Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects

Marques, C. A. , Ridgway, M., Tinti, M., Cassidy, A. and Horn, D. (2022) Genome-scale RNA interference profiling of Trypanosoma brucei cell cycle progression defects. Nature Communications, 13, 5326. (doi: 10.1038/s41467-022-33109-y) (PMID:36088375) (PMCID:PMC9464253)

[img] Text
279110.pdf - Published Version
Available under License Creative Commons Attribution.

3MB

Abstract

Trypanosomatids, which include major pathogens of humans and livestock, are flagellated protozoa for which cell cycle controls and the underlying mechanisms are not completely understood. Here, we describe a genome-wide RNA-interference library screen for cell cycle defects in Trypanosoma brucei. We induced massive parallel knockdown, sorted the perturbed population using high-throughput flow cytometry, deep-sequenced RNAi-targets from each stage and digitally reconstructed cell cycle profiles at a genomic scale; also enabling data visualisation using an online tool (https://tryp-cycle.pages.dev/). Analysis of several hundred genes that impact cell cycle progression reveals >100 flagellar component knockdowns linked to genome endoreduplication, evidence for metabolic control of the G1-S transition, surface antigen regulatory mRNA-binding protein knockdowns linked to G2M accumulation, and a putative nucleoredoxin required for both mitochondrial genome segregation and for mitosis. The outputs provide comprehensive functional genomic evidence for the known and novel machineries, pathways and regulators that coordinate trypanosome cell cycle progression.

Item Type:Articles
Additional Information:The work was funded by Wellcome Trust Investigator Awards [100320/Z/12/Z and 217105/Z/19/Z to D.H.].
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:De Almeida Marques, Dr Catarina
Authors: Marques, C. A., Ridgway, M., Tinti, M., Cassidy, A., and Horn, D.
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
Journal Name:Nature Communications
Publisher:Nature Research
ISSN:2041-1723
ISSN (Online):2041-1723
Copyright Holders:Copyright © 2022 The Authors
First Published:First published in Nature Communications 13: 5326
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record