		SSElogð1:2dLÞ � SSElogðdLÞ

		
SSElogðdLÞ = 0:0074;
DSSElog�
SSElogðdLÞ=

		SSElogð0:8dLÞ � SSElogðdLÞ
		

SSElogðdLÞ = 0:0038:

VIN3 Model Comparison Using AIC
Akaike’s information criterion (AIC) was calculated for the two models (LCD and LSCD) based on the new data of Figure 2B (condi-

tions: 12�C constant, Midday Spike, Night Spike, Spike Memory; 134 observations). The two models were first fit to this data alone,

using the automated fitting algorithm described above with the SSE cost function, in order to give them an equal footing against this

dataset. They were subsequently compared visually against the same experimental data and the improved fit of the new parameters

was confirmed also in relation to capturing the qualitative features present in this dataset. The parameter values that optimised the

twomodels are shown in Table S5. The number of parameters, including the variance, was 10 and 12 for the LCD and LSCDmodels,

respectively.

The Common Formulation

AIC= 2k + n lnðSSEÞ;
was used, where k is the number of parameters (including a parameter for the variance of the residuals), n is the number of the ob-

servations and SSE is defined previously. In this formulation, we ignore the constant terms that will cancel out in the model compar-

ison. The relative likelihood of the models was calculated using

e
AICmin�AICmodel

2 :

The LSCD model had the minimum AIC and the relative likelihood of the LCD model was 53 10�7, meaning the LCD model is

5310�7 times as probable as the LSCD, based on the AIC. Based on this analysis, we can confidently reject the LCD model.

DATA AND SOFTWARE AVAILABILITY

Microscopy images for VIN3 RNA smFISH (Figures S1B–S1E) are available from figshare. https://doi.org/10.6084/m9.figshare.

7346552.
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