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While the uncertainty principle for linear position and linear momentum, and more recently for angular position
and angular momentum, is well established, its radial equivalent has so far eluded researchers. Here we exploit the
logarithmic radial position, ln r, and hyperbolic momentum, PH , to formulate a rigorous uncertainty principle
for the radial degree of freedom of transverse light modes. We show that the product of their uncertainties is
bounded by Planck’s constant, Δ ln r · ΔPH ≥ ℏ∕2, and identify a set of radial intelligent states that satisfy the
equality. We illustrate the radial uncertainty principle for a variety of intelligent states, by preparing transverse
light modes with suitable radial profiles. We use eigenmode projection to measure the corresponding hyperbolic
momenta, confirming the minimum uncertainty bound. Optical systems are most naturally described in terms of
cylindrical coordinates, and our radial uncertainty relation provides the missing piece in characterizing
optical quantum measurements, providing a new platform for the fundamental tests and applications of quantum
optics. © 2022 Chinese Laser Press

https://doi.org/10.1364/PRJ.443691

1. INTRODUCTION

The fact that conjugate pairs of observables cannot be simulta-
neously known is a central concept of quantum mechanics and
quantum technologies [1–3]. It is a most concise yet quantita-
tive statement that imposes strict constraints on the simultane-
ous prediction of complementary variables such as position
and momentum, expressed as the familiar inequality
Δx · Δp ≥ ℏ∕2, which limits the product of the corresponding
uncertainties by Planck’s constant. Applied to the realm of op-
tics, it has its equivalent in a Fourier relation between the pro-
file of a light field in terms of transverse positions �x, y�, and the
diffraction pattern in terms of spatial frequencies �kx , ky�, with
immediate applications for the design of optical systems.
Optical systems are, however, more readily described in terms
of polar coordinates �r,ϕ�, matching the shape of optical ele-
ments, apertures, and the Gaussian laser beam profile itself. It is
therefore natural to investigate Fourier relations and associated
uncertainty principles in terms of polar coordinates. Over the
last decades, this has been done very successfully for the angular
coordinate, and its conjugate variable, the orbital angular mo-
mentum (OAM). Early on it has been shown that these are
linked by an angular uncertainty relation [4], and the OAM

has been studied in the context of fundamental quantum me-
chanics [5–8] and for applications in communication, high-
dimensional quantum protocols, and sensing [9–12], to name
but a few. Since the uncertainty principle is general for any
wave theory rather than a result particular to quantum mechan-
ics, the uncertainty relation is valid for any square integrable
function and its Fourier transform [13].

A complete (quantum) description of transverse light fields,
however, requires us to consider not only the angular but also
the radial degree of freedom [14]—yet the latter has largely
been ignored. The reason for this lies in the fact that the quan-
tum description of the radial degree of freedom and its physical
interpretation is less obvious [15–17], and the generation of
efficient radial modes is experimentally difficult [18].
Quantum correlations have been explored in early experiments
via Hong–Ou–Mandel interference [19] and the violation of
Bell inequalities [20], relating the radial index of Laguerre–
Gauss modes to radial position. However, the discrete radial
index cannot be mathematically derived from a continuous
radial position [21,22].

According to Dirac, p̂r is the “true momentum conjugate to
r,” which satisfies the fundamental commutation relation as
�r̂, p̂r � � iℏ [23], suggesting a continuous radial momentum
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of the form p̂r � −iℏ�∂∕∂r � 1∕2r�. This continuous radial
momentum and semi-infinite radial position have been used
in the experimental exploration of the Einstein–Podolsky–
Rosen paradox in spatial-mode entanglement generated from
spontaneous parametric downconversion [24] and radial dif-
fraction [25]. However, the historic arguments concerning both
the rigorous mathematical and physical definition of radial po-
sition and radial momentum variables still persist, leading to
questions of utmost importance. First, in the semi-infinite do-
main of radial position, is the Dirac form of the radial momen-
tum self-adjoint and can it present a physical observable?
Second, while linear and angular position and momentum
can be linked by Fourier transforms and series, what is the con-
nection between radial position and radial momentum? Third,
how to translate the mathematically defined radial operators
into experimental observables?

From the perspective of practical applications, the radial de-
gree of freedom, in combination with the angular degree of free-
dom, provides a new platform for high-dimensional quantum
information protocols that utilize the full mode space capacity.
Experimental realizations of high-dimensional entanglement in
the transverse position-momentum degree of freedom are now
possible with record-quality measurement speed and entangle-
ment dimensionality [26,27], based on pixel entanglement,
but not yet on modes described in rotationally symmetric coor-
dinates. In addition, the radial degree of freedom provides a re-
source for quantum metrology of propagation distance or
dilation, e.g., by measuring the overlap between adjoint radial
modes [17], and more generally in high-resolution imaging [28].

The investigation of the radial degree of freedom has long
been hailed as a requisite for the foundational understanding of
quantum mechanism, but also for a variety of applications in
optical communication, quantum protocols, and high-preci-
sion measurement. While Twamley and Milburn have pre-
sented elaborate theories proving that the hyperbolic
momentum and logarithmic radial position can fulfill the fun-
damental requirement of self-adjointness [29,30], neither a
complete theoretical study, nor the experimental realization
of the uncertainty principle for the radial degree of freedom
of transverse light modes has been explored so far.

In this paper, we exploit the logarithmic radial position and
hyperbolic momentum to formulate a rigorous uncertainty
principle for the radial degree of freedom. When exploring un-
certainty relations, it is instructive to identify the specific states
that satisfy the uncertainty, the intelligent states, which in the
case of a constant bound, as we have in our case, are identical to
the minimum uncertainty states. We identify the radial mini-
mum uncertainty states and verify their uncertainty product
experimentally by measuring their hyperbolic momentum spec-
trum. We note that the radial uncertainty relation and the iden-
tified intelligent states hold for the wave function of an
individual photon. For convenience, and to decrease detrimen-
tal effects due to Poissonian noise, we confirm the shape of the
radial intelligent states in the classical regime.

2. THEORETICAL FRAMEWORK

We start by defining suitable observables to describe the radial
degree of freedom. According to the Dirac-von Neumanm

interpretation of quantum mechanics, an operator relating to
an observable has to be self-adjoint, but special care has to
be taken for unbounded operators on infinite or semi-infinite
dimensional spaces, as is the case for the radial coordinate. As a
consequence, the Dirac form of the radial momentum, p̂r , is
not self-adjoint and hence does not relate to an observable
[21,31–33], posing subtle difficulties on defining a radial un-
certainty relation.

We follow earlier research in defining the hyperbolic mo-
mentum operator in the circular-cylindrical coordinate system
[17,29,30] as

P̂H � 1

2
�rp̂r � p̂r r� � −iℏ

�
r
∂
∂r

� 1

�
, (1)

where the hyperbolic momentum operator has the dimension
of ℏ as a direct result of its definition. While linear momentum
is associated with invariance under translation, hyperbolic mo-
mentum is associated with invariance under scale translation.
Therefore, the hyperbolic momentum operator generates dila-
tion, and cannot cause the radial coordinate to be negative. We
note that the domain of P̂H is defined as
ψ ∈ L2��0, �∞��,ψ ≡ U∕r,U �0� � 0 such that

�g , P̂H f � � −iℏg∗f r2j∞0 �
Z

∞

0

rdr
�
−iℏ

�
r
∂
∂r

� 1

�
g
�
∗
f

� �P̂H g , f �: (2)

This shows that the hyperbolic momentum operator is
Hermitian. We further exploit the von Neumann method to
explore the question concerning its self-adjoint nature [31].
Considering the eigenvalue equation P̂Hψ � �iγψ , where γ
is a real and positive constant that has the dimension of ℏ,
we find that both of the two solutions ψ� � C�r	γ∕ℏ−1 can-
not be normalized in its defined domain. Their respective di-
mensions of the normalized solution spaces, i.e., the deficiency
indices, n− � 0 and n� � 0, which proves that P̂H is self-
adjoint and can represent a physical observable. The hyperbolic
momentum eigenstate can be derived from Eq. (1) as

φPH
�r� � hrjPH i �

1ffiffiffiffiffiffiffiffi
2πℏ

p r
iPH
ℏ −1, (3)

where PH is the eigenvalue that satisfies P̂HφPH
�r� �

PHφPH
�r�.

It is obvious that the radial position is defined in the domain
�0,∞�. Performing a coordinate transformation, we introduce
the logarithmic radial position operator ln r̂, defined in the
same domain. One can easily verify that the hyperbolic mo-
mentum and logarithmic radial position are a pair of conjugate
variables, which satisfy the fundamental commutation relation
�ln r̂, P̂H � � iℏ, and consequently the relation between the un-
certainties in logarithmic radial position,Δ ln r, and hyperbolic
momentum, ΔPH , has the form

Δ ln r · ΔPH ≥
ℏ
2
, (4)

which is bounded by Planck’s constant. This means that for a
state with a given uncertainty in its logarithmic radius, the hy-
perbolic momentum spectrum cannot be smaller than dictated
by the radial uncertainty relation, and vice versa. Conversely, at
the waist of a beam where the hyperbolic momentum is zero
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(as the beam is neither converging nor dilating), the uncertainty
in logarithmic radius must be infinite.

In the following we investigate the radial uncertainty rela-
tion by examining the limiting case of the intelligent states,
i.e., those obeying the equality in Eq. (4). As the uncertainty
product is bounded by a constant, these intelligent states
coincide with the minimum uncertainty states. We can obtain
the radial profile of the intelligent states Ψi�r� by solving the
equation

�P̂H − hP̂H i�Ψi � iℏλ�ln r̂ − hln r̂i�Ψi, (5)

where hP̂H i and h ln r̂i denote the mean values of the hyper-
bolic momentum and its conjugate variable, the logarithmic
radial position, respectively, and λ is a real constant [34].
We identify the normalized wave function of the intelligent
states as

Ψi�r� �
λ1∕4 exp

�
− λ
2 �ln r�2 �

�
λln r − PH

iℏ − 1

�
ln r

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp�λ�ln r�2�π1∕2

q , (6)

where λ � 1∕�2�Δ ln r�2� represents the variance of the loga-
rithmic radial position, and ln r � hln r̂i and PH � hP̂H i de-
note the average logarithmic radius and hyperbolic
momentum, respectively. While linear position and momen-
tum, and angular position and angular momentum are linked
by Fourier transforms and series, the logarithmic radial position
and hyperbolic momentum are linked by a quantum Mellin
transform [30], allowing us to derive the hyperbolic momen-
tum representation of the intelligent states as

Ψi�PH � �
Z

Ψi�r�φ∗
PH
�r�rdr

�
exp

�
�PH −PH ��−2iℏλln r−PH�PH �

�

2ℏ2λffiffiffiffiffiffiffiffiffiffiffiffi
ℏ

ffiffiffiffiffi
λπ

pp : (7)

It is obvious that while the familiar Fourier transform de-
composes the wave function in configuration space as a sum
of plane waves defined in �R, dx�, the decomposition of the

quantum Mellin transform is defined in semi-definite space
�R�, rdr�. These two representations are equivalent and con-
nected by setting x � ln r and dx � dr∕r, including a formal
equivalence between the linear momentum and hyperbolic mo-
mentum. The profile of the intelligent states is proportional to
jΨij2, and the magnitude of the hyperbolic momentum spec-
trum can be obtained as APH

� jΨi�PH �j2.
For the radial intelligent states, parameterized in λ, we find

the uncertainty in logarithmic radial position to be
Δ ln r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hΨij�ln r̂�2jΨii − �hΨij ln r̂jΨii�2

p
�

ffiffiffiffiffiffiffiffiffiffi
1∕2λ

p
, and

the uncertainty in hyperbolic momentum derived from
Eq. (7) is ΔPH � ℏλΔ ln r � ℏ

ffiffiffiffiffiffiffiffi
λ∕2

p
. This allows us to con-

firm that the radial intelligent states satisfy the equality in the
uncertainty relation as Δ ln r · ΔPH � ℏ∕2. In contrast, states
with any other radial profile than the intelligent states will result
in an uncertainty product exceeding the limit of ℏ∕2.

3. EXPERIMENTAL IMPLEMENTATION

In the following we illustrate the radial uncertainty relation
[Eq. (4)] by preparing light beams with radial profiles corre-
sponding to various radial intelligent states as well as states with
ring-shaped apertures. The experimental implementation is
shown in Fig. 1. The incident beam is generated by a he-
lium–neon laser with the center wavelength at 633 nm. We
design various holograms to manipulate the radial positions
with variable radial uncertainties Δ ln r with fixed mean values
of ln r � ln 1.6 mm and PH � 0. A spatial light modulator
(SLM) is used to display specific holograms that shape the de-
sired radial positions, giving us flexible control over the trans-
mitted light beam. After illumination with the incident plane
wave, the first-order diffracted beam that has the amplitudes
and phases of the intelligent states as expressed in Eq. (6) is
filtered out. Then, a set of elaborate holographic gratings as
described in Eq. (3) is prepared and displayed on another
SLM, acting as projective measurements [see Fig. 1(b)]. For
accurate measurements, it has been considered an absolute ne-
cessity that the intelligent states wave function and the hyper-
bolic momentum are centered with respect to the illuminating
beam. A lens is used to Fourier transform the transmitted beam

Fig. 1. (a) Experimental setup. The intelligent states with various uncertainties in logarithmic radial position such as (b1) λ � 200.00
(Δ ln r � 0.05), (b2) λ � 50.00 (Δ ln r � 0.1), (b3) λ � 22.22 (Δ ln r � 0.15), and (b4) λ � 12.50 (Δ ln r � 0.2) are displayed on the
SLM. In addition, a set of well-elaborated holograms for analyzing the hyperbolic momentum is also displayed on the same SLM. A combination
of these two holograms with fixed λ � 12.50 and (b5) PH � 10, (b6) PH � 15, (b7) PH � 20, and (b8) PH � 25 is shown in the middle column
of (b). (b9–b12) show the resultant light beams in the Fourier plane.
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such that the hyperbolic momentum spectrum is observed in
the representation of the intelligent state. Finally, the light
beam is coupled into a multimode fiber with a core size of
400 μm, and its intensity is measured by a power meter, pro-
viding the coefficients of the respective hyperbolic momentum
component. The hologram for shaping the radial wave function
of the input state corresponds to state preparation, and the
hologram projecting onto a sequence of hyperbolic momentum
states to state analysis. However, without loss of generality, a
multiplexed hologram can instead be displayed on a single
SLM. This is a common procedure to reduce the number of
required optical components, ease alignment, and improve op-
tical efficiency and hence signal-to-noise ratios.

To investigate the relation between logarithmic radial posi-
tion and hyperbolic momentum, we prepare various intelligent
states by setting λ ∈ �8,200�, yielding uncertainties of logarith-
mic radial position within the range of Δ ln r ∈ �0.05,0.25�,
which can be displayed on our SLM with high accuracy.
For maximal accuracy and signal-to-noise ratio of the measure-
ment, we choose the core size of the multimode fiber, 400 μm,
as the filtering diameter for the diffracted light beam. Figure 2
shows the experimental observation of the hyperbolic momen-
tum spectrum, and the lower bound (red line) as obtained from
theoretical prediction. Our measurement results agree well with
the theoretical prediction, where slight deviations can be attrib-
uted to imperfect experimental components. Specifically, the
experimental modulation of the small value of Δ ln r in
Fig. 2(a) is limited by the resolution and modulation accuracy
of the SLM, resulting in a slight underestimate ofΔPH . In con-
trast, the experimental modulation of the large value of Δ ln r
in Fig. 2(c) is affected by the detrimental noise arising from
imperfections in filtering, correspondingly resulting in an over-
estimation of ΔPH .

Figure 3 shows the experimentally observed product of the
uncertainties in logarithmic radial position and hyperbolic mo-
mentum. We note that the experimental measurements are sub-
ject to the errors both in Δ ln r and in ΔPH . For small values of
Δ ln r, the resolution and the modulation precision of the SLM
significantly limit the experimental accuracy, resulting in an
underestimation of ΔPH . Conversely, for large values of
Δ ln r, the noise from other values as a direct result of the im-
perfect filtering leads to an overestimation ofΔPH , thus the prod-
uct ofΔ ln r · ΔPH becomes larger with respect to the increase of
Δ ln r. The effects of filtering have been described in detail in
Ref. [35]. In the ideal case, the product of the uncertainties in

logarithmic radial position and hyperbolic momentum equals
ℏ∕2 if the spatial filtering is extremely limited. However, the de-
gree of spatial filtering determines the signal-to-noise ratio, and its
increase would result in the detrimental errors. Therefore, a trade-
off between signal-to-noise ratio and measurement accuracy of
hyperbolic momentum is of great concern.

We note again that our intelligent states coincide with the
minimum uncertainty-product state for the uncertainty
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Fig. 2. Experimental observation of hyperbolic momentum spectrum for (a) λ � 61.73 (Δ ln r � 0.09), (b) λ � 29.59 (Δ ln r � 0.13), and
(c) λ � 17.30 (Δ ln r � 0.17). The insets show the corresponding intelligent states displayed on the SLM.

0 0.05 0.1 0.15 0.2 0.25 0.3
0.2

0.3

0.4

0.5

0.6

0.7

0.8

Fig. 3. Experimental measurement of the product of the uncertain-
ties in logarithmic radial position and hyperbolic momentum for in-
telligent states. The red line represents the theoretical bound of ℏ∕2.
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Fig. 4. Experimental measurement of the product of the uncertain-
ties in logarithmic radial position and hyperbolic momentum for rigid
slits. The red line represents the lower bound of ℏ∕2 in the uncertainty
relation (that can only be achieved by the intelligent states) as dem-
onstrated in Eq. (4).
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relation of logarithmic radial position and hyperbolic momen-
tum. This means that the uncertainty product for any other
state is larger than this lower bound of ℏ∕2. We further explore
the uncertainty relation in experiments with rigid ring aper-
tures, as shown in Fig. 4. While the product of the uncertainties
for rigid ring apertures should be, in principle, infinite, exper-
imental constraints necessarily “soften” the rigid edge, yielding
finite value for the uncertainty product, but obviously larger
than the lower bound.

4. DISCUSSION

In analogy to the uncertainty relation between linear and an-
gular position and momentum, we have demonstrated the rig-
orous uncertainty principle for the radial degree of freedom.
Unlike the analogous form of linear and angular variables,
the canonical definition of the radial momentum has some
subtle problems in history since the radial position is semi-
definite. Even further, the canonical radial momentum is not
self-adjoint such that it cannot present a physical observable.
In this regard, our work suggests that the hyperbolic momentum
operator has a self-adjoint extension, and thus it is a well-formed
observable of radial momentum. Instead of radial position, we
use logarithmic radial position to avoid the barrier of the
semi-definite domain. Backed by these mathematical founda-
tions, we presented a rigorous uncertainty principle for radial
position and radial momentum, and derived radial intelligent
states that provide the minimal radial uncertainty product.
We have investigated the radial uncertainty experimentally, spe-
cifically confirming an uncertainty product of ℏ∕2 for intelligent
states over a wide range of radial uncertainties.

The radial uncertainty, just like linear and angular uncer-
tainty relations, is a direct consequence of Fourier optics
and holds in the classical regime, as demonstrated here.
Nevertheless, it holds for individual photons within the classical
light beam, and it would be interesting to perform a related
experiment with a single photon source. Our results reveal that
these two well-defined radial variables can provide a new plat-
form for the fundamental tests of quantum mechanics, as well
as for a variety of novel quantum information applications.
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