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The bootstrap is a versatile technique that relies on data-driven simulations to make
statistical inferences. When combined with robust estimators, the bootstrap can afford
much more powerful and flexible inferences than is possible with standard approaches
such as T-tests on means. In this tutorial, we use detailed illustrations of bootstrap sim-
ulations to give readers an intuition of what the bootstrap does and how it can be ap-
plied to solve many practical problems, such as building confidence intervals for many
aspects of the data. In particular, we illustrate how to build confidence intervals for
measures of location, including measures of central tendency, in the one-sample case,
for two independent and two dependent groups. We also demonstrate how to compare
correlation coefficients using the bootstrap and to perform simulations to determine if
the bootstrap is fit for purpose for a particular application. Our approach is to suggest
and motivate what could be done in a situation, with an understanding that various
options are valid, though they may help answer different questions about a dataset.
The tutorial also addresses two widespread misconceptions about the bootstrap: that it
makes no assumptions about the data, and that it leads to robust inferences on its own.
The tutorial focuses on detailed graphical descriptions, with data and code available
online to reproduce the figures and analyses in the article (OSF: https://osf.io/8b4t5/;
GitHub: https://github.com/GRousselet/bootstrap).

Keywords: robust statistics, median, trimmed mean, quantiles, correlation,
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Introduction

The bootstrap is a well-established early computer-
age inferential method (Efron, 1979; Efron and Hastie,
2016; Efron and Tibshirani, 1994). The bootstrap is
based on the idea that using only the data at hand can
sometimes give better results than making unwarranted
assumptions about the populations we’re trying to esti-
mate. The core mechanism of the bootstrap is sampling
with replacement from the data, which is a form of data-
driven simulation. Thus, learning about the bootstrap
is not only learning about an alternative to the stan-
dard parametric methods of statistical inference, but is
also a way to learn about simulations and to question
our choices of methods. As we will see, the bootstrap
doesn’t provide a single alternative approach to classic
problems such as group comparisons, but a large fam-
ily of new approaches. Having the bootstrap in your
toolbox is like getting a powerful Swiss Army Knife,
which offers great versatility—others have referred to
the bootstrap as Meat Axe, Swan-Dive, Jack-Rabbit, and

Shotgun (Efron, 1979).
In this tutorial, we start by explaining the basic

mechanism of the bootstrap and the rich output it cre-
ates. We then consider the limitations of the boot-
strap, before covering key applications to inferences
about group comparisons of measures of locations and
correlation coefficients. We also provide examples of
simulations to quantify the long-term behaviour of the
bootstrap, to help make informed choices about statis-
tical tools. Finally, we briefly introduce one of many
variants of the original bootstrap, the bootstrap-t tech-
nique, which has applications in analyses of variance
(ANOVAs). Other variants of the bootstrap have been
proposed since 1979, such as the wild bootstrap (Wu,
1986), the bias-corrected and accelerated bootstrap, the
smooth bootstrap (Efron and Tibshirani, 1994), and
the Bayesian bootstrap (Bååth, 2015; Rubin, 1981), to
name a few—and research into bootstrap methods is
still very active.

Before we start, let’s keep in mind that for each com-
bination of experimental design and type of data, there
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is a variety of statistical analysis options available, each
asking different questions, and that no method domi-
nates in all situations (Rousselet et al., 2017; Rousselet
and Wilcox, 2020). The bootstrap is no exception: it
works well in some situations but not in others.

How to read this article

This tutorial is pitched at a rather conceptual level
and covers a lot of statistical methods and concepts.
Readers interested in a gentler introduction, including
a step-by-step guide of the bootstrap implementation
in R (R Core Team, 2021), should consider our earlier
tutorial on the topic with its associated reproducibility
package (Rousselet et al., 2019, 2021). After reading
this article, or if you already know the basics, come back
here for a more in-depth coverage of the topic. While
the current article can be read on its own, interested
readers can also access, in separate notebooks, all the
code matching the simulations and figures in the arti-
cle. To facilitate this process, each figure caption con-
tains a link to an html version of the matching notebook
on GitHub (https://github.com/GRousselet/bootstrap),
and a pdf version of the notebook and of the figure
on the OSF (https://osf.io/8b4t5/). The notebooks are
also available as .Rmd files on the OSF. Both repositories
contain a README file that lists what to expect from the
9 notebooks, the main R packages needed and various
resources.

Disclosures

All the figures are licensed CC-BY 4.0 and are avail-
able as separate pdf files. Each figure caption ends
with links to its matching pdf and the RMarkdown note-
book that can be used to reproduce it. The main R
packages used to generate the data and make the fig-
ures are RGenData (Ruscio & Kaczetow, 2008), Lam-
bertW (Goerg, 2011, 2022), MASS (Venables & Ripley,
2002), gsl (Hankin, 2006), nleqslv (Hasselman, 2022),
ggplot2 (Wickham, 2016), cowplot (Wilke, 2017), tibble
(Müller & Wickham, 2018), cubelyr (Wickham, 2020),
facetscales (Moreno, 2019), rogme (Rousselet et al.,
2017), knitr (Xie, 2018), and the essential beepr (Bååth,
2018).

Bootstrap: the basics

Imagine we carried out an experiment and we ob-
tained the 30 observations in Figure 1A. The traditional
approach to compute a confidence interval (CI in the
rest of the text) involves a few calculations and some
parametric assumptions. First, some null value is sub-
tracted from the mean (let say here our null hypothesis
is that the population mean is 2), and this difference

is then normalised by dividing it by the standard er-
ror of the mean (SEM). This T statistic (mean differ-
ence/SEM) is assumed to have a particular long-run
distribution determined by the sample size (i.e. if we
were to redo this experiment many times, with 30 ob-
servations, this is the distribution we should get). This
distribution, also known as a T distribution, here with
29 degrees of freedom, is illustrated in Figure 1B. The
distribution assumes that we repetitively sample from
a standard normal distribution, and for each sample of
size n = 30, we compute a T value. To build a 95% CI,
we read out the 2.5th quantile from that distribution
and plug that T value into the CI formula (Figure 1B
inset). In our example, the sample mean is 1.61 and a
95% CI, which contains the null value, is [0.9, 2.31]. A
CI for the mean is an interval that covers the population
mean with a rate of error alpha, here 5% for a 95% CI
(Morey & Rouder, 2011). That is, across many repeti-
tions of the same experiment, 95% of such intervals will
contain the population value we are trying to estimate.
There is no guarantee that the interval obtained in one
experiment contains the population value, and there is
no probability or confidence associated with a single in-
terval: it contains the population value or not. The 95%
only applies to an infinitely long collection of intervals.
A CI can also be described as the interval compatible
with the data, given our model (that is, the long-run T
distribution and any other experimental and statistical
assumptions we make)—so when the model is wrong,
the interval will not behave as intended in the long-run
(Greenland et al., 2016). We will demonstrate how to
assess the validity and quality of CIs using simulations
in later sections.

Finally, the probability of observing a result at least
as extreme as our T value, given the null long-run T
distribution, is the P value (Pernet, 2017). Half of the
P value is the area under the curve marked in red in
Figure 1B, to the left of the observed T value. To obtain
the P value for a two-sided test, the area is multiplied
by two. Note that there is a direct relationship between
CIs and P values: a 95% CI contains all the hypotheses
/ population values for which the P value is larger than
0.05. Hypotheses outside a 95% CI are associated with
P values inferior to 0.05.

An interesting aspect from the example above is that
when we use a T-test (or another parametric test), it as-
sumes a certain long-term distribution of the test statis-
tics. Indeed, the confidence interval based on the T-test
relies on the long-term value of T. Suppose, for exam-
ple, that a study were repeated many times and that
2.5% of these T values are less than or equal to -2 and
2.5% are greater than or equal to 2. Then the .95 CI
would be given by the formula in Figure 1B insert, with
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Figure 1

Percentile bootstrap inferences. A. Stripchart illustrating a random sample (n=30) from a skewed (lognormal)
distribution. Each disk is an observation. The horizontal dashed line marks the sample median; the plain line marks
the sample mean. B. Sampling T distribution for 29 degrees of freedom. Tcrit = critical T value; Tobs = observed T
value. The red area corresponds to half the P value. The inset contains the formula for the standard T-test confidence
interval. C. Bootstrap samples. Each disk is a bootstrap observation. For each bootstrap sample, the vertical line marks
the bootstrap mean. D. Bootstrap sampling distribution of the mean. The standard deviation (SD) of the bootstrap
distribution provides an estimate of the standard error of the mean (SEM). The P value is equal to twice the minimum
between the proportion of bootstrap samples to the left and to the right of the null value (here 2), marked by the vertical
dashed line. So in this example the P value is twice the red area for a two-sided test. The confidence interval is marked
by a black horizontal line, with the values of the lower (L) and upper (U) bounds in black labels. This figure is available
as a separate pdf file. It was created using the R notebook pb, which is available in pdf, html and .Rmd formats.
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Tcrit = 2. Assuming normality, there is no need to deter-
mine the critical value in this manner; the critical value
can be derived exactly. But momentarily imagine that
the critical value is unknown. One could determine it
by generating data from a normal distribution, note the
value of T, and repeat this process say 10,000 times. If
2.5% of these T values are less than or equal to -2, and
2.5% are greater than or equal to 2, this indicates that
Tcrit = 2. This result is based on a particular model: ran-
dom sampling from a normal distribution. Thus, long-
term T distributions used in T-tests (and F distributions
in ANOVAs) represent the outcome of virtual experi-
ments, given a certain sample size and assuming that
we sample from a population with a particular shape.
As we will see, the bootstrap-t method, described later
in this article, mimics this process. The main difference
is that T values are randomly sampled with replacement
from the observed data rather than from a normal dis-
tribution.

With the bootstrap, we relax parametric assumptions
to instead perform data-driven simulations. The core
mechanism of the bootstrap is random sampling with
replacement. To illustrate, say we have this sample of 6
observations: 1, 2, 3, 4, 5, 6. A bootstrap sample con-
sists of 6 observations sampled with replacement from
the original ones. Here are examples of three such boot-
strap samples:

■ 1 2 3 6 3 3

■ 3 5 4 6 6 4

■ 1 3 2 6 2 5

In some bootstrap samples, some original observa-
tions are sampled more than once, others are not sam-
pled at all. For each bootstrap sample, we compute an
estimate, say the sample mean. So, if we take 1,000
bootstrap samples and for each of them we compute the
mean, we end up with a distribution of 1,000 bootstrap
estimates of the sample mean. The key idea is that if
the original sample size and the number of bootstrap
samples are large enough, in many situations the distri-
bution of bootstrap estimates provides a good approxi-
mation of the sampling distribution of the estimate.

If we go back to our Figure 1 example, panel C il-
lustrates 20 bootstrap samples. Given our sample size
of n=30, each of these bootstrap samples contains 30
observations sampled with replacement from the orig-
inal sample. Because of random sampling, the boot-
strap mean differs across bootstrap samples. The idea
is that these fluctuations represent the fluctuations ex-
pected if we repeated the same experiment many times,
each time collecting 30 new observations and comput-
ing the mean. After 5,000 bootstraps, we obtain the

distribution in Figure 1D. This sampling distribution of
bootstrap estimates is the main outcome of the boot-
strap procedure. From this distribution, we can derive
five important elements:

• an estimate of the shape of the sampling distribu-
tion;

• an estimate of the standard error of the quantity
(here the mean);

• an estimate of bias;

• a confidence interval;

• a P value.

All of that without equations or parametric assump-
tions, and for any quantity! Indeed, if the standard T-
test is restricted to inferences on means, the bootstrap
can be used to build a CI about any estimate (for in-
stance mean, median, or any quantile), making it very
practical in situations where there is no analytical so-
lution. Because the bootstrap distribution contains so
much information, and much more than the CI derived
from it, when possible we recommend illustrating the
full distribution in articles.

Here the bootstrap CI is [1.02, 2.38], which is very
similar to the one we got using the standard T-test for-
mula—[0.9, 2.31]. It is obtained by getting the quan-
tiles of the bootstrap distribution. For instance, for a
95% CI, the lower bound is defined as the 2.5th quan-
tile of the bootstrap distribution, and the upper bound
at the 97.5th quantile. Because the bootstrap distri-
bution is an estimate of the sampling distribution, its
standard deviation provides an estimate of the standard
error, here of the mean. The bootstrap distribution is
positively skewed (skewed to the right), correctly sug-
gesting that the sampling distribution of the mean is
asymmetric. This is correct because we draw the data
from a lognormal distribution and not from a normal
distribution, as assumed by the T-distribution in Figure
1B.

The P value is computed as the minimum of the pro-
portion of bootstrap means larger than the null (2) and
the proportion of bootstrap means smaller than the null,
multiplied by two (here bootstrap P=0.276). Intuitively,
it reflects how deeply the null value is nested within the
bootstrap distribution. When the null value is exactly in
the middle of the bootstrap distribution, the P value is
1, when it falls completely outside the distribution, the
P value is 0. Finally, readers interested in bias and its
bootstrap estimation will find detailed illustrations and
code in another article (Rousselet & Wilcox, 2020).

The bootstrap method described above is called the
percentile bootstrap, first described in 1979 in Bradley
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Efron’s seminal paper (Efron, 1979). Since 1979, many
other bootstrap techniques have been developed, and
we will describe only one other version in a later sec-
tion: the bootstrap-t technique (also referred to as
percentile-t bootstrap), in which the bootstrap is used
to compute a data-driven T distribution under the null
hypothesis. More in depth coverage of the bootstrap
and its many variants is available in several books and
articles (Efron & Tibshirani, 1986, 1994; Hesterberg,
2015; Wilcox, 2022; Wilcox & Keselman, 2003). In the
rest of this tutorial, we refer to the percentile bootstrap
as the bootstrap for short.

As illustrated already, the bootstrap is a data-driven
(we only use the data at hand) and non-parametric (we
do not assume the data can be modelled by a distribu-
tion with a fix set of parameters) method, and if the
original sample size and the number of bootstrap sam-
ples are large enough, the bootstrap distribution does
a good job at capturing the shape of the sampling dis-
tribution of the quantity of interest. The data-driven,
non-parametric aspect means that the bootstrap cannot
suggest impossible confidence bounds, unlike standard
parametric methods. For instance, consider the percent-
age correct data in Figure 2. Panel A illustrates data
and standard confidence intervals. Condition 1 shows
a sample well spread out with a mean around 74. In
condition 2, most participants are near the ceiling. In
condition 3, the lowest value from condition 2 was re-
placed by an outlier with a score of 60. Now the upper
bound of the confidence interval is slightly over 100%,
which is of course impossible. This is because the model
used to build the confidence interval is incorrect in this
case: it assumes sampling from continuous and sym-
metric distributions, whereas our sample comes from a
bounded and asymmetric distribution. Unfortunately,
in our experience, impossible CIs are common in pub-
lications and presentations. In contrast, the bootstrap
makes no parametric assumptions about the population
our samples come from and instead uses the sample
only, such that the bootstrap confidence intervals can-
not, by definition, extend beyond the smallest or largest
observations in our sample (Figure 2B).

To illustrate that the bootstrap can provide a good
approximation of sampling distributions, let’s consider a
population with a standard lognormal distribution (Fig-
ure 3). This distribution is positively skewed, and it
is has a zero lower bound (only positive values can be
observed), as one could observe for instance with reac-
tion times, fixation durations, pupil diameter and BMI.
As such, it provides a much better example of the sort
of continuous distributions we encounter in psychology
and in neuroscience. More generally in the social and
life sciences, many quantities have a skewed distribu-

tion similar to the one shown in Figure 3 (Limpert &
Stahel, 2017; Limpert et al., 2001).

To visualise examples of sampling distributions, we
take 50,000 random samples from a lognormal distribu-
tion and each time compute some statistics (Figure 4A).
We could compute the mean, but it is only one of many
options to quantify the location of a distribution, and
not a good one when there is skewness because it can
reflect a highly atypical response (Rousselet & Wilcox,
2020). More generally, one has to go beyond the mean
to understand how distributions differ (Rousselet et al.,
2017). So here, as an example, we compute the 20%
trimmed mean, which provides a robust measure of lo-
cation (Wilcox, 2022; Wilcox & Keselman, 2003).

To compute a 20% trimmed mean, observations are
sorted, the lower and upper 20% are discarded and
the remaining observations are averaged. In this con-
text, the mean is a 0% trimmed mean and the median
is a 50% trimmed mean. In our example, we com-
pute 50,000 trimmed means for sample sizes n=20,
30 and 50. In other words, we look at how the 20%
trimmed mean is distributed when we perform many
experiments with certain sample sizes. These sampling
distributions are usually unobservable, but we can vi-
sualise them here because we performed simulations.
As shown in the top row of Figure 4 (panel A), all
sampling distributions are positively skewed, even for
n=50. They also get narrower with increasing sample
size, because the larger the sample, the closer on av-
erage each experimental estimate is to the population
value. The bootstrap aims to estimate the shape of these
distributions. In each column of Figure 4, under the
sampling distribution, four of the 50,000 samples are
illustrated (panel B). For each sample, 5,000 bootstrap
estimates are computed. In all cases, the bootstrap dis-
tributions suggest, correctly, that the sampling distribu-
tion is positively skewed. The exact shape of each boot-
strap sampling distribution is dictated by the sample at
hand, and no other information is considered. Because
of this, some bootstrap distributions are more skewed if
the samples contain more extreme values—for instance
contrast samples 1 and 4 in column 1. With increasing
sample sizes, the bootstrap distributions also tend to be
narrower, mirroring the behaviour of the sampling dis-
tributions.

Figure 4 also provides an important reminder about
bootstrap inferences. Each bootstrap distribution is cen-
tred around the sample estimate, not the population
value, so the bootstrap can improve inferences, not es-
timation (Hesterberg, 2015). Moreover, bootstrap CIs,
like any other CIs, vary across experiments (Figure 5).
Therefore, if we perform a single experiment, the CI we
obtain does or does not contain the population value
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Figure 2

Application of the bootstrap to percent correct data. Each grey disk is an observation. The black disk marks the
sample mean. The error bars mark the 95% confidence intervals, computed using the standard T-test equation (A) or the
bootstrap (B). This figure is available as a separate pdf file. It was created using the R notebook pc, which is available
in pdf, html and .Rmd formats.
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Lognormal and normal distributions. The two distributions have the same mean and the same variance. Unlike
the normal distribution, the lognormal distribution is skewed and bounded, similarly to most quantities we measure
in psychology and in neuroscience. This figure is available as a separate pdf file. It was created using the R notebook
sampdist, which is available in pdf, html and .Rmd formats.

we’re trying to estimate. The coverage probability (say
95%) is only defined in the long run; there is no guar-
antee for a single experiment (Greenland et al., 2016).
And as we will see later, the actual coverage can be

quite different from the intended one—for instance an
intended 95% CI can, in some situations, be a 90% CI.

https://osf.io/t7pkw/
https://osf.io/xm9p5/
https://github.com/GRousselet/bootstrap/blob/master/docs/pc.md
https://github.com/GRousselet/bootstrap/blob/master/pc.Rmd
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https://osf.io/9xdmp/
https://github.com/GRousselet/bootstrap/blob/master/docs/sampdist.md
https://github.com/GRousselet/bootstrap/blob/master/sampdist.Rmd
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Figure 4

Bootstrap estimates of sampling distributions. (A) The top row shows sampling distributions of the 20% trimmed
mean for sample sizes of n=20, n=30 and n=50. These distributions were obtained by taking 50,000 samples from the
lognormal distribution illustrated in Figure 3. The vertical dashed lines mark the population 20% trimmed mean.(B).
In each column, the dyads of rows under the sampling distribution show 4 of the 50,000 samples. In each dyad, the
narrow panel contains a scatterplot of the observations in the sample. The vertical black line marks the sample 20%
trimmed mean. The lower panel shows the bootstrap distribution of the 20% trimmed mean, based on 5,000 bootstrap
samples. This figure is available as a separate pdf file and was inspired by the illustrations in Hesterberg (2015). It was
created using the R notebook sampdist, which is available in pdf, html and .Rmd formats.

Limitations of the bootstrap

Before we look at examples of applications of the
bootstrap, it is worth clarifying two common miscon-
ceptions. First, the bootstrap is sometimes presented
as being robust, but this is not the case. There are
several statistical definitions of robustness, but loosely
speaking, one important aspect is whether one extreme
value can influence the outcome of a statistical test, in
particular a confidence interval (Wilcox, 2022). Let’s
look at the example in Figure 6. We consider a single

sample (n=11) in which the largest value is progres-
sively increased. As a result, the sample mean increases
progressively, because it can be influenced by a single
extreme value (Figure 6A). Similarly, the standard T-
test CI for the mean also increases, because it relies on
the variance, which is a non-robust measure of spread.
If instead we use the bootstrap, the CIs are also inflated
by the extreme value (Figure 6B). However, because the
bootstrap accommodates asymmetric CIs, the effect is
only seen on the side of the extreme value. So, although

https://osf.io/a4ybr/
https://osf.io/9xdmp/
https://github.com/GRousselet/bootstrap/blob/master/docs/sampdist.md
https://github.com/GRousselet/bootstrap/blob/master/sampdist.Rmd
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50 experiments, 50 bootstrap confidence intervals. For each experiment, a random sample of size n=30 was taken
from the lognormal distribution shown in Figure 3. For each sample, bootstrap CIs were computed using 5,000 bootstrap
samples, for four quantities: the mean (M), the 20% trimmed mean (TM), the median (MD), and the Harrell-Davis
estimate of the 50th quantile (HD). In each panel, the vertical black line indicates the population value. This figure is
available as a separate pdf file. It was created using the R notebook coverage, which is available in pdf, html and .Rmd
formats.
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https://osf.io/chxdn/
https://github.com/GRousselet/bootstrap/blob/master/docs/coverage.md
https://github.com/GRousselet/bootstrap/blob/master/coverage.Rmd
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the bootstrap CI of the mean is not robust, it is in this
case more informative than the standard one. Finally, if
we use the bootstrap to make inferences about the me-
dian, the CIs are not affected at all by the extreme value
(Figure 6C) because the median (and not the bootstrap
procedure) is a robust estimator of location.

In sum, Figure 6 helps illustrate an important les-
son: robustness comes from a conjunction of choices—a
method to build a confidence interval, and the estima-
tor for which a confidence interval is built. And unfor-
tunately there is no universal solution. Depending on
the types of distributions considered, different methods
offer different performances and help answer different
questions (Wilcox, 2022).

Second, the bootstrap is sometimes presented as not
making any assumptions about the data, unlike stan-
dard parametric methods. Although the bootstrap does
not make assumptions about the shape of the distri-
bution (the shape is not defined by parameters, hence
the non-parametric label), it does make very strong
assumptions about the data: indeed the bootstrap as-
sumes that the observations in the original sample are
the only ones that can ever be observed! This strong
assumption explains why the bootstrap does not work
well with small sample sizes—in some situations it gives
weirdly shaped bootstrap distributions and inaccurate
CIs. This is the case for instance when making infer-
ences about the median, as we will see in a later exam-
ple. That’s because the median, as well as most quan-
tile estimators, do not deal well with tied values, which
tend to occur frequently in bootstrap samples derived
from small original samples. Several solutions exist:
for instance to use estimators that can handle tied val-
ues, such as the Harrell-Davis quantile estimator (Har-
rell & Davis, 1982), or to use a bootstrap technique that
makes parametric assumptions, such as the percentile-t
technique—see description later in the tutorial. More
importantly, like any other statistical method, the boot-
strap has no magical property: it is only useful when a
sufficient sample size has been collected. Which brings
us to an important question: how do we know that a
method does what we expect it to do? Using simula-
tions of course!

Using simulations to check the behaviour of
bootstrap confidence intervals

As we mentioned previously, the behaviour of con-
fidence intervals can only be defined in the long-run.
There is no guarantee for a single experiment. This was
illustrated in Figure 5, in which 50 simulated experi-
ments were carried out, each time drawing a sample of
size n=30, and for each sample a bootstrap CI was com-
puted for each of four measures of central tendency:

the mean, the 20% trimmed mean, the median, and the
Harrell-Davis estimator of the 50th quantile. Each of
these estimators can be used to quantify the location of
the bulk of the observations, although they behave dif-
ferently depending on skewness, sample size and in the
presence of outliers (Wilcox, 2022). They also answer
slightly different questions about the data: for instance,
when we use the 20% trimmed mean, we make infer-
ences about the 20% trimmed mean of the population,
not another quantity.

In our example, across simulated experiments, it is
striking to see the large changes in position and width
of the CIs: sometimes they include the population value,
sometimes they don’t, and they can be narrow or wide.
This is a healthy reminder that inferences from a single
experiment should be considered with caution.

More generally, to assess CI methods, we proceed by
performing simulations in tightly controlled conditions,
for which we know what the result is. For instance, in
Figure 4, we sampled from the lognormal population
illustrated in Figure 3. Having defined a population of
interest, we draw random samples of a certain size, and
for each sample calculate a quantity of interest (say the
median) and its confidence interval. In this approach,
we can vary any aspect or parameter of the simulation
we want to investigate: the population we sample from,
the size of the sample, the quantity to estimate, the
method used to build the CI, and for bootstrap methods,
the number of bootstrap samples.

Then, what do we look for? For CIs, the first concern
is coverage. For a 95% CI, we need to ensure that in the
long-run, 95% of such CIs do contain the population
value we try to estimate. For instance, Figure 7A shows
the results of a simulation in which in each iteration, we
took a sample of size n=10 and computed bootstrap CIs
for the same four measures of central tendency we used
in Figure 5. We varied the number of bootstrap samples
from 500 to 10,000, in steps of 500. The results confirm
the observations we made in Figure 6: bootstrap CIs of
the mean do not perform well, with coverage near 81%.
Increasing sample size to n=30 improves matters, but
still leads to coverage of about 88.5%, instead of the
expected 95% (Figure 7B). So using the mean in con-
junction with the bootstrap is clearly not recommended.
Other measures of central tendency are associated with
CI coverage much closer to the nominal level.

Instead of varying the number of bootstrap samples,
we could also choose a fix number, and vary the sample
size. Whether we used 200 or 2000 bootstrap samples,
the main determinant of coverage was sample size (Fig-
ure 7C-D). Again bootstrap CIs for the mean performed
poorly.

The results from Figure 7 suggest that the number of
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The bootstrap is not robust. Grey disks are observations. In each condition we consider a sample of n=11 observations.
The 10 lowest observations are constant across conditions and panels. The largest observation is progressively shifted
upward from condition 1 to 7. In each condition, the black disk marks the sample estimate (mean or median), and the
vertical line marks the bounds of the CI. For ease of comparison, the horizontal dashed lines indicate the bounds of the
CI in condition 1. A. Standard T-test CI for the mean. B. Bootstrap CI for the mean. C. Bootstrap CI for the median. All
bootstrap CI were computed using 2,000 bootstrap samples. This figure is available as a separate pdf file. It was created
using the R notebook notrobust, which is available in pdf, html and .Rmd formats.

bootstrap samples does not affect the coverage of the
CIs. However, this result cannot be generalised to all
situations. And the number of bootstrap samples affects
other aspects of the results, such as the precision of the
bootstrap P values and the width of the CIs (see extra
figures in the notebook coverage.Rmd) . For instance,
given two methods with appropriate coverage, the one
that tends to give shorter CIs seems preferable, as it
reduces our uncertainty about the population value in
the long-run. So there are various ways to decide on
the number of bootstrap samples to use, and not sur-
prisingly, there is a whole statistical literature on the
topic (Davidson & MacKinnon, 2000; Hesterberg, 2015;
Olive, 2014; Racine & MacKinnon, 2007a, 2007b). In
our experience, using 1,000 bootstrap samples appears
to be sufficient if the goal is to have coverage at the
nominal level. For statistical power, there might be sit-
uations where more samples are required. Given the
speed of modern computers, for relatively simple ap-
plications there is no reason not to use 5,000 or even
10,000 bootstrap samples—except extra time and en-
ergy consumption, there is no negative effect of using

more samples.
The choice of the number of bootstrap samples for a

particular type of data and analysis is best made using
simulations, as demonstrated in Figure 7 for instance.
Another approach is to run the same bootstrap analysis
a few times: the results should not change much across
analyses of the same data. One aspect of the results to
consider is the stability of the CI bounds. Let say we per-
form one experiment and obtain the sample in Figure
8A. We could then compute CIs for different measures
of central tendency (Figure 8B). But what happens if we
compute a bootstrap CI several times using the same
data? Because of random sampling, the results differ
slightly across CIs (Figure 8C). And this variability de-
creases with the number of bootstrap samples (Figure
8D). In this example, there is also more variability for
the higher bound of the CI than the lower bound, which
is explained by the skewness of the original sample. So
the number of bootstrap samples should also be chosen
based on the level of precision desired and the context
in which the results are interpreted (Hesterberg, 2015).
To obtain stable CI bounds, Hesterberg (2015) recom-

https://osf.io/hk7cn/
https://osf.io/rfbqe/
https://github.com/GRousselet/bootstrap/blob/master/docs/notrobust.md
https://github.com/GRousselet/bootstrap/blob/master/notrobust.Rmd


11

0.80

0.85

0.90

0.95

1.00

500  1500  2500  3500  4500  5500  6500  7500  8500  9500  
Number of bootstrap samples

C
ov

er
ag

e

n = 10A

0.80

0.85

0.90

0.95

1.00

500  1500  2500  3500  4500  5500  6500  7500  8500  9500  
Number of bootstrap samples

C
ov

er
ag

e

n = 30B

0.80

0.85

0.90

0.95

1.00

10 20 30 40 50 60 70 80 90100 150 200
Sample size

C
ov

er
ag

e

nboot = 200C

0.80

0.85

0.90

0.95

1.00

10 20 30 40 50 60 70 80 90100 150 200
Sample size

C
ov

er
ag

e

nboot = 2000D

Estimator M
TM

MD
HD

Figure 7

Confidence interval coverage. Results of simulations in which we sampled from the standard lognormal distribution
illustrated in Figure 3. For each sample, bootstrap CIs were computed for four quantities: the mean (M), the 20%
trimmed mean (TM), the median (MD), and the Harrell-Davis estimate of the 50th quantile (HD). For each combina-
tion of sample size and number of bootstrap samples, coverage was computed as the proportion of simulations in which
the CI included the population value. The number of iterations per simulation was 5,000 for panels A, B and D, and
10,000 for panel C. nboot = number of bootstrap samples. This figure is available as a separate pdf file. It was created
using the R notebook coverage, which is available in pdf, html and .Rmd formats.

mends at least 10,000 in routine applications, and much
more when the outcome of the test is used to make
strong decisions. For complex applications, for instance
brain imaging analyses, such choices could lead to extra
minutes, hours and sometimes days of calculations, but
this extra time remains short relative to the time spent
acquiring the data.

Group comparisons

The examples covered so far used one-sample CIs.
We now turn to the topic of group comparisons. Sim-
ilarly to the one-sample case, the bootstrap for group
comparisons follows the logic of the data acquisition
process. For two independent groups, we sample ob-

servations with replacement independently from each
group. If group 1 has n1 observations, we sample n1
observations with replacement. Similarly, in group 2 we
sample n2 observations with replacement. If the groups
differ in sample size, we preserve this size difference in
our bootstrap samples.

Now let say we conducted an experiment and col-
lected observations from two groups, each from a dif-
ferent population (Figure 9A & B). Because of previ-
ous research, we suspect that the groups might differ in
their right tails (more extreme observations). So instead
of the traditional measures of central tendency, like the
mean or the median, here we estimate the 3rd quartile
of the marginal distributions. Then we use the boot-
strap to derive a CI for the 3rd quartile of each group,

https://osf.io/6wvuh/
https://osf.io/chxdn/
https://github.com/GRousselet/bootstrap/blob/master/docs/coverage.md
https://github.com/GRousselet/bootstrap/blob/master/coverage.Rmd
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Performance diagnostics: stability. A. One sample (n=30) from a standard lognormal distribution. B. Four bootstrap
sampling distributions and CIs computed using 5,000 bootstrap samples, for four quantities: the mean (M), the 20%
trimmed mean (TM), the median (MD), and the Harrell-Davis estimate of the 50th quantile (HD). C. Twenty bootstrap
CIs for the same sample illustrated in panel A. 500 bootstrap samples were used to compute each CI. D. Variability of
the CI bounds, measured as the standard deviation across 2,000 CI bounds, as a function of the number of bootstrap
samples. This figure is available as a separate pdf file. It was created using the R notebook coverage, which is available
in pdf, html and .Rmd formats.

https://osf.io/6wakn/
https://osf.io/chxdn/
https://github.com/GRousselet/bootstrap/blob/master/docs/coverage.md
https://github.com/GRousselet/bootstrap/blob/master/coverage.Rmd
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as well as for the difference between groups. Twenty
bootstrap samples are illustrated in Figure 9C. For each
bootstrap sample, we compute the difference between
the two bootstrap estimates; or some other quantity of
interest: it could be some transformation of the differ-
ence, the ratio between groups, etc. Here, to illustrate
that with the bootstrap we can build confidence inter-
vals for any quantity, the group estimation is performed
on a normalised difference of quartiles, defined as

(q3[gp1] − q3[gp2])
(q3[gp1] + q3[gp2]

,

thus accounting for the total magnitude. The CI for
the normalised difference is compatible with a value of
zero, but also more negative values. The CI actually
contains the population normalised difference (-0.17),
but many more trials would be required to get a nar-
rower CI that excludes zero. For instance, with a ran-
dom sample of 200 observations for each group we ob-
tained a CI of [-0.22, -0.11]. Of course, one could per-
form a simulation in which sample size is varied sys-
tematically, to determine the number of observations
needed to detect or precisely estimate the effect.

Correlations

In addition to group comparisons, another common
topic in psychology is to make inferences about cor-
relations. To compute bootstrap CIs for correlations,
the basic recipe is to sample pairs of observations with
replacement. Again, we follow the data acquisition
process: if different measurements were made in the
same participants, then participants should be sampled
with replacement, keeping all their measurements to-
gether. The same strategy applies to regression coeffi-
cients. Correlation and linear regression are huge top-
ics, so we only address basic principles here (Wilcox,
2022). In general, for robust estimators, the bootstrap
performs well, meaning that CIs with the expected cov-
erage are obtained. In contrast, Pearson’s correlation
and the standard ordinary least square (OLS) regres-
sion are problematic for several reasons. Satisfactory
bootstrap CIs can nevertheless be obtained with a sim-
ple adjustment to the way the quantiles of the boot-
strap distributions are computed—see details in Wilcox
(2009, 2022). However, estimators robust to univariate,
or even better multivariate, outliers should be preferred
to these standard yet outdated methods (Pernet et al.,
2013).

Figure 10 presents an application of the bootstrap
method to correlation analyses. Two measurements
were made in two independent groups of participants
(both n=50). Dependent cases are covered in the note-
book compcorr.Rmd—see also Wilcox (2016, 2022).

Group 1 was sampled from a non-normal population
with Spearman’s correlation 0.5, group 2 from a non-
normal population with Spearman’s correlation 0.6.
Spearman’s correlation quantifies monotonic relation-
ships and is robust to univariate outliers (Pernet et al.,
2013). We compute a bootstrap CI for each correlation
by sampling pairs of observations with replacement, in-
dependently in each group.

In our experience, often two correlations are pre-
sented side-by-side, with the implicit assumption that
if one is significant according to some arbitrary P value
threshold, and the other is not, then the two correla-
tions differ. This is however a classic interaction fal-
lacy, akin to looking at the simple effects in an ANOVA,
without testing the interaction (Gelman & Stern, 2006;
Nieuwenhuis et al., 2011). So an explicit compari-
son of correlation coefficients is needed. Unfortunately,
the popular comparison of correlation coefficients using
Fisher’s z transform is inappropriate because it is not
robust to deviation from normality (Duncan & Layard,
1973). In contrast, the comparison of two correlation
coefficients is straightforward with the bootstrap. To
compare two independent correlation coefficients using
the bootstrap, we proceed like this:

• sample participants with replacement, indepen-
dently in each group (concretely, for 2 groups, we
sample dyads of observations, preserving the de-
pendency among observations);

• compute the two correlation coefficients based on
the bootstrap samples;

• save the difference between correlations;

• execute the previous steps many times;

• use the distribution of bootstrap differences to de-
rive a confidence interval.

Based on 5,000 bootstrap samples, the bootstrap
CI for the difference between Spearman’s correlation
coefficients suggests considerable uncertainty [-0.334,
0.24]: it is compatible with a population correlation dif-
ference of zero, as well as many positive and predom-
inantly negative values. Larger sample sizes would be
needed to detect and precisely estimate the population
difference, as demonstrated by the simulation in the R
notebook compcorr.Rmd. According to this simulation
with 5,000 iterations (Figure 11A), 599 bootstrap sam-
ples and assuming non-normal distributions and a pop-
ulation difference of 0.1 (Spearman’s correlation of 0.5
in group 1 and 0.6 in group 2), 420 observations are
required in each group to achieve 50% of correct de-
tection in the long run (true positives, or power). For
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Figure 9

Comparison of two independent groups. A. Two populations that differ in skewness. B. Two independent samples,
one from each population. Group 1 contains n=50 observations (left panel); group 2 contains n=60 observations
(middle panel). The thick vertical grey line marks the 3rd quartile; the thin vertical black line marks the 2nd quartile
(median). In the right panel, the thick vertical grey line marks the sample normalised group difference between 3rd
quartiles, whereas the thin vertical black dashed line is a zero reference line. The same lines appear in subsequent
panels. C. Examples of bootstrap samples. Each disk is a bootstrap observation. For each bootstrap sample the short
vertical black line indicates the bootstrap 3rd quartile (left and middle panels), or the normalised difference (right
panel). D. Bootstrap distributions of 3rd quartiles for the two groups (left and middle panels) and of the normalised
quartile difference (right panel). The thick horizontal black lines indicate 95% bootstrap CIs. This figure is available as
a separate pdf file. It was created using the R notebook 2indgps, which is available in pdf, html and .Rmd formats.

70% correct detection, we need at least 665 observa-
tions in each group! Extra information can be provided
by considering the shape of the sampling distributions.

For instance, given 420 observations, in the long-run
about 68.4% of experiments will provide difference es-
timates that are within +/- 5% of the population differ-

https://osf.io/j9b8n/
https://osf.io/v3nkx/
https://github.com/GRousselet/bootstrap/blob/master/docs/2indgps.md
https://github.com/GRousselet/bootstrap/blob/master/2indgps.Rmd
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Figure 10

Bootstrap correlation analysis. A. Independent correlations, one in each of two groups. Sample size is n=50 in
each group. Data from group 1 are from a population with correlation 0.5. Data from group 2 are from a population
with correlation 0.6. The panel on the right reports the Spearman’s correlation coefficient for each group and their
difference. B. Examples of three bootstrap samples, one for each group, with the respective correlation coefficients in
the right column. Darker disks represent observations sampled more than once. C. Bootstrap sampling distributions of
the correlation coefficients and their differences, based on 5,000 bootstrap samples. The vertical lines mark the sample
coefficients. The thick horizontal black lines indicate 95% bootstrap CIs. This figure is available as a separate pdf file. It
was created using the R notebook compcorr, which is available in pdf, html and .Rmd formats.

https://osf.io/fdgx6/
https://osf.io/mkbqx/
https://github.com/GRousselet/bootstrap/blob/master/docs/compcorr.md
https://github.com/GRousselet/bootstrap/blob/master/compcorr.Rmd
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ence; with 665, the proportion is 78.9 (see the estima-
tion precision curves in the R notebook compcorr.Rmd).
This type of information could be useful to plan a test of
equivalence for instance (Campbell & Gustafson, 2021;
Kruschke, 2018; Lakens et al., 2018). Now, let us imag-
ine that one population has a Spearman’s correlation of
zero and the other of 0.4, leading to a large popula-
tion difference of -0.4. In this situation, our simulation
suggests that to reach 70% power, 77 observations are
required per group; for 90% power we need 128 obser-
vations. With these sample sizes, we can expect 48.3%
(n=77) and 59.9% (n=128) of experiments to produce
estimates within +/- 10% of the population difference.
Thus, to successfully detect or estimate correlation dif-
ferences between independent groups may require a lot
more observations than is typically used in psychology
experiments.

Extension to other designs

The bootstrap can be extended beyond the simple
comparisons of two groups we have covered so far:
examples include multiple linear contrasts and various
types of ANOVA designs, including ANCOVAs (Wilcox,
2022). Here we look at an application of the boot-
strap to a hierarchical dataset. Imagine we collected
reaction times from 20 participants in a lexical deci-
sion task, with 200 trials per condition (Word and Non-
Word conditions, Figure 12). This example dataset was
subsampled from a much larger dataset (Ferrand et al.,
2010). The structure of the data is hierarchical because
trials are nested within participants. There are many
ways to analyse such data, but a substandard yet typi-
cal approach is to ignore the variability across trials by
summarising the distribution for each participant and
each condition using a single value (Rousselet & Wilcox,
2020). For instance, we could summarise each of the
40 distributions in Figure 12A using the 20% trimmed
mean; we’re then left with 20 values per condition and
their differences (Non-Word minus Word, Figure 12B).
In turn, we summarise the distributions across partici-
pants, for each condition and their difference: for sim-
plicity here, we use again the 20% trimmed mean. Fi-
nally, we use the bootstrap to compute CIs for the group
trimmed means in each condition, and their difference
(Figure 12C). To apply the standard bootstrap, we pro-
ceed as we did for the correlations: we sample partici-
pants with replacement, that is pairs of trimmed means,
one in each condition. This approach ignores, however,
the variability across trials. A hierarchical bootstrap can
be used to exploit within and between subject variabil-
ity. There are several approaches to implement a hi-
erarchical bootstrap (Roberts & Fan, 2004). One ap-
proach is to follow the data acquisition process by re-

sampling first at the highest level (participants), then at
the next level (trials). This is also called a nested boot-
strap, because the trials are nested within participants.
In each bootstrap sample, we sample participants with
replacement; then for each participant, we sample tri-
als with replacement, independently for each condition.
The 20% trimmed mean is computed for each condi-
tion across trials, and the results from the two condi-
tions subtracted (Non-Word minus Word). Then, the
20% trimmed mean is computed across participants for
each condition and their difference. In our example, the
bootstrap sampling distributions and the CIs from the
hierarchical procedure are very similar to the standard
bootstrap ones. However, this is not always the case. In
particular, the hierarchical procedure can make substan-
tial improvements when making inferences about quan-
tiles or the median for small sample sizes. For instance,
in Figure 12D, the bootstrap sampling distributions for
the median are very irregular when using the standard
bootstrap (sampling at the participant level only). This
is because for small sample sizes, bootstrap samples
tend to contain too many tied values, such that the boot-
strap median takes only a few discrete values. With the
nested bootstrap, sampling trials with replacement adds
variability to the values from each participant, which ul-
timately leads to smoother bootstrap distributions and,
in this example, slightly different CIs.

Bootstrap-t technique

Before we conclude, in this last section we introduce
an alternative to the standard (percentile) bootstrap
presented so far. As mentioned in the introduction,
there are many variants of the bootstrap, but in psychol-
ogy, two methods cover most of the applications: the
standard bootstrap and the bootstrap-t technique—also
known as the percentile-t bootstrap or the studentized
bootstrap (Efron & Tibshirani, 1994; Wilcox, 2022). As
we saw in previous examples, for inferences on the pop-
ulation mean, the standard T-test and the bootstrap can
give unsatisfactory results when sampling from skewed
distributions, especially when sample size is small. To
illustrate the problem with the T-test, imagine that we
sample from populations of increasing skewness (Figure
13A). Here we use the so-called g-and-h distributions,
in which parameter g controls the skewness, and pa-
rameter h controls the thickness of the tails—a normal
distribution is obtained by setting g = h = 0 (Hoaglin,
1985; Yan & Genton, 2019). If we take many samples
of size n=30 from these distributions, and for each sam-
ple we compute a T value, using the population mean
as the null value, we obtain progressively more neg-
atively skewed T value sampling distributions (Figure
13B). However, when we perform a T-test, the T val-
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Figure 11

Simulations of correlation comparisons. A. One population had a Spearman’s correlation of 0.5 and the other of
0.6, leading to a population difference of -0.1. The left panel shows sampling distributions of correlation differences
from 5,000 simulation iterations. The vertical continuous black line marks the population correlation difference. The
right panel shows a power curve. For each sample size along the x-axis, the y-axis indicates the proportion of simulation
iterations that resulted in a P value < 0.05 (or equivalently a 95% confidence interval excluding zero), based on 599
bootstrap samples. The two arrows indicate the sample sizes required to reach two arbitrary levels of power (50% and
70%). B. Same as A, except that one population had a Spearman’s correlation of zero and the other a correlation of
0.4, leading to a population difference of -0.4. In the right panel, the arrows point to sample sizes required to reach
70% and 90% power. This figure is available as a separate pdf file. It was created using the R notebook compcorr, which
is available in pdf, html and .Rmd formats.

ues are assumed to be symmetric, irrespective of sample
size. This assumption leads to incorrect CIs. The idea
behind the bootstrap-t technique is to use the bootstrap
to compute a data-driven T distribution. In the pres-
ence of skewness, this T distribution could be skewed,
as suggested by the data. Then, the appropriate quan-
tile of the bootstrap T distribution is plugged into the
standard CI equation to obtain a parametric bootstrap
CI.

Figure 14 illustrates the procedure to build a CI for

the population mean (row A) and for the population
20% trimmed mean (row B). In both cases, we start
with the same sample of 30 observations from a g-and-h
distribution with g = 1 and h = 0. In a first step, we
centre the distribution: for inferences on the mean, we
subtract the mean from each observation in the sam-
ple, so that the mean of the centred distribution is now
zero. This is a way to create a data-driven null distribu-
tion, in which there is no effect (the mean is zero), but
the shape of the distribution and the absolute distance

https://osf.io/wt9sy/
https://osf.io/mkbqx/
https://github.com/GRousselet/bootstrap/blob/master/docs/compcorr.md
https://github.com/GRousselet/bootstrap/blob/master/compcorr.Rmd
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Figure 12

Hierarchical bootstrap. A. Distributions of 200 reaction times in the Word and Non-Word conditions for 20 partici-
pants. B. Distributions of 20% trimmed means across trials for the Word and Non-Word conditions and their differences.
In each panel, there is a disk for each of the 20 participants. The vertical black lines mark the 20% trimmed means
across participants in each condition and the difference. C. Bootstrap distributions of 20% trimmed means across par-
ticipants, based on 5,000 bootstrap samples. The thick horizontal lines indicate 95% bootstrap CIs. Orange = bootstrap
at the participant level only, black = hierarchical bootstrap of participants and their nested trials. D. Distributions of
participants’ median reaction times in the two conditions and their differences. The vertical black lines mark the medians
across participants. E. Bootstrap distributions of group medians. This figure is available as a separate pdf file. It was
created using the R notebook 2depgps, which is available in pdf, html and .Rmd formats.
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Figure 13

Bootstrap-t technique. A. Probability density functions for g-and-h distributions. Parameter g varies from 0 to 1.
Parameter h=0. B. Sampling distribution of T values for the different g values. Results are based on a simulation with
50,000 iterations and samples of size n=30. C. Comparison of T distributions for g=1: theoretical T is the one used
in the T-test (red), empirical T is from panel B (black). The red and black vertical lines indicate the T quantiles for
a 95% CI. The grey lines show examples of 20 bootstrap sampling distributions (each with 5,000 bootstrap samples),
based on samples of size n=30 from a g-and-h population with g=1 and h=0. D-I. Results of a simulation with 20,000
iterations, sample sizes of n=30, and 599 bootstrap samples. Panels D and E show results for the mean, panels F and G
for the 10% trimmed mean, and panels H and I for the 20% trimmed mean. This figure is available as a separate pdf
file. It was created using the R notebook ptb, which is available in pdf, html and .Rmd formats.

among observations are unaffected, as shown in the sec-
ond column. For inferences on the 20% trimmed mean,
we subtract the 20% trimmed mean from each obser-
vation, so that the centred distribution now has a 20%
trimmed mean of zero. In the next step, we sample with
replacement from the centred distribution many times,
and for each random sample we compute a T value.
That way, we obtain a bootstrap distribution of T val-
ues expected by random sampling, under the hypoth-

esis that the population has a mean (or 20% trimmed
mean) of zero, given the distribution of the data. Then,
we use some quantile of the bootstrap T distribution in
the standard CI equation. Because the bootstrap distri-
bution is potentially asymmetric, we have two choices
of quantiles: for a 95% CI, either we use the 0.025
and the 0.975 quantiles of the signed T values to ob-
tain a potentially asymmetric CI, also called an equal-
tailed CI, or we use the 0.95 quantile of the absolute

https://osf.io/wph78/
https://osf.io/wph78/
https://osf.io/jwfnu/
https://github.com/GRousselet/bootstrap/blob/master/docs/ptb.md
https://github.com/GRousselet/bootstrap/blob/master/ptb.Rmd
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T values, thus leading to a symmetric CI. In our exam-
ple, for the mean the symmetric CI is [-0.34, 1.56] and
the asymmetric CI is [0.07, 1.95]; for the 20% trimmed
mean the symmetric CI is [-0.34, 0.57] and the asym-
metric CI is [-0.28, 0.62]. So the choice of method can
have a substantial impact on the CI. In general, when
comparing 20% trimmed means, there are indications
that an asymmetric confidence interval is a bit better
than a symmetric confidence interval. When compar-
ing means, there are theoretical results suggesting that
a symmetric confidence interval is preferable, but this
issue is in need of further study (Wilcox, 2022).

Why does this approach work better than the stan-
dard T-test CI? Imagine we take multiple samples of size
n=30 from a g-and-h distribution with g = 1 and h = 0
(Figure 13C). The standard T-test assumes the sampling
distribution in red, symmetric around zero. From our
simulation in Figure 13B, we know that the sampling
distribution is actually asymmetric, with negative skew-
ness, as shown in black. However, the black empiri-
cal distribution is unobservable, unless we can perform
thousands of experiments. So, with the bootstrap, we
try to estimate this correct, yet unobservable, sampling
distribution. The grey curves in Figure 13C show ex-
amples of 20 simulated experiments: in each experi-
ment, a sample of 30 observations is drawn, and then
5,000 bootstrap T values are computed by sampling
with replacement from the 30 observations. The re-
sulting bootstrap sampling distributions are negatively
skewed and are much closer to the empirical distribu-
tion in black than the theoretical symmetric distribution
in red. Thus, it seems that using data-driven T distribu-
tions could help achieve better CIs than if we assumed
symmetry.

How do these different methods perform? To find
out we carry out simulations in which we draw samples
from g-and-h distributions with the g parameter varying
from 0 to 1, keeping h = 0. For each sample, we com-
pute a one-sample CI using the standard T-test, the two
bootstrap-t methods just described, and the percentile
bootstrap. When estimating the population mean, for
all four methods, coverage goes down with skewness
(Figure 13D). Among the parametric methods, the stan-
dard T-test is the most affected by skewness, with cover-
age less than 90% for the most skewed condition. The
asymmetric bootstrap-t CI seems to perform the best.
The percentile bootstrap performs the worst in all situ-
ations, and has coverage systematically below 95%, in-
cluding for normal distributions.

In addition to coverage, it is useful to consider the
width of the CIs from the different techniques (Figure
13E, G, I). The width of a CI is its upper bound minus
its lower bound. For each combination of parameters,

the results are summarised by the median width across
simulations. At low levels of asymmetry, for which the
three parametric methods have roughly 95% coverage,
the CIs tend to be of similar widths. As asymmetry
increases, all methods tend to produce larger CIs, but
the T-test produces CIs that are too short, a problem
that stems from the symmetric theoretical T distribu-
tion, which assumes T values too small. Compared
to the parametric approaches, the percentile bootstrap
produces the shortest CIs for all g values.

The low coverage observed in the previous simu-
lations can be addressed by making inferences about
trimmed means instead of the mean, which requires
several adjustments to the T-test equation (Tukey &
McLaughlin, 1963). With the 20% trimmed mean, cov-
erage improves for all methods, with values now close
to the nominal level even for the most skewed distribu-
tions, though the T-test performs less well than all three
bootstrap techniques (Figure 13H). CIs are also overall
shorter for all methods compared to CIs of the mean
(Figure 13I). The results were similar when making
inferences about the 10% trimmed mean (Figure 13F-
G). Also, the shorter CIs obtained with the percentile
bootstrap compared to the bootstrap-t CIs, for similar
coverage, suggest it could be beneficial to use the per-
centile bootstrap in conjunction with trimmed means.
More generally, inferences about trimmed means are ro-
bust to outliers, which can have devastating effects on
the power of methods using the mean (Wilcox, 2022;
Wilcox & Rousselet, 2023). Finally, based on simula-
tions, it seems that to make inferences about the mean
or when trimming less than 20%, the bootstrap-t tech-
nique performs well in many situations and should be
preferred over the percentile bootstrap; when trimming
at least 20%, the standard bootstrap approach is recom-
mended (Wilcox, 2022).

Conclusion

In this tutorial, we introduced the bootstrap, its core
mechanism, sampling with replacement, its main out-
put, a bootstrap sampling distribution, and presented
its strengths and weaknesses. The bootstrap is a very
versatile approach to statistical inferences, but it is by
no means a magical recipe. It can perform poorly in
some situations, for instance when making inferences
about means, or about medians for relatively small sam-
ples. But combined with robust estimators, the boot-
strap often outperforms other approaches, and can pro-
vide a simple solution to compute CIs when analyti-
cal solutions do not exist: this is for instance the case
when making inferences about certain quantile estima-
tors, robust correlation and regression estimates, as well
as other robust estimators not mentioned here (Wilcox,
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Figure 14

Bootstrap-t technique explained. A. Inferences on the population mean. The first panel illustrates a sample of size
n=30 from a g-and-h distribution with g = 1 and h = 0. The same sample is used in rows A and B. The horizontal
line indicates the sample mean. In the second panel, the distribution has been mean centred, so that the sample mean
is now zero. The third panel shows 5,000 bootstrap T values obtained by sampling with replacement from the mean
centred data. In the asymmetric bootstrap-t technique, the quantiles (red vertical lines) of that distribution of T values
are used to define the CI bounds. The insets contain the formulas for the lower (CIlo) and upper bounds (CIup) of the
CI. Note that the lower T quantile is used to compute the upper bound (this not an error). In the symmetric bootstrap-t
technique, one quantile of the distribution of absolute T values is used to define the CI bounds. B. Same as A, but for
inferences on the population 20% trimmed mean. This figure is available as a separate pdf file. It was created using the
R notebook ptb, which is available in pdf, html and .Rmd formats.

2022). The bootstrap-t can be used to make inferences
about means and trimmed means, and the approach can
be extended to various ANOVA designs, improving sta-
tistical power in many situations relative to standard
ANOVAs on means (Field & Wilcox, 2017). Thus, by
learning the bootstrap, users do not only get a new
powerful technique in their toolbox, but a whole set of
techniques that can be applied to a large range of prob-
lems. The application of bootstrap techniques can bring
potentially more informative answers relative to stan-
dard parametric approaches in psychology, which typi-
cally focus on mean only and are often inappropriate.
For instance, reaction time distributions contain a lot of
information that is thrown away by summarising them
using the mean. The bootstrap, combined with quantile
estimation, can help provide a much more detailed un-
derstanding of how such continuous distributions dif-
fer across conditions (Rousselet et al., 2017; Rousse-
let & Wilcox, 2020). This is not to imply that boot-

strap approaches should be used to tackle any problem
in psychological research. In a lot of situations, there
are well-established and powerful methods that do not
require the bootstrap: for instance diffusion models of
reaction times (Matzke & Wagenmakers, 2009; Voss et
al., 2013), beta-binomial models of accuracy scores (Kr-
uschke, 2014), and ordinal models of Likert scale results
(Bürkner & Vuorre, 2019; Liddell & Kruschke, 2018;
Taylor et al., 2022).

Although the bootstrap might not be useful to all psy-
chology researchers, learning about it has other impor-
tant benefits. Because the percentile bootstrap can ac-
commodate any estimator, it nudges users towards jus-
tifying their choice of estimators. In the special case of
inferences about central tendency, users free of the stan-
dard T-test can choose from many more options than
the mean (or trimmed means). The bootstrap also pro-
vides a gentle introduction to data-driven simulations.
Once that concept is acquired, it becomes easier to learn

https://osf.io/wqvay/
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how to perform simulations in general. The bootstrap
also helps understand the key idea of a sampling dis-
tribution and it makes explicit the data acquisition pro-
cess and the structure of the data, all without requir-
ing mathematical expertise. Thus, the bootstrap should
have an important part in a modern statistical curricu-
lum, with a focus on simulations and the assessment of
the performance of our statistical methods (Hesterberg,
2015; Steel et al., 2019; Tintle et al., 2015).
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