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Abstract

The coupling between gravity and matter provides an intriguing length scale in the infrared for theories 
of gravity within Einstein-Hilbert action and beyond. In particular, we will show that such an infrared length 
scale is determined by the number of gravitons Ng � 1 associated to a given mass in the non-relativistic 
limit. After tracing out the matter degrees of freedom, the graviton vacuum is found to be in a displaced 
vacuum with an occupation number of gravitons Ng � 1. In the infrared, the length scale appears to be 
L = √

Ng�p , where L is the new infrared length scale, and �p is the Planck length. In a specific example, 
we have found that the infrared length scale is greater than the Schwarzschild radius for a slowly moving 
in-falling thin shell of matter. We will argue that the appearance of such an infrared length scale in higher 
curvature theories of gravity, such as in quadratic and cubic curvature theories of gravity, is also expected. 
Furthermore, we will show that gravity is fundamentally different from the electromagnetic interaction 
where the number of photons, Np , is the fine structure constant after tracing out an electron wave function.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

It is believed that the gravitational interaction is mediated by the spin-2 graviton, which can 
be canonically quantised around a weak curvature background [1]. A massless graviton in four 
spacetime dimensions will have both 2-on-shell and 6-off-shell degrees of freedom [2]. The 
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former is responsible for describing independent dynamical modes such as gravitational waves, 
while the latter describes how the force is being mediated between the two masses. Despite all 
our efforts the discovery of a graviton remains a challenging problem, see [3–5]. However, the 
quantum nature of a graviton leaves indelible mark in both classical and quantum systems [6–12].

Despite of the weakness in the gravitational interaction, gravity is unique among the other 
known fundamental interactions of nature that it generates a new length scale in the presence of 
a self-gravitating matter [13]. The gravitational radius for a given non-rotating mass, M , is given 
by rg = 2GM , which is known as the Schwarzschild radius or the gravitational radius, while 
the Planck length, which is determined solely by fundamental constants,1 is given by �p = √

G. 
In Ref. [14], the idea has been proposed from the corpuscular nature of a black hole – a black 
hole is a condensate of gravitons [14–17], whose occupation number can be denoted here by 
Ng ∼ (M/Mp)2 � 1 for any mass M ≥ Mp . The large occupancy leads to not only weakening 
of the gravitational strength by ∼ 1/

√
Ng , but also leads to classicalization of a black hole, 

therefore, recovers the classical black hole spacetime geometry outside the Schwarzschild radius. 
In this regard, we might imagine that Ng would dictate how classical the space time of a black 
hole would appear to be for a far away observer. Thus the new length scale appears in the infrared; 
L ∼ √

Ng/Mp � �p for Ng � 1.
Recently, a very similar result were obtained by us in a quantum system [18], where both 

matter and gravity were treated as a quantum entity in a perturbative regime. We found that by 
tracing out the non-relativistic self-gravitating matter of mass M , the graviton vacuum state is 
found to be that of a displaced vacuum, like a coherent state with the occupation number similar 
to that of Ng ∼ (M/Mp)2. For Ng � 1, the gravitons can be thought of as a condensate of mass 
M . For a light subatomic particle, such as that of an electron, the number of gravitons by tracing 
out the electron is much less than unity, Ng ∼ (me/Mp)2 ∼ 10−44 � 1.23

The aim of this paper will be two-fold. First of all, we will argue that gravity is unique in this 
regard as it provides an infrared scale. This infrared length scale may even be larger than that 
gravitational radius, L ≥ rg = 2GM , we will provide an example of this. A similar analysis in 
the quantum electrodynamics (QED) does not yield any such infrared length scale. In particular, 
we will show that by integrating out an electron in QED, the photon vacuum is that of a displaced 
vacuum (similar to the case of a graviton), but the occupation number of photon in this case is 
always bounded below unity for foreseeable energies. In fact, the occupation number of photons 
is proportional to the fine structure constant. Indeed, the fine structure evolves with the energy 
in the ultraviolet, but it remains below unity for energies below the Planck energy. Moreover, 
we will further show that Bekenstein’s entropy bound in our case is always satisfied [26], i.e. 
Bekenstein’s entropy is always bounded by the energy and the distance scale.

The second goal will be to generalise our earlier results of Ref. [18] by including both rela-
tivistic/non-relativistic effects while integrating out the energy momentum tensor for the matter 

1 We are working in natural units c = h̄ = 1, and ε0 = 1. The metric signature is given by (−, +, +, +) and Einstein 
summation convetion will be used in the text.

2 Interestingly, the electron cannot be described by a gravitational metric, such as a Reissner-Nordström or a Kerr 
metric [19]. The metric is inherently a classical notion.

3 There is another proposal, known as the fuzz ball paradigm [20], where it has been argued that the new scale in gravity 
will arise naturally from the quantum fluctuations in the gravitational degrees of freedom [21], in particular by taking 
all microscopic states of string theory, namely the fuzz ball states [20]. The fuzz-ball paradigm is one of the popular 
contenders to resolve the black hole information-loss paradox. The idea here is that an astrophysical black hole can have 
a radius few Planck length greater than then the gravitational radius, i.e. rbh = rg(1 + ε), where ε < 0.5rg = 3Gm to 
avoid having an event horizon. There are already astrophysical constraints on ε, see [23,24].
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field. To illustrate, we will consider an in-falling thin shell of matter, in an adiabatic approxima-
tion, where the vacuum changes slowly. We will show that up to the leading order in the Newton’s 
constant, G, by integrating out the energy momentum tensor of an in-falling thin shell, we will 
obtain a large occupation number of gravitons. In fact, we will further show that the infrared scale 
in this example is slightly larger than the Schwarzschild radius of the corresponding mass M , 
i.e., L ≥ rg = 2GM . Moreover, we will argue that surprisingly such an infrared scaling persists 
for higher curvature theories of gravity as well, but now the emergence of a new infrared length 
scale is different from that of general relativity. This occurs due to the fact that higher curvature 
theories of gravity brings in a new mass scale, Ms ≤ Mp .

In section 2, we will show how by integrating out the electron, we will obtain that the photon 
vacuum to be displaced and the corresponding occupation number would scales as that of the 
fine structure constant. In section 3, we will generalise our earlier results of Ref. [18] for the 
relativistic energy momentum tensor for an arbitrary geometric configuration, and find the corre-
sponding number of gravitons. In section 4, we consider an example of an in falling thin shell of 
matter and compute the graviton occupation number by integrating out the thin shell of matter. In 
section 5, we will discuss the infrared length scale in theories of gravity within general relativity 
and in higher curvature theories of gravity.

2. Number of photons and the fine structure

Let us now consider the example within QED. Working in a Coulomb gauge we will expand 
the electromagnetic field as:

Ai(x) =
∫

dk

(2π)3

1√
2ωk

ak,λe
i
λ(n)eik·x + H.c., (1)

where i = 1, 2, 3, x = (x, y, z), ωk = k, k = ‖k‖, n = k/‖k‖, ak,λ is the annihilation operator, 
and ei

λ denote the basis vectors for the two polarisations, λ = 1, 2. The completeness relation is 
given by:

P ij (n) ≡
∑
λ

ei
λ(n)ej

λ(n) = δij − ninj . (2)

The interaction Hamiltonian is given by

Hint =
∫

dxAi(x)Ji(x), (3)

where Ji are the components of the current density. We will now proceed by taking the mean-field 
approximation

Ji(x) → 〈Ji(x)〉, (4)

where 〈Ji(x)〉 = tr[ρJi(x)] is the expectation value of the current density, and ρ is a generic 
matter state.4 From Eq. (1) and (3), we find

4 We summarize here the general procedure we will follow for computing the number of photons/gravitons. We first 
take the mean-field approximation of the electromagnetic/gravitational interaction Hamiltonian Hint by tracing out the 
matter state Hint → 〈Hint〉, where 〈 · 〉 = tr[ρ · ] indicates the trace with respect to the matter state ρ. We find that 
the ground state of the electromagnetic/gravitational field becomes displaced depending on the values of 〈Ji (x)〉 and 
〈Tij (x)〉, where Ji(x) and Tij (x) denote the current density and the stress-energy tensor, respectively. In the computa-
3
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Hint =
∫

dk

(2π)3

1√
2ωk

ak,λe
i
λ(n)J̃i(k) + H.c., (5)

where we have introduced the Fourier transform

J̃i (k) =
∫

dxeik·x〈Ji(x)〉. (6)

We will work in the basis where ei
λ(n) is real-valued, but J̃i(k) can in general be a c-number. 

However, we can always absorb any global phase from the 
∑

i e
i
λ(n)J̃i(k) = |C(k)|eiθ(k) by a 

redefinition of the modes, i.e. ak,λe
iθ(k) → ak,λ (and which leaves invariant kinetic term for a 

photon in a Coulomb gauge; ∼ a
†
k,λ

ak,λ)

Hp =
∫

dkωka
†
k,λ

ak,λ

=
∑
λ

∫
dk

ωk

4

[
P 2

k,λ + Y 2
k,λ

]
, (7)

where

Yk,λ = a
†
k,λ

+ ak,λ , (8)

Pk,λ = i(a
†
k,λ

− ak,λ) , (9)

follow the commutation relation [ak,λ, a
†
k′λ′ ] = δ(k − k′)δλλ′ . From Eq. (5), we find

Hint =
∫

dk

(2π)3

1√
2ωk

|ei
λ(n)J̃i(k)|(a†

k,λ
+ ak,λ). (10)

Specifically, combining the interaction term with the kinetic term of the electromagnetic field, 
Eqs. (7) and (10), we find:

Htot =
∫

dk

(2π)3

ωk

4

[
P 2

k,λ + (Yk,λ − αk,λ)
2

]
, (11)

where now

αk,λ ≡
√

2

ω3
k

|ei
λ(n)J̃i(k)|. (12)

Note that the electromagnetic field ak,λ is in a ground state, centred around αk,λ, which is de-
scribed by a displaced coherent state of a photon [25]:

|αk,λ〉 = D(αk,λ)|0〉 = e
αk,λ

[
a

†
k,λ

+ak,λ

]
|0〉 (13)

We are assuming that the electromagnetic field is in the ground state of the displaced harmonic 
trap, and the vacuum is stable and obeys adiabatic conditions. Indeed, a different choice of the 
vacuum for Ai(x) will not change significantly the final result as long as the state remains centred 
and confined around the same minimum and obeys adiabaticity, given by |αk,λ〉.

tion we do not specify directly the matter state ρ, but only make generic symmetry and dimensional consideration about 
the expectation values 〈Ji (x)〉 and 〈Tij (x)〉. Assuming such ground states for the electromagnetic/gravitational field (i.e. 
displaced coherent states) we then estimate the corresponding number of photons/gravitons, Np and Ng , respectively.
4
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For such a displaced quantum state we can compute the expectation values 〈·〉. We will now 
compute the number operator Nk,λ = a

†
k,λ

ak,λ, where 〈Nk,λ〉 = |αk,λ|2, and the total number of 
photons is summation of all k, λ modes:

Np ≡
∑
λ

∫
dk|αk,λ|2 =

∑
λ

∫
dk

|ei
λ(n)J̃i(k)|2

4π3ω3
k

. (14)

Let us then perform the sum over the polarizations. Exploiting the completeness relation in 
Eq. (2), we find∑

λ

|ei
λ(n)J̃i(k)|2 =

∑
i,j,λ

ei
λ(n)ej

λ(n)J̃i(k)[J̃j (k)]∗

=
∑
i,j

P ij (n)J̃i(k)[J̃j (k)]∗. (15)

By inserting Eq. (15) back in Eq. (14), we finally find:

Np =
∫

dk
1

4π3ω3
k

P ij (n)J̃i(k)[J̃j (k)]∗. (16)

At this point of the calculation we have not made any assumptions on the current density and 
thus Eq. (16) is still completely general.

Let us now make some simplifying assumptions. We assume that the Fourier transform of the 
current can be split into the radial and angular components

J̃i (k) = Ri(ωk)�i(n), (17)

where ωk = k. We then insert back Eq. (17) into Eq. (16), and use dk = dkdn = ω2
k

c
dωkdn, to 

find

Np =
∫

dωk

Ri(ωk)[Rj (ωk)]∗
4π3ωk

∫
dnP ij (n)�i(n)[�j(n)]∗. (18)

Without loss of generality, let us furthermore assume that we get a nonzero contribution only for 
i = j = 3, and R(ωk) ≡ Ri(ωk). The number of photons after tracing out an electron simplifies 
to

Np =
∫

dωk

|R(ωk)|2
4π3ωk

∫
dnP ii(n)|�i(θ,φ)|2︸ ︷︷ ︸

∼O(1)

. (19)

By assuming that the angular part will be non-vanishing, we are thus left with

Np ∼
∫

dωk

|R(ωk)|2
4π3ωk

. (20)

We now make the assumption that

R(ωk) ∼ eLωk, (21)

where L is the side of the box containing the current with total charge e and introduce the 
frequency cutoff

ω̄ = 2π
. (22)
L

5
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Here we have in mind the following: Lωk is a velocity and thus R(ωk) ∼ eLωk is a current. We 
can consider other examples too, for example, for an in falling charged sphere we will have

R(ωk) ∼ i
eLωk

3
(23)

and �3(θ, φ) = 1, which gives 
∫

dnP33(n)|�3(θ, φ)|2 = 8π
3 .

In the above equations the length L was introduced from dimensional analysis. However, it 
can be shown that such a length-scale L also arises in specific examples. For example, one can 
consider a thin charged shell of radius R0 and compute the Fourier transform of the currents 
J̃i (k) (Appendix A). Moreover, by expanding the currents to order O(ωk) we find that the only 
non-vanishing component is given by J̃3(k) ≈ i

eωkR0
3 . From Eqs. (17) and (23) we can then 

conclude that L can be identified with R0 in such an example.
Now, if we combine all these results, we find from Eq. (20):

Np ∼ e2L2

4π3

ω̄∫
0

dωkωk. (24)

We thus finally find:

Np ∼ e2

4π
= αem � 1. (25)

We have obtained an interesting result; by tracing out the current driven by one electron, the 
photon occupation number is just that of the fine structure constant (see also [27] for a computa-
tion of the number of longitudinal photons). The QED interactions will allow the fine structure 
constant to evolve with energies. Up to all relevant energies, i.e., say up to the Planck scale, the 
fine structure constant remains αem(μ) � 1, where μ is the momentum scale.

We can gain further insight into this problem by recalling that the Bekenstin’s entropy [26] for 
any system is always bounded by the energy and the distance scale, i.e. SBEK ≤ 2πER. We can 
check this in our case; say for instance, we can estimate the entropy for a thin shell. The energy 
of a charge carrying thin shell of radius R is given by, E ∼ e2

8πR
. Therefore, the entropy is given 

by:

SBEK ∼ e2 ∼ αem ∼ Np. (26)

Bekenstein’s entropy is now related to the number of photons obtained by tracing out the charge. 
What it also suggests that the electron is inherently a quantum system, it can never be classi-
calised for a foreseeable energy, e.g. the Planck scale [28].

3. Tracing out energy momentum tensor – relativistic treatment

In this section, we will study the graviton occupation number Ng , in a long wavelength limit, 
where we can perturb the metric by:

gμν = ημν + hμν, (27)

where μ, ν = 0, 1, 2, 3. Note that here we have perturbed the metric around Minkowski back-
ground, but we will mention below other choices of the background.

We will start the gravitational field in the transverse traceless (TT) gauge in the asymptotically 
flat region of space time:
6
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hij (x) =
∑
λ

∫
dk

√
G

π2ωk

gk,λe
ij
λ (n)eik·x + H.c., (28)

where i, j = 1, 2, 3, G is the Newton’s constant, ωk = k, k = ‖k‖, n = k/‖k‖, gk,λ is the annihi-

lation operator, and eij
λ denote the basis tensors for the two polarisations, λ = 1, 2. We can write 

the Hamiltonian governed by the kinetic term of the massless graviton field to be:

Hgrav =
∫

dk ωkg
†
k,λ

gk,λ

=
∑
λ

∫
dk

ωk

4

[
P 2

k,λ + Y 2
k,λ

]
, (29)

where

Yk,λ = gk,λ + g
†
k,λ

Pk,λ = i(g
†
k,λ

− gk,λ). (30)

They operators follow the commutation relation [gk,λ, g
†
k′λ′ ] = δ(k − k′)δλλ′ . The minimal cou-

pling between graviton and matter dictates the interaction Hamiltonian 
∫ √−gd4xGμνTμν , and 

can be written in the TT-gauge as:

Hint = −1

2

∫
dxhij (x)Tij (x), (31)

where x = (x, y, z), and Tij are the components of the stress-energy tensor. We will now take 
the mean-field approximation, where we take

Tij (x) → 〈Tij (x)〉, (32)

where 〈Tij (x)〉 = tr[ρTij (x)] is the expectation value of the stress-energy tensor, and ρ is a 
generic matter state 4.

From Eq. (28) and (31), we find

Hint = −1

2

∑
λ

∫
dk

√
G

π2ωk

gk,λe
ij
λ (n)T̃ij (k) + H.c., (33)

where we have introduced the Fourier transform

T̃ij (k) =
∫

dx〈Tij (x)〉eik·x . (34)

We will work in the basis where eij
λ (n) is a real-valued, but T̃ij (k) in general can be a c-number. 

We can always absorb any global phase from the 
∑

ij e
ij
λ (n)T̃ij (k) = |A(k)|eiθ(k) by a redefi-

nition of the modes, i.e. gk,λe
iθ(k) → gk,λ (and which leaves invariant kinetic term ∼ g

†
k,λ

gk,λ). 
From Eq. (33), we thus find

Hint = −1

2

∑
λ

∫
dk

√
G

π2ωk

|eij
λ (n)T̃ij (k)|(gk,λ + g

†
k,λ

). (35)

By combining the interaction term with the kinetic term of the gravitational field, we obtain:

H =
∑∫

dk
ωk

4

[
P 2

k,λ + (Yk,λ − αk,λ)
2

]
, (36)
λ

7
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where now

αk,λ ≡
√

G

π2ω3
k

|eij
λ (n)T̃ij (k)|. (37)

Assuming that the gravitational field is in the ground state of Eq. (36), i.e. in a displaced coherent 
state, similar to the electromagnetic case [25]:

|αk,λ〉 = D(αk,λ)|0〉 = e
αk,λ

[
g

†
k,λ

+gk,λ

]
|0〉 , (38)

we can compute the number operator Nk,λ = g
†
k,λ

gk,λ, where 〈Nk,λ〉 = |αk,λ|2, and the total 
number of gravitons by summing over all k, λ modes:

Ng ≡
∑
λ

∫
dk|αk,λ|2 =

∑
λ

∫
dk

G

π2ω3
k

|eij
λ (n)T̃ij (k)|2, (39)

where we sum over the polarizations and momenta of each mode. Let us first perform the sum 
over the polarizations5 by exploiting the completeness relation, we find

Ng =
∫

dk
G

π2ω3
k

P iji′j ′
(n)T̃ij (k)[T̃i′j ′(k)]∗. (40)

This is the generalisation of our earlier computation [18], where we have not made any assump-
tions on the stress-energy tensor and thus Eq. (40) is applicable for any matter, i.e. a relativistic 
or a non-relativistic equation of state.

4. In-falling shell

Since we have the most general expression, let us consider a special example of a radially 
in-falling thin shell of matter, whose stress-energy tensor is given by, see [38]:

Tij (R) ≡ εδ(R − R0)ni(θ,φ)nj (θ,φ), (41)

where ε is a surface energy density, R = (R, θ, φ) is the 3-vector expressed in spherical coor-
dinates, and n = (sin(θ)cos(φ), sin(θ)sin(φ), cos(θ)) is the unit vector. The radius of the thin 
shell is R0 ≡ R0(t) with Ṙ0 < 0 (Ṙ0 > 0) corresponding to an in falling (outgoing) shell), where 
dot denotes time derivative with respect to time t . The surface energy density, here assumed 
homogeneous for simplicity, can be written in terms of an effective mass M :

ε = M

4πR0(t)2 . (42)

Inside the shell the gravitational potential is zero, while outside the shell the gravitational metric 
potential behaves as a Schwarzschild metric if R0 is fixed, if not, it should be similar to the in 
falling shell of a Vaidya metric [38].

To simplify our computations, and just to capture the leading order effect in G, we will work in 
the regime where the gravitational potential is negligible, i.e. R0 � rg = 2GM . The 3D Fourier 
transform of the stress-energy tensor for the static shell is defined as:

5 We recall the basis tensors satisfy the completeness relation: P ijkl ≡ ∑
λ e

ij
λ (n)ekl

λ (n) = P ikP jl + P ilP jk −
P ij P kl where P ij ≡ P ij (n) = δij − ninj .
8
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T̃ij (k) ≡
∫

dR Tij (R)eik·R. (43)

We can evaluate such integrations using spherical coordinates and by choosing to align the k
vector with the z axis (Appendix B). Specifically, inserting Eq. (41) in Eq. (43) we then find after 
expanding up to order O(k4),

T̃11(k) = T̃22(k) = M(
1

3
− R2

0k2

30
+ ...), (44)

T̃33(k) = M(
1

3
− R2

0k2

10
+ ...). (45)

Here we will be interested in the regime R0(t)k � 1 where higher order terms can be neglected. 
Using k = ωk this corresponds to the UV cut-off frequency, ωk � 1/R0(t). Note that although 
R0(t) has an explicit time dependence, here we will only consider that the in-falling shell is 
moving very slowly and the corresponding vacuum for the shell remains adiabatic. Violation of 
adiabaticity in the vacuum will lead to particle creation and the break down of our key assump-
tions.

This interaction Hamiltonian considered here is consistent with the perturbations around 
Minkowski spacetime ημν in Eq. (27). As we will see below, this will lead to Ng ∼ O(h2

μν) ∼
O(G). In the case of an in-falling shell, the metric is not Minkowski even for ωk � 1/R0, R0k �
1. In the static case, the metric outside the shell is that of the Schwarzschild (for static) 
or Vaidya (dynamic) metric. Therefore, the correct expansion of the perturbations should be: 
gμν = g̃μν + h̃μν , where g̃μν is the background metric.

However, in the linearised limit, the leading order term in the metric remains that of 
Minkowski one for r ∼ R0 � rg = 2GM , so any correction due to 2GM/R contribution in 
the metric will yield higher order corrections in G, i.e. due to 

√−g contribution in the inter-
action Hamiltonian, 

∫ √−gd4xGμνTμν . Hence, the above mentioned corrections due to either 
Schwarzschild or Vaidya remain sub-leading in Ng ∼ O(G2).

Therefore, working at the leading order in G, we can split Eq. (40) into the radial and angular 
parts:

Ng = G

π2

∫
dωk

ωk

|T̃ (ωk)|2
∫

dnP iji′j ′
(n)Fij (n)Fi′j ′(n), (46)

where we have used dk = dkdn = ω2
kdωkdn, and T̃ (ωk) and Fij (n) will be specified below. The 

expansion of the stress energy tensor from Eq. (45) can be treated perturbatively – computing first 
the contribution to order O(1), and then to order O(k2).

From Eq. (45), at the lowest order O(1), we have the terms

T̃ (ωk) = M

3
, Fij = δij , (47)

which however leads to a vanishing contribution in Eq. (40) as we have 
∑

i,j

∫
dnP iijj (n) = 0

due to symmetry considerations. From Eq. (45), the quadratic terms, O(k2), give

T̃ (ωk) = MR2
0ω2

k

30
, (48)

which can be seen as the relativistic counterpart of a harmonic oscillator potential energy. In 
addition, the only nonzero angular terms are F11 = 1, F22 = 1, but F33 = 3 (the asymmetry of 
9
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F33 with respect to F11, F22 originates from the choice of the alignment of the k vector with the 
z axis). After some straightforward but tedious algebra we eventually find

Ng = G

π2c5

∫
dωk

ωk

|T̃ (ωk)|2
∫

dnP iji′j ′
(n)Fij (n)Fi′j ′(n). (49)

We now introduce an UV cutoff in Fourier space, i.e. ω̄ = 2π
R0

(matching the approximations in 
Eq. (45)). From Eq. (49), we then readily find

Ng = 32GR4
0M2

3375π

ω̄∫
0

dωkω
3
k . (50)

Finally, by evaluating the frequency integral, and using ω̄ = 2π
R

, we obtain the occupation number 
at the leading order in G to be:

Ng = 128π3

3375
GM2, (51)

which is very similar to what we had obtained earlier in the non-relativistic setup [18]. The 
numerical factors are indeed different, due to the geometry, but GM2 factor remains the same.

Recalling our discussions in section 5, we can establish a new length scale in the infrared. 
Since, lP = √

G, then with the help of Eq. (51) and Eq. (58), we obtain:

L ≤ √
NglP =

√
128 × 16 × π4

3375
GM ∼ 3.8rg, (52)

which signifies that the quantum effects, such as the quantum fluctuations of the virtual gravitons 
play an interesting role as the shell crosses ∼ 3.8rg . This is a significant result, which matches 
the expectations found in the analysis of the fuzz-ball scenario where the fuzz-ball micro states 
played an important role even before the black hole horizon started forming [21]. Note that we 
have not computed the amplitude of the total probability here in Eq. (58). However, the expo-
nent being more sensitive, we expect that the emergence of a new scale in gravity is inevitable 
whenever there exists a large number of states, i.e. Ng � 1. The actual numerical factor 3.8rg
may change, but within an order of magnitude of order G our conclusions will remain intact. 
Appearance of a new scale in the infrared is a welcoming sign, in particular, it enforces us to 
rethink our understanding of a traditional classical black hole with an event horizon [20]. Given 
the future advancements in observational gravitational waves, our analysis prompts us to study 
various consequences of a compact object devoid of any classical horizon, see [23,24,39].

For the rest of the paper, we will consider the physical effects due to higher curvature contri-
butions, such as R2 in the gravitational action Eq. (55).

5. Infrared scale for gravitons

Let us begin by considering the gravitational action which also allows higher order derivative 
and curvature terms.

S = SEH + Sq , (53)

SEH = 1

16πG

∫
d4x

√−gR , (54)

Sq = 1
∫

d4x
√−g

[
αR2 + βR3 + · · ·

]
, (55)
16πG

10
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where M2
p = 1/(16πG), α, β are dimension full constants. Since gravity is a massless theory; 

therefore space time diffeomorphism invariance allows higher curvature and higher derivative 
(more than two covariant derivatives) contributions. In general, we may expect [29]:

R2 = Rf (�s)R + · · · , (56)

where �s = �/M2
s operator will bring a new scale Ms , where Ms ≤ Mp . For all practical pur-

poses we can take Ms = Mp . We will show that despite of all these scales, there exists a unique 
scale in the infrared6 as pointed out in Refs. [13,14,18,20,21].

Let us introduce a characteristic length scale L, so that one has ∂x ∼ L and 1/∂x ∼ 1/L; in 
the same way all curvature tensors will scale as R ∼ 1/L2, R2 ∼ 1/L4, · · · . Therefore, Einstein-
Hilbert action will contribute:

SEH ∼ M2
pL2 . (57)

To understand the appearance of this new scale in the infrared, there is another intuitive way to 
proceed [21,34] (see also [35] for a discussion motived by the AdS/CFT calculations).

Let us recall the arguments proposed in Ref. [21,22]. The fluctuations in energy for a given 
mass is given by; E ∼ M , if the fluctuations exist for a time scale T ∼ L, then the action will 
be given by: S ∼ ET . In [21,22], it was argued that for a black hole with a mass M will also 
accompany the virtual excitations of the vacuum. Typically, these fluctuations are exponentially 
suppressed, nevertheless, the number of states available in the case of a black hole is exponen-
tially large, as in the case of a fuzz ball. Take only Einstein-Hilbert contribution in the gravita-
tional action, we will get SEH ∼ ET ∼ M2

pL2. For the black hole case, L = T = rg = 2GM . 
Therefore, the total probability for the existence of a black hole must also take into account of 
the gravitational states available, given by N ≈ eNg , and the gravitational action. Collectively, 
we can express the total probability to be:

PT ∼ eNge−S ∼ eNg−M2
pL2 ∼ O(1) . (58)

In [21,22], the number of states available for a black hole was due to the fuzz-ball states. In our 
case, the number of quantum states available is mainly due to the graviton states, very similar 
to [13,14,16,18]. The total probability becomes PT ∼ O(1), provided

L ≤
√

Ng

Mp

=⇒ Meff ∼ Mp√
Ng

, (59)

where we have taken L ∼ M−1
eff . In this regard fuzz-ball [20] and the corpuscular hypothe-

ses [13,14,16,18] gave very similar results. Both the hypotheses saturate the bound for Ng for 
the gravitational radius; L = rg = 2GM . Although, the fuzz-ball hypothesis will go beyond these 
steps, and will bring a new infrared scale which can be even larger than the gravitational radius. 
We will discuss them in the next section.

To evaluate Ng , we will take inspiration from our recent computation in Ref. [18], where we 
have shown that it is indeed possible to estimate Ng by tracing out the non-relativistic matter, 

6 Note that the graviton propagator depends on the action and the background, see [29–31]. Higher derivative con-
tributions to gravity also bring ghosts in the graviton propagator [2,31]. In order to avoid ghosts, either we restrict our 
action to only two derivatives or all infinite covariant derivatives, as shown in papers [29,32]. Such class of gravitational 
theories are known as infinite derivative theory of gravity (IDG). Infinite derivatives do not have a point support, see [33], 
and therefore introduces non-local interactions.
11
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and we had shown that the minimal coupling between the matter and the gravity would suffice to 
show that the gravitons are in a displaced coherent state, whose occupation is given by the same 
as that of Bekenstein’s entropy bound.

Ng = SBEK = Area

4G
∼ GM2 ∼

(
M

Mp

)2

. (60)

By substituting in Eq. (58), we obtain the infrared scale in gravity to be similar to the 
Schwarzschild radius, i.e. L ∼ rg , as we have discussed above. It is worth highlighting that the 
gravitational entropy is indeed holographic in nature also, see [36,37].

It is worth comparing out that the electromagnetic case has no infrared length scale. A similar 
analysis will suggest that the electromagnetic action has no explicit length scale dependence, 
unlike gravity, where the interaction strength 

√
G ∼ 1/Mp , and possess a length scale. This 

naturally forbids appearance of an infrared scaling in the case of a photon.
A natural question arises; could we evaluate Ng for other equations of state, or for other 

geometries. Our previous computation in Ref. [18] was performed in a non-relativistic setting. 
We wish to now consider these issues and compute Ng, where we assume that the graviton 
vacuum is always stable and obeys adiabatic condition, by tracing out the energy momentum 
tensor of the matter sector.

Let us consider terms which are proportional to R2 in Sq in Eq. (55).7 Our previous argu-
ments from section 5 have suggested that on dimensional grounds, the total gravitational action 
including Einstein-Hilbert term and the quadratic piece will give us:

S ∼ M2
pL2

[
1 + 1

M2
s L2

]
. (61)

If we demand that Sq > SEH in Eq. (55) for a certain length scale L, then this would mean 
L < 1/Ms . Now, if we demand that the virtual excitations of gravitons for a given mass M ought 
to play a significant role, then

PT ∼ eNge
−M2

pL2[1+ 1
M2

s L2 ] ∼ O(1) . (62)

Therefore, if the quadratic in curvature term were to dominate over Einstein-Hilbert term then 
the probability would become order one, provided

Ms = Mp√
Ng

(63)

8To be consistent, we would need L < M−1
s . Therefore, we will have the following relationship 

for an in falling thin shell;

1

L
≥ Ms = Mp√

Ng

=⇒ L ≤ 3.8rg . (64)

7 The ghost free quadratic curvature action with analytic operators is given by: S = 1/(16πG) 
∫

d4x
√−g[R +

α(Rf1(�s )R +Rμνf2(�s )R
μν +Rμνλσ f3(�s )R

μνλσ )]. The whole action can be made ghost-free in Minkowski [29]
and in maximally symmetric backgrounds. In Minkowski spacetime, the ghost-free condition demands that 2f1 + f2 +
2f3 = 0.

8 This is indeed a very interesting relationship, as we had shown in a completely different context; how a new scale 
appears in gravity but in the context o fa non-local gravitational interaction [39].
12



S. Bose, A. Mazumdar and M. Toroš Nuclear Physics B 977 (2022) 115730
Let us now check what would happen if we were to demand the domination of the cubic order 
terms in the curvature over all the other contributions for some length scale L, then

S ∼ M2
pL2

[
1 + 1

M2
s L2 + 1

M4
s L4 + · · ·

]
. (65)

Indeed, all the higher curvature terms do become important for L ≤ M−1
s , barring any fine-tuned 

cancellations. Let’s take the cubic term first. If the cubic contribution dominates overall, then 
Eq. (58), (62) would suggest

L ∼ Mp

M2
s

1√
Ng

. (66)

Indeed, now we have two new parameters to constrain Ms and L for a given Ng . Let us suppose, 
conservatively, we take Ms ∼ Mp/

√
Ng , then we would obtain the same conclusion that the 

infrared scale of gravity becomes L ≤ √
Ng/Mp , same as that of Eq. (63), since L ∼ M−1

s . If 
Ms is considered to be the string scale, then the hierarchy between Ms and Mp is related to the 
gravitational states.

All these results point towards one very crucial fact that irrespective of any higher-order curva-
ture and/or higher derivative corrections, there must appear a new scale of gravity in the infrared, 
which has a universal feature given by Eq. (59), i.e. Meff ∼ Mp/

√
Ng , where Ng denotes the 

number of graviton states associated with the mass M [21].

6. Conclusion

In this paper we have found two results. First, by tracing out the charged source, i.e. the 
electron, we have found that the photon vacuum is displaced. This is analogous to the displaced 
coherent state of a photon vacuum with an occupation number of photons, Np, which scales as 
the fine structure constant. Since the fine structure constant remains less than one, it implies that 
the electron remains a quantum system for energies below the Planck scale. Furthermore, the 
photon number is always bounded by the Bekenstein’s entropy bound. All the computations are 
based on the adiabatic evolution of the charged source and the photon vacuum.

The second result, we have shown that the gravitational interaction with the matter is entirely 
different as expected. By tracing out the matter, we found that the graviton vacuum is also dis-
placed. Still, now the occupation number of gravitons is proportional to the Area. The current 
result generalises our previous result [18], where we have generalised the computation for an 
arbitrary energy momentum tensor and beyond Einstein-Hilbert action. Motivated by [21,22], 
we have found that by including the large degeneracy provided by the occupation number of the 
gravitons in the displaced vacuum, the infrared scale emerges. This infrared scale can be larger 
than the gravitational radius. In fact, in the simple toy model we have studied, i.e. an in-falling 
thin shell of matter, the emergence of the infrared length scales appears to be L ≤ 3.8rg . We 
have further noticed that the appearance of this infrared scale in gravity persists even if we go 
beyond Einstein-Hilbert action. Apparently, such a new scale is always determined by the large 
occupation number of gravitons in the displaced vacuum, see Eq. (66).

Our results prompt us to investigate further open questions such as the new scale of gravity 
in a generic collapsing geometry, particularly in the context of cosmology [40], and in the for-
mation of an ultra compact object. Would the appearance of a new scale alleviate cosmological 
Big Bang singularity or resolve black hole singularity? Would the appearance of a new scale in 
gravity alter the way we view traditional black holes? Would there be associated observational 
13
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signatures which can be falsifiable by future gravitational wave detectors? All these questions re-
main outstanding, indeed they go beyond the scope of the current paper, and deserves a detailed 
investigation.
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Appendix A. Thin charged shell of matter

In the case of a charged shell, we start from the current density:

Ji(R) = e

4πR2
0

δ(R − R0)ni(θ,φ). (A.1)

We are interested in the Fourier transform

J̃i (k) = e

4πR2
0

∞∫
0

dR

1∫
−1

dcos(θ)

2π∫
0

dφR2δ(R − R0)ni(θ,φ)eikRcos(θ) (A.2)

Performing the integrations we find the following nonzero terms

J̃3(k) = − ie(kR0 cos(kR0) − sin(kR0))

k2R2
0

(A.3)

where k ≡ |k| = ωk is the radial component of the wave vector.

Appendix B. Thin neutral shell of matter

We start from the stress-energy tensor:

T̃ij (k) =ε

∞∫
0

dR

1∫
−1

dcos(θ)

2π∫
0

dφR2δ(R − R0)ni(θ,φ)nj (θ,φ)eikRcos(θ). (B.1)
14
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Performing the integrations, and inserting Eq. (42), we find:

T̃11(k) = M
sin(kR0) − kR0 cos(kR0)

k3R3
0

, (B.2)

T̃22(k) = M
sin(kR0) − kR0 cos(kR0)

k3R3
0

(B.3)

T̃33(k) = M

(
k2R2

0 − 2
)

sin(kR0) + 2kR0 cos(kR0)

k3R0
3 (B.4)

where k ≡ |k| = ωk is the radial component of the wave vector.
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