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Abstract

Most massive stars are members of a binary or a higher-order stellar system, where the presence of a binary
companion can decisively alter their evolution via binary interactions. Interacting binaries are also important
astrophysical laboratories for the study of compact objects. Binary population synthesis studies have been used
extensively over the last two decades to interpret observations of compact-object binaries and to decipher the
physical processes that lead to their formation. Here, we present POSYDON, a novel, publicly available, binary
population synthesis code that incorporates full stellar structure and binary-evolution modeling, using the MESA
code, throughout the whole evolution of the binaries. The use of POSYDON enables the self-consistent treatment of
physical processes in stellar and binary evolution, including: realistic mass-transfer calculations and assessment of
stability, internal angular-momentum transport and tides, stellar core sizes, mass-transfer rates, and orbital periods.
This paper describes the detailed methodology and implementation of POSYDON, including the assumed physics of
stellar and binary evolution, the extensive grids of detailed single- and binary-star models, the postprocessing,
classification, and interpolation methods we developed for use with the grids, and the treatment of evolutionary
phases that are not based on precalculated grids. The first version of POSYDON targets binaries with massive
primary stars (potential progenitors of neutron stars or black holes) at solar metallicity.

Unified Astronomy Thesaurus concepts: Binary stars (154); Close binary stars (254); Compact binary stars (283);
Interacting binary stars (801); X-ray binary stars (1811); Compact objects (288); Stellar remnants (1627); Black
holes (162); Neutron stars (1108); Gravitational wave sources (677); Stellar evolutionary models (2046); Stellar
populations (1622)

1. Introduction

Throughout their lives, stars affect their surroundings via the
immense energy radiated across the electromagnetic spectrum
(e.g., Conroy 2013; Eldridge & Stanway 2022) and the nuclear-
processed material emitted as a stellar wind (e.g., Kudritzki &
Puls 2000; Smith 2014). The deaths of massive (8Me) stars,
even more than their lives, transform their environments as
their cores run out of nuclear fuel and collapse to form neutron
stars (NSs) and black holes (BHs). The formation of these
compact objects (COs) is often accompanied by a supernova
(SN) or a γ-ray burst that releases more energy in 10 s than our
Sun in 1010 yr (e.g., Woosley & Bloom 2006; Janka 2012;

Burrows & Vartanyan 2021). These explosive events enrich
their environments with heavier elements while also regulating
any ongoing star formation (e.g., Hopkins et al. 2011, 2012;
Nomoto et al. 2013).
It is now established that most massive stars are members of

a binary or a higher-order stellar system (Sana et al. 2013; Moe
& Di Stefano 2017). More often than not, the presence of a
binary companion decisively alters the evolution and final fate
of both binary components via binary interaction processes
such as tidal dissipation, mass-transfer phases, and stellar
mergers (Sana et al. 2012; De Marco & Izzard 2017).
Furthermore, interacting binaries are arguably some of the
most important astrophysical laboratories available for the
study of COs. Accretion of matter from a binary companion
gives rise to X-ray emission, bringing the system to the X-ray
binary (XRB) phase (Bhattacharya & van den Heuvel 1991;
Podsiadlowski et al. 1992), while gravitational waves (GWs)
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enable us to witness the last moments of the lives of coalescing
binary COs (Abbott et al. 2016, 2021).

Over the last two decades, multiwavelength surveys of the
Milky Way and its neighborhood, as well as numerous nearby
and more distant galaxies, have amassed large data sets of
binary stellar systems. These data sets range from targeted,
high-resolution observations of galaxies in the local universe
(e.g., the PHAT and LEGUS surveys; Dalcanton et al. 2012;
Calzetti et al. 2015), to serendipitous (e.g., the Chandra Source
Catalogue 2.0; Evans et al. 2019), all-sky (e.g., Gaia; Gaia
Collaboration et al. 2018), and transient surveys (e.g., Pan-
STARRS and Zwicky Transient Facility; Kaiser et al. 2002;
Graham et al. 2019). In addition to electromagnetic surveys,
there is also the global GW observatory network of LIGO (Aasi
et al. 2015), Virgo (Acernese et al. 2015), and KAGRA
(Akutsu et al. 2019), which have detected nearly 100 binary
CO mergers (Abbott et al. 2021). Combined, these surveys are
revolutionizing our view of binary stellar systems, including
CO binaries, and their environments.

Aspects of the astrophysics of all of these different types of
stellar binaries can be obtained from observations and
modeling of present-day properties of individual, well-studied
systems. However, more comprehensive insight requires
understanding the statistical properties of their entire popula-
tions. For these studies, binary population synthesis (BPS)
modeling is often employed. BPS modeling first generates
initial binary populations, whose properties are randomly
sampled from probability distributions that can be observa-
tionally constrained. Then, this initial population is evolved
with a computationally efficient simulation tool using our best
understanding of the physics dictating binary star interactions,
to produce observable properties of the target population. If the
number of binaries evolved is large enough to provide a
statistically significant description of a population of interest,
then BPS can provide valuable insights about the expected rate
and distribution of the target population’s properties, the
different evolutionary pathways that lead to formation of these
systems, and the effect that different physical processes have on
their evolution.

Over the last two decades, many general-purpose BPS codes
have been developed, e.g., binary_c (Izzard et al. 2004,
2006, 2009), BPASS (Eldridge et al. 2017), the Brussels code
(Vanbeveren et al. 1998a, 1998b), BSE (Hurley et al. 2002),
ComBinE (Kruckow et al. 2018), COMPAS (Stevenson et al.
2017; Riley et al. 2022), COSMIC (Breivik et al. 2020), MOBSE
(Giacobbo et al. 2018), the Scenario Machine (Lipunov et al.
1996, 2009), SEVN (Spera et al. 2015), SeBa (Portegies Zwart &
Verbunt 1996; Toonen et al. 2012), StarTrack (Belczynski
et al. 2002, 2008), and TRES (Toonen et al. 2016). These have
been used in studies of a wide variety of binary populations. A
hard requirement for BPS is computational efficiency, as for most
studies one would need to model the evolution of many millions
of binaries in a reasonable computational time.

BPS codes stand in stark contrast to detailed stellar-structure
and binary-evolution codes, e.g., BEC (Heger et al. 2000;
Heger & Langer 2000), BINSTAR (Siess et al. 2013), the
Cambridge STARS code (Eggleton 1971; Pols et al. 1995;
Eldridge & Tout 2004; Stancliffe & Eldridge 2009), MESA
(Paxton et al. 2015), and the TWIN code (Nelson &
Eggleton 2001; Eggleton & Kiseleva-Eggleton 2002), which
self-consistently solve the stellar structure equations of a
binary’s component stars along with the orbital evolution.

Many studies have used detailed binary-evolution calculations
(e.g., Nelson & Eggleton 2001; Podsiadlowski et al. 2002; de
Mink et al. 2007; Marchant et al. 2017; Qin et al. 2018, 2019;
Laplace et al. 2020; Langer et al. 2020; Misra et al. 2020;
Laplace et al. 2021) to generate grids of models, varying the
masses of the two stars and the binary’s orbital period.
However, in all of those cases, the grids of detailed binary
tracks either cover a limited part of the initial parameter space,
or focus on a specific evolutionary phase. This limitation is
principally caused by the computational demands of detailed
grids; each simulation typically requires ∼10–100 CPU hours
for the modeling of a single system (e.g., Paxton et al. 2019).
As a result of this computational expense, a common thread

among the vast majority of current BPS codes is that they
approximate each star’s evolution, employing either fitting
formulae (e.g., SSE; Hurley et al. 2000) or look-up tables (e.g.,
COMBINE; Kruckow et al. 2018) for the properties of single
stars, based on grids of precalculated detailed, single-star
models. Then, the effects of binary interactions (e.g., Roche
lobe overflow, hereafter RLO, or tides) are modeled using
approximate prescriptions and parameterizations. This model-
ing approach is often called rapid or parametric BPS;
throughout the remainder of this work, we choose to use the
term parametric BPS (pBPS) modeling, to make a distinction
between computational efficiency and modeling accuracy. A
notable exception among BPS codes is BPASS (Eldridge et al.
2017), which uses extensive grids of detailed binary evolution
models computed with a custom version of the Cambridge
STARS binary evolution code (Stancliffe & Eldridge 2009). In
the grids of binary-star models employed in BPASS, both the
primary and the secondary stars are followed in detail, but only
one at a time (for computational-cost reasons). During the
primary’s evolution, the properties of the secondary star are
approximated by formulae based on single-star models (Hurley
et al. 2000). Subsequently, once the modeling of the primary’s
evolution is completed, the secondary star’s evolution is
recomputed, accounting for mass-transfer and rejuvenation
effects.
Studies using pBPS techniques have allowed us to make

advances in our understanding of the formation pathways
leading to different types of binary systems, and to interpret
observations of binary populations. Such examples are studies
on white-dwarf binaries (e.g., Nelemans et al. 2001; Ruiter
et al. 2009, 2010; Toonen et al. 2012; Breivik et al. 2018; Korol
et al. 2020), XRBs (e.g., Van Bever & Vanbeveren 2000;
Belczynski et al. 2004; Fragos et al. 2008; Luo et al. 2012;
Fragos et al. 2013a, 2013b; Tremmel et al. 2013; Tzanavaris
et al. 2013; Zuo et al. 2014; Zuo & Li 2014; van Haaften et al.
2015; Wiktorowicz et al. 2019; Artale et al. 2019; Shao &
Li 2020), the Galactic population of double NSs (e.g.,
Osłowski et al. 2011; Andrews et al. 2015; Chruslinska et al.
2017; Vigna-Gómez et al. 2018; Chattopadhyay et al. 2020),
GW sources observable by ground-based observatories (e.g.,
Dominik et al. 2012, 2013; Mennekens & Vanbeveren 2014;
Dominik et al. 2015; Belczynski et al. 2016; Mennekens &
Vanbeveren 2016; Klencki et al. 2018; Giacobbo et al. 2018;
Mapelli & Giacobbo 2018; Neijssel et al. 2019; Spera et al.
2019; Breivik et al. 2020; Zevin et al. 2020; Kinugawa et al.
2020; Broekgaarden et al. 2021), and SNe in binary systems
(e.g., De Donder & Vanbeveren 2003; Vanbeveren et al. 2013;
Claeys et al. 2014; Zapartas et al. 2017, 2019, 2021).
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However, the implicit assumption in pPBS codes that the
binary components have properties identical to single stars of the
same mass in thermal equilibrium (e.g., abundance profiles, core
sizes, mass–radius relations, and response to mass loss), as well as
the lack of information about the star’s internal structure at
different critical evolutionary phases (e.g., the onset of a
dynamically unstable mass transfer, the end of stable and unstable
mass-transfer phases or the core-collapse), may introduce
systematic uncertainties and inaccuracies. Current pBPS codes
therefore rely on approximate prescriptions for modeling binary
interactions and difficult-to-calibrate additional model parameters.
These complications could be avoided by instead employing
detailed stellar-structure and binary-evolution simulations (here-
after detailed models). Focusing on aspects that are relevant to the
formation of CO binaries, detailed models (i) allow for a self-
consistent estimation of the mass-transfer rate, especially during
thermal-timescale mass-transfer phases, and therefore an accurate
assessment of mass-transfer stability; (ii) allow for a more accurate
description of the type and properties of the formed CO as well as
any potential associated transient events since the internal
structure of pre-core-collapse stars is known, (iii) account for
the transport of angular momentum between and within the binary
components, including its back-reaction on the structure and
evolution of each star (e.g., rotational mixing), and (iv) allow for
the self-consistent modeling of the end of a mass-transfer phase
(e.g., accounting for a potential partial stripping of the envelope).

In this work, we build upon the combined experience gained
from the large body of BPS studies to date, to create POSYDON
(POpulation SYnthesis with Detailed binary-evolution simula-
tiONs), a general-purpose code that can generate entire
populations of binaries, underpinned by detailed, self-consis-
tent models of stellar binaries.14 With POSYDON we aim to
address many of the caveats of pBPS codes, while at the same
time maintaining much of their flexibility. In its first release
(v1.0), POSYDON is limited to stars of solar metallicity, and
binaries where the primary star is massive enough to form a BH
or an NS. Future releases, which are already in development,
will lift these limitations. In Section 2, we introduce POSYDON
and the approach it takes to modeling binary populations. In
Sections 3 and 4 we provide the physics adopted for our
detailed models of single and binary stars, respectively. We
describe the precalculated grids of single and binary stellar
evolution models in Section 5, the way they are postprocessed
in Section 6, and our classification and interpolation methods
for their optimal use in Section 7. In Section 8 we detail our
treatment of evolutionary phases, which are not based on
precalculated grids, such as the core-collapse and the common-
envelope (CE) phase, while in Section 9 we describe how all of
the aforementioned pieces come together to model the entire
evolution of a binary. In Section 10 we outline our assumptions
and methods in modeling populations of binary systems and
present some example results. We conclude in Section 11,
where we present an outlook of future development directions
of the POSYDON code. The definitions of all of the symbols
used throughout this paper can be found in Table 1.

2. Overview of the Structure of POSYDON

At its core, a BPS code requires two elements: a method to
generate random binaries at the zero-age main sequence
(ZAMS) and a mechanism to evolve those binaries. The

Table 1
List of Variables Used throughout the Paper

Name Description
First

Appears

a Orbital separation 4.1
ai Orbital separation before orbital kick 8.3.5
af Orbital separation after orbital kick 8.3.5
apre,CE Orbital separation pre–common envelope 8.2

apost,CE Orbital separation post–common envelope 8.2
a Rate of change of orbital separation 8.1.2
awind Rate of change of orbital separation due to wind

mass loss
8.1.2

atides Rate of change of orbital separation due to tides 8.1.2
aGR Rate of change of orbital separation due to grav-

itational-wave radiation
8.1.2

aspin Nondimensional spin 4.2.3
c Speed of light 4.2.2
Dconv.reg. Depth of a convective region 7.4
e Orbital eccentricity 8.1.2
ef Orbital eccentricity after orbital kick 8.3.5
e Rate of change of orbital eccentricity 8.1.2
etides Rate of change of orbital eccentricity due to

tides
8.1.2

eGR Rate of change of orbital eccentricity due to
gravitational-wave radiation

8.1.2

E Eccentric anomaly 8.3.5
E2 Second-order tidal torque coefficient 4.1
fconv Dimensionless factor accounting for slow con-

vective shells that cannot contribute to the tidal
viscosity within an orbital timescale

4.1

ffb Fallback mass fraction 8.3.2
fov Convective exponential overshooting parameter 3.2.3
g Local gravitational acceleration 3.2.1
G Gravitational constant 3.2.2
I Moment of inertia 4.1
I Moment of inertia rate of change 8.1.2
j Specific angular momentum 5.7
jISCO Specific angular momentum of the innermost

stable circular orbit (ISCO)
8.3.4

J Angular momentum 5.7
Jshell Stellar shell’s angular momentum 8.3.4
Jdirect Stellar shell’s angular momentum of directly

collapsing material
8.3.4

Jdisk Stellar shell’s angular momentum of disk forming
material

8.3.4

JBH Black hole angular momentum 8.3.4
k Apsidal motion constant 4.1
L Star’s luminosity 3.2.2
LEdd Eddington luminosity 3.2.2
L2 Second Lagrange point 8.2
M1 Mass of the initially more-massive star 5.5
M2 Mass of the initially less-massive star 5.5
Macc Mass of the accretor 4.2.2
Mdon Mass of the donor 8.2
MCO Mass of the compact object 5.6
MC O core– Mass of the C/O core 7.4

Mconv.reg. Mass of a convective region 4.1
Mcomp Mass of the binary companion star 4.1
Mdisk Mass of accretion disk 8.3.4
Menv Mass of the stellar envelope 7.4
Mgrav Remnant’s gravitational mass 8.3.3
MHe core– Mass of the He core 7.4
Mrembar Remnant’s baryonic mass 7.4
MNS

max Maximum neutron star mass 8.3.3

MEdd Mass-accretion rate corresponding to the Edding-
ton limit

4.2.2

Mw Wind mass-loss rate 3.2.2
14 POSYDON is publicly available at https://posydon.org.
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former is described in Section 10.1. Regarding the evolution of
each binary, our primary goal with POSYDON is to self-
consistently evolve the internal structures of the two stars
comprising a binary along with the binary’s orbit. To achieve
this goal, we have opted to employ the stellar-structure code
Modules for Experiments in Stellar Astrophysics (MESA;
Paxton et al. 2011, 2013, 2015, 2018, 2019). However,
calculating the evolutionary track of a binary using MESA can
take in excess of 100 CPU hours, a six-orders-of-magnitude
increase in computational cost compared to a typical pBPS
code such as COSMIC (Breivik et al. 2020). This means that,
even with modern computing resources, we cannot feasibly run
more than ∼105–106 binaries, far too few to accurately model a
Milky Way–sized population with ∼1011 stellar binaries. As a
further complication, codes like MESA cannot run individual
binaries from start to finish; key physics, including CE phases
and SNe, require the code to be stopped and restarted.15

POSYDON solves the problems associated with stellar-
structure codes by using extensive, precalculated grids of
single and binary stellar evolution models, covering the
parameter space relevant for the formation of high-mass binary
stars, with separate grids being calculated for each phase of
binary evolution. In v1.0, our grids contain a combined total of
nearly 120,000 separate detailed binary simulations. To
compute these grids, POSYDON has an infrastructure specifi-
cally designed for high-performance computing environments
that streamlines the process of producing large grids with
consistent physics inputs. Using this infrastructure, we have
generated five separate grids of single and binary stellar
evolution models. We computed three grids of interacting
binary stars initially composed of two hydrogen (H)-rich
ZAMS stars (Section 5.5), a CO and an H-rich star at the onset
of RLO (Section 5.6), and a helium (He)-rich ZAMS star with a
CO companion (Section 5.7). We further computed two grids
of single H-rich and He-rich stars (Sections 5.3 and 5.4,
respectively), which we use for the modeling of detached,
noninteracting binaries. These five grids are then postpro-
cessed, so that their data size is reduced (Section 6). We
additionally apply classification and interpolation algorithms
on the outputs of these extensive grids (Section 7), allowing us
to effectively interpolate between MESA simulations to estimate
the evolution of any arbitrary binary within some bounded
region of the parameter space. As a simpler alternative, we also
provide functionality to evolve individual binaries using

Table 1
(Continued)

Name Description
First

Appears

Mtot
i Binary stellar mass before core collapse 8.3.5

Mtot
f Binary stellar mass after core collapse 8.3.5

mshell Stellar shell’s mass 8.3.4
P Pressure 3.2.1
Porb Orbital period 5.5
q Binary mass ratio 4.1
R Stellar radius 3.2.2
Racc Radius of the accretor 4.2.2
Rb,conv.reg. Radial coordinate of a convective region’s bottom

boundary
4.1

Rcore Radius of the stellar core 7.4
RC O core– Radius of the C/O core 7.4

Rconv Radius of the convective core 4.1
Rconv.reg. Radial coordinate of a convective region’s center 7.4
Rdon Radius of the donor 8.2
RHe core- Radius of the He core 7.4
RL Roche lobe radius 4.2.2
RL,acc Roche lobe radius of the accretor 4.2.2
Rt,conv.reg. Radial coordinate of a convective region’s top

boundary
4.1

r Stellar shell’s radius 8.3.4
ri Instantaneous orbital separation before orbi-

tal kick
8.3.5

Teff Effective temperature 3.2.1
T Timescale for orbital changes due to tides 4.1
vk Magnitude of velocity kick 8.3.5
vr Orbital velocity of the collapsing star 8.3.5
X Hydrogen mass function 4.2.2
Xcenter Center hydrogen mass function 8.1.1
Xsurf Surface hydrogen mass function 8.1.1
Y Helium mass fraction 3.1
Ycenter Center helium mass fraction 8.1.1
Ysurf Surface helium mass fraction 7.5
Z Metallicity (mass fraction of elements heavier than

4He)
3.1

αCE Fraction of the orbital energy that contributes to
the unbinding of the CE

8.2

αMLT Convective mixing length parameter 3.2.3
αth Thermohaline mixing parameter 3.2.3
η Dimensionless factor denoting the radiative effi-

ciency of the accretion process
4.2.2

θ Stellar profile’s polar angle 8.3.4
θdisk Stellar profile’s polar angle of disk formation 8.3.4
κ Opacity 3.2.1
λCE Parameterization of the CE’s binding energy 8.2
τ Optical depth 3.2.1
τsync Tidal synchronization timescale 4.1
τconv Convective timescale 4.1
τmb Magnetic braking torque 8.1.2
ν Reduced mass 8.1.2
σ Maxwellian distribution dispersion 8.3.5

CCSNs Maxwellian distribution dispersion for core-col-
lapse SN (CCSN) kicks

8.3.5

ECSNs Maxwellian distribution dispersion for electron-
capture SN (ECSN) kicks

8.3.5

ψ Binary orbital inclination with respect to before
the kick

8.3.5

ωs Surface angular velocity 3.2.2
ωs,crit Critical surface angular velocity
Ωorb Orbital angular velocity 8.1.2
Ωshell Stellar shell’s angular velocity 8.3.4
Ω Stellar angular velocity 8.1.2
W Stellar angular velocity rate of change 8.1.2

Table 1
(Continued)

Name Description
First

Appears

wind
W Stellar angular velocity rate of change due to

winds
8.1.2

inertia
W Stellar angular velocity rate of change due to

changes of star’s moment of inertia
8.1.2

tides
W Stellar angular velocity rate of change due to tides 8.1.2

mb
W Stellar angular velocity rate of change due to

magnetic breaking
8.1.2 3.2.2

15 In principle these phases could be run within a stellar-structure code like
MESA; for instance, more updated versions of MESA than the one we use can
handle the evolution of a binary through a CE (Marchant et al. 2021).
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nearest-neighbor matching, and in that case, no classification or
interpolation methods are required.

The second major component of POSYDON is the code
infrastructure to follow the entire evolution of a binary from
start to end. To achieve this, we combined the aforementioned
grids (and classification and interpolation methods) with
physics dictating a binary’s evolution through key phases,
including core collapse and CO formation (Section 8.3) and CE
(Section 8.2). These latter phases are not modeled based on
precalculated grids, but rather with on-the-fly calculations.
Similarly, the evolution of detached, potentially eccentric, post-
core-collapse binaries is also modeled with on-the-fly calcula-
tions, where we use the single-star grids coupled to binary
evolution routines, i.e., orbital evolution due to tides, stellar
winds, magnetic breaking, and gravitational-wave emission
(Section 8.1).

In the POSYDON approach, each separate evolutionary phase
(step) has its own dedicated function that determines the
binary’s state resulting from that step, the quantitative values
characterizing that binary (e.g., masses of the two stars), and
the event describing how that state ended (e.g., onset of RLO).
Once a step is completed, the POSYDON framework uses the
resulting binary state and event as well as each component
stars’ states to determine an individual binary’s next evolu-
tionary step. The process is repeated until a binary’s evolution
is complete, resulting in a disrupted binary, a binary merger, or
a double CO. At this point, the next binary is run. The modular
nature of POSYDON allows a user to also provide their own
prescriptions to model each phase of evolution, or even their
own breakdown of the binary-evolution tree. As default in
POSYDON, we provide a complete set of evolutionary steps,
which we visually summarize in Figure 1 and present in detail
in the following sections.

3. Adopted Stellar Physics

All stellar evolution models described in this paper were
computed with the state-of-the-art, open-source stellar-structure
and evolution code MESA (Paxton et al. 2011, 2013, 2015,
2018, 2019) revision 11701 together with the 20190503
version of the MESA software development kit (Townsend
2020).16 MESA solves the one-dimensional stellar-structure
and composition equations. Mixing and burning processes
are solved simultaneously; mixing is treated as a diffusive
process. Discussion of specific elements of stellar physics
are described in the following subsections, which are split
into microphysical and macrophysical processes. We imple-
ment all physics that are not readily available in MESA using
the functionality provided by run_star_extras and
run_binary_extras.

3.1. Microphysics

We adopt the Asplund et al. (2009) protosolar abundances as
our initial composition, with Z = 0.0142 and Y = 0.2703. The
equation of state is the standard MESA amalgamation of the SCVH
(Saumon et al. 1995), OPAL (Rogers & Nayfonov 2002), HELM
(Timmes & Swesty 2000) and PC (Potekhin & Chabrier 2010)

equations of state (Paxton et al. 2019). Radiative opacities are
taken from Ferguson et al. (2005) and Iglesias & Rogers (1996) for
the Asplund et al. (2009) mixture, along with electron conduction
opacities from Cassisi et al. (2007). Nuclear reaction rates are
drawn from the JINA Reaclib database (Cyburt et al. 2010). All
models were computed using the approx21 nuclear reaction
network that consists of 21 species: 1H, 3He, 4He, 12C, 14N, 16O,
20Ne, 24Mg, 28Si, 32S, 36Ar, 40Ca, 44Ti, 48Cr, 56Cr, 52Fe, 54Fe, 56Fe,
and 56Ni, plus protons and neutrons (for the purpose of
photodisintegration).

3.2. Macrophysics

3.2.1. Surface Boundary Conditions

The stellar surface boundary condition is satisfied by the
simple_photosphere option, which sets the photosphere
temperature using the Eddington (1926) Teff(τ) relation, and the
photosphere pressure via P= τg/κ with enhancement due to
radiation pressure at the photosphere (e.g., Paxton et al. 2011).

3.2.2. Stellar Winds

Stellar winds are a complex subject due to the varied
physical mechanisms (known and unknown) that drive them
and their dependence on the evolutionary state of their parent
star. With this in mind, we have kept the wind prescription as
simple as possible, while still capturing the key phenomenol-
ogy of massive stellar evolution, but avoiding fine-tuning to
reproduce any single subset of observations. In POSYDON,
changing the wind prescription would require the computation
of a new set of single- and binary-star model grids.
For stars with initial masses above 8Me, we use the MESA

Dutch scheme, which consists of de Jager et al. (1988) for
Teff< 10,000 K and Vink et al. (2001) for Teff> 11,000 K. In
cases where Teff> 11,000 K and the surface 1H mass fraction is
below 0.4, the Vink et al. (2001) wind is replaced with the Wolf–
Rayet wind of Nugis & Lamers (2000). Between 10,000 and
11,000 K, there is a linear ramp (as a function of Teff) between the
two wind prescriptions. We do not explicitly include any
luminous blue variable (LBV)–type winds; however, our stellar
models at solar metallicity (e.g., Figure 3) do not spend significant
time in the regime where LBV-type winds are typically applied in
other studies (e.g., Belczynski et al. 2010).
For stars with initial masses below 8Me, we again use the

Dutch scheme for stars with Teff hotter than 12,000 K. For
stars with Teff less than 8000 K, we use the Reimers (1975)
wind with scaling factor ηR= 0.1 for stars on the first ascent of
the giant branch, and the Bloecker (1995) wind with scaling
factor ηB= 0.2 for stars in the thermally pulsating phase. For
the case of 8000 K< Teff< 12,000 K, we calculate the wind for
both the hot and cool schemes, and linearly interpolate between
the two.
For mass-loss rates that have an explicit dependence on

metallicity Z, we rescale wind mass loss based on the initial
metallicity, not the current surface Z, as winds are driven
predominantly by iron-group elements that remain almost
constant throughout stellar evolution (e.g., Vink & de
Koter 2005). The primary motivation for this approach is to
avoid the dredge-up of carbon and oxygen to the surface layers
in the later phases of evolution, which can cause surface Z to
approach 1, from unduly influencing the mass-loss rate. The
only exception here is the wind prescription by Nugis &
Lamers (2000) for Wolf–Rayet stars, which is specifically

16 We made one minor bug fix in the MESA source code, which involves
replacing the mass of the proton with the atomic mass unit where it appears in
the code that evaluates the Potekhin & Chabrier (2010) equation of state (E.
Bauer 2020, private communication). This change is included in later MESA
releases.
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calibrated to the total surface metal content, including carbon
and oxygen: in this case, we use the current, surface Z value of
the He-rich star.

We further boost stellar winds to limit a star’s rotation below
its critical threshold (ωs/ωs,crit� 1), so that the sum of the
centrifugal force and the photon pressure never exceeds gravity
on the surface of the star. The impact of rotation on the mass-
loss rate is considered as indicated in the following equation
(Langer 1998; Heger & Langer 1998):

M M 0
1

1
, 1w w

s s,crit
⎜ ⎟
⎛
⎝

⎞
⎠

( ) ( ) ( ) w
w w

=
-

x

where Mw is the star’s wind mass-loss rate, and ωs and ωs,crit are
the angular velocity and critical angular velocity at the surface,
respectively. The default value of the exponent ξ= 0.43 is
taken from Langer (1998). The critical angular velocity is given
the expression L L GM R1s,crit

2
Edd

3( )w = - , where LEdd is
the Eddington luminosity, and its expression is given in
Equation (8). This explicit boost to the wind is supplemented
by an implicit numerical scheme implemented in MESA, which
ensures that the rotation of a star never exceeds its critical
value.

3.2.3. Convection, Rotation, and Mixing Processes

Convective energy transport is modeled using mixing length
theory (MLT; Böhm-Vitense 1958) except in superadiabatic,
radiation-dominated regions where we employ the MLT++
modifications introduced in MESA (Paxton et al. 2013) that
reduce the superadiabaticity in radiation-dominated convective
regions, to improve numerical convergence. For the condition
of convective neutrality, we use the Ledoux criterion, and we

use the convective premixing scheme as described by Paxton
et al. (2019). We adopt a solar-calibrated mixing length
parameter, αMLT= 1.93, based on results from the MIST
project (A. Dotter et al. 2023, in preparation).
Rotation is implemented in MESA as described in Paxton

et al. (2013, 2019). Rotational mixing and angular-momentum
transport follow the MIST project (Choi et al. 2016). It has
been suggested that magnetic angular-momentum transport
processes are main candidates for efficient coupling between
the stellar core and its envelope during the post-main sequence
(post-MS). Here, we adopt the Spruit–Tayler (ST) dynamo
(Spruit 2002) that can be produced by differential rotation in
the radiative layers and amplify a seed magnetic field. Stellar
models with ST dynamo can reproduce the flat profile of the
Sun (Eggenberger et al. 2005) and observations of the final
spins of both white dwarfs (WDs) and NSs (Heger et al. 2005;
Suijs et al. 2008), but struggles to explain the slow rotation
rates of cores in red giants (Eggenberger et al. 2012; Cantiello
et al. 2014; Fuller et al. 2019).
MESA treats mixing processes in the diffusive approximation

with MLT providing the basic description. In addition to MLT
convection, we consider thermohaline mixing with the
parameter αth= 17.5 (Paxton et al. 2013, Equation (14)), also
referred to as Ct (Charbonnel & Zahn 2007, Equation (4)),
corresponding to an aspect ratio ∼1 of the instability fingers
(Kippenhahn et al. 1980). Thermohaline mixing is important
during mass accretion from an evolved primary star onto an
unevolved secondary star because the accreting material
typically has a higher mean molecular weight than the material
near the surface of the secondary star (e.g., Kippenhahn et al.
1980).
Overshoot mixing is treated in the exponential-decay formalism

(Herwig 2000; Paxton et al. 2011). For the parameter fov

Figure 1. The structure of POSYDON (v1.0) for modeling the evolution of a binary star. Rectangles represent the initial and possible final outcomes of the evolution,
and black circles represent events in the evolution of a binary. Colored lines showcase the different evolutionary steps that POSYDON follows. Evolutionary steps that
are based on precalculated grids of detailed binary-evolution tracks are designated with solid lines, while those that are based on computations performed on-the-fly for
each modeled binary are shown with dashed lines.
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describing the extent of the overshoot mixing in this formalism,
we adopt an initial-mass-dependent relation. For lower-mass stars
(initial masses less than 4 Me), we adopt a value taken from the
MIST project, fov= 0.016, which is calibrated using the Sun, as
well as open clusters (Choi et al. 2016). In the high-mass regime
(initial masses greater than 8 Me), we adopt a value of
fov= 0.0415 motivated by the work of Brott et al. (2011), who
used the step overshoot formalism. Both of these values of fov are
measured from a distance of 0.008 the local pressure scale height
into the convection zone from the formal convective-radiative
boundary. This is the same approach adopted in the MIST models
(Choi et al. 2016). In order to translate between the step and
exponential-decay versions of overshoot mixing, we rely on the
work of Claret & Torres (2017), which shows that the free
parameter in the step formalism is a factor of ∼10 larger than fov
(their Figure 3). For stars with initial masses between 4Me and
8Me, we smoothly ramp between the two values of fov. The mass
range was chosen to be roughly consistent with the ranges
considered in the two studies.

We include no extra mixing due to semiconvection (in the
sense of Langer et al. 1983), as this process is implicitly
accounted for in the convective premixing scheme (Paxton
et al. 2019).

4. Adopted Binary-star Evolution Physics

POSYDON is predominantly a BPS tool that simulates the
evolution of an ensemble of binary systems through various
stages of their life. In the POSYDON framework, we base the
evolution of binary systems on three extended MESA binary
grids, as shown in Figure 1. One grid consists of initially
detached binary systems of two H-rich stars starting from
ZAMS, where we follow the internal evolution of both stars
with detailed models (Section 5.5). A second grid consists of
H-rich stars in a semidetached system with a CO companion
(Section 5.6), and a third grid consisting of naked helium stars
in an initially detached system with a CO companion
(Section 5.7). For the non-CO components in these binaries,
we follow the same prescriptions for stellar structure and
evolution as described in Section 3. However, the internal
structures of stars can be affected by the presence of a
companion, principally through tidal interactions and mass
transfer. In this section we describe how we use the binary
module within MESA to model each binary’s orbit, while self-
consistently accounting for the impact on each star’s structure.

4.1. Tides

Tidal forces take place in binary systems, as each star tends
to be deformed by the gravitational pull of its companion.
Invoked by this gravitational deformation, frictional forces
inside a star drive a binary toward circularization and stellar
spin–orbit synchronization. In our MESA binary grids, we
assume that the initial orbit is circularized and the stellar spins
are synchronized with the orbit. This assumption should be
valid especially for close orbits of massive stars, where tides
are strong (Portegies Zwart & Verbunt 1996; Hurley et al.
2002). As binaries evolve, their orbital periods change as well
as the individual stars’ rotation periods, potentially driving
them out of synchronization. Therefore, it is only the process of
spin–orbit coupling that is relevant for our grids of detailed
binary-star models. In Section 8.1 we discuss our treatment of
eccentric, detached binaries.

We follow the linear approach to tides, which defines a
timescale for synchronization (Hut 1981). In this approach, a
torque is applied to nondegenerate stars in a binary corresp-
onding to the difference between the orbital and the spin
angular velocity ΔΩ, divided by the synchronization timescale
τsync:

, 2
sync

( )d
t

dtW =
DW

where δτ is the time step and δΩ is the change in spin angular
velocity over a particular time step. Since every layer of a star
rotates with its own angular frequency, Equation (2) is
separately applied to every layer. The torque applied to each
layer of the star is added up and an opposite torque is applied to
the binary’s orbit to ensure angular momentum conservation.
Winds and mass transfer somewhat complicate the picture, and
Paxton et al. (2015) give a detailed description of how these
effects are accounted for.
We separately calculate τsync for both stars (Hut 1981;

Hurley et al. 2002; Paxton et al. 2015):

k

T
q

MR

I

R

a

1
3 . 3

sync

2
2 6

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
t

=

Here M, R, and I are the mass, radius, and moment of inertia of
the star for which we calculate the tides, respectively,
q=Mcomp/M is the binary mass ratio, and a is the orbital
separation. k is a dimensionless apsidal motion constant
characterizing the central condensation of the star, and T is
the characteristic timescale for the orbital evolution due to
tides. As Equation (3) shows, τsync is strongly dependent on the
ratio of the stellar radius to the binary orbital separation. In
practice, the quantity k/T also varies significantly, depending
on whether tidal dissipation occurs principally within con-
vective regions (due to turbulent friction) or radiative regions
(due to dynamical tides interacting with stellar oscillations). As
stars may have both convective and radiative regions during
their lives, at every time step taken by MESA, we separately
calculate the dynamical and equilibrium tidal timescales, layer
by layer, and apply the shorter of the two.
For radiative regions in a star, we calculate k/T based on the

dynamical tidal timescale from Zahn (1977) and Hut (1981),
where

k

T
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a
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where E2 is the second-order tidal coefficient and G is the
gravitational constant.17 For the calculation of E2, we adopt the
latest prescriptions from Qin et al. (2018), who investigated the
dependence of the parameter on the convective radius Rconv for
various metallicities and evolutionary stages, finding

E
R R

R R

10 for hydrogen rich stars

10 for stripped helium stars.
52

0.42
conv

7.5

0.93
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6.7
⎧
⎨⎩

/

/

( ) -
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-

For the equilibrium tidal timescale, we calculate the
synchronization timescale for each convective region in the

17 This equation is equivalent to Equation (42) of Hurley et al. (2002), apart
from the typo correction of a square root, found in Sepinsky et al. (2007).
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stellar envelope using Equation (3) and following (Hurley et al.
2002, see their Equation (30)):

k

T

f M

M

2

21
, 6

conv

conv

conv

conv.reg.⎛
⎝

⎞
⎠

( )
t

=

and use the shortest timescale among them. In Equation (6),
Mconv.reg. is the mass of the convective region, fconv is a
nondimensional numerical factor less than unity that takes into
account slow convective shells that cannot contribute to the
tidal viscosity within an orbital timescale, and τconv is the
convective timescale, which we take from Equation (31) of
Hurley et al. (2002, based on Rasio et al. 1996), adapted to also
accommodate convective regions that are below the surface:
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1 3

⎡
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+
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In the equation above, Rt,conv.reg., Rb,conv.reg., and L are the
radii of the top and bottom boundaries of the region, and the
stellar luminosity, respectively, in solar units. We use the
surface luminosity in all calculations, as it is approximately
constant throughout the envelope. Typically, the shortest
equilibrium tidal timescale corresponds to the outermost
convective region. In order to avoid tides being dominated
by potential artificial convective shells that may appear during
the numerical calculation of a star’s evolution, we only take
into account regions that consist of at least 10 consecutive
shells in our models.

In Figure 2, we show two example evolutionary tracks
in a Hertzsprung–Russell diagram of the primary star in
an interacting binary of M1,initial= 56.46Me and M2,initial=
28.23Me, for two different initial orbital periods (3.16 days,
top panel; 31.62 days, bottom panel). We show which term of
the tidal timescale dominates the tidal forces: the dynamical
tidal timescale with orange, from Equations (3) and (4),
assuming the whole star is radiative, or the equilibrium tidal
timescale with blue, from Equations (3) and (6), according to
the most important convective region of the star. We see that in
the beginning of the evolution, the dynamical tidal timescale
dominates, as expected for the main sequence (MS) of massive
stars that have a radiative envelope. The 3.16 day period system
(top) initiates early RLO and does not form convective layers
massive enough for equilibrium tides to dominate, until after
the end of its MS. For the wider binary, even during the MS,
the equilibrium tidal timescale tends to become comparable to
the dynamical tidal timescale, due to convective regions that
appear close to the surface of the star. These regions include a
small part of the total mass of the star (as low as 10−5Me), but
have a significant radial thickness. The equilibrium tidal
timescale dominates in all of the remaining parts of the
evolution, apart from the He core-burning phase of the stripped
primary in the 3 day period system.

4.2. Mass Transfer

Over the course of a binary’s evolution, the outermost layers
of one of the binary’s stellar components may be removed, due
to the gravitational pull of its companion. As a consequence of
either the binary’s orbit decay or the expansion of a star’s
envelope, this transfer of mass is dictated by the geometry of
the Roche potential, namely the gravitational potential

constructed in the corotating reference frame of the binary
system.

4.2.1. Mass-loss Rates from a Star Overflowing Its Roche Lobe

To calculate mass-loss rates (due to mass transfer only) from
MS stars that overfill their Roche lobes, we use the contact
scheme within MESA. This prescription is a numerical
approximation; for stars overfilling their Roche lobes at the
beginning of each time step, mass is removed such that by the
end of the time step, the star remains confined to within its
Roche lobe. For MS stars, this approximation is consistent with
more accurate methods, as MS stars are compact, with
relatively small pressure scale heights. We choose this
prescription, as it allows us to evolve binary systems in which
both stars overfill their Roche lobes simultaneously (Marchant
et al. 2016).
As stars evolve off the MS, however, they tend to expand,

forming less dense envelopes as they become giant stars. The

Figure 2. Evolution of the donor star in two example close binary systems of
initially M1,initial = 56.46 Me and M2,initial = 28.23 Me, for two different initial
orbital periods: 3.16 days (top) and 31.62 days (bottom). The colors show
which tidal timescale is shortest and dominates in the tidal process: equilibrium
(blue) or dynamical (orange). Star symbols depict the main evolutionary points.
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large pressure scale heights of giant stars cause the contact
scheme to become inaccurate, and a prescription is required
that can more accurately treat these stars’ extended envelopes.
For stars with a central H abundance less than 10−6, we switch
to the Kolb scheme (Kolb & Ritter 1990).18 This prescription
allows the star to expand beyond its Roche lobe, and self-
consistently calculates the rate that mass can flow through the
inner Lagrangian point based on the local fluid conditions.

4.2.2. Mass Accretion onto a Nondegenerate Companion

The evolution of a binary during a mass-transfer phase
depends not only on the mass-losing star but also on the mass-
gaining star. Based on the nature of the accretor, the process of
accretion is treated differently.

For binaries with a nondegenerate accretor (those in our grid
of two H-rich stars), initially all of the mass lost by the donor
through RLO is accepted by the accretor. We assume that
material being accreted carries the specific angular momentum
according to de Mink et al. (2013; see their Appendix A.3.3).
This prescription allows for the distinct treatment of accretion
via direct impact of the incoming stream on the stellar surface,
or, in case of accretion onto a more compact star, the formation
of a Keplerian disk around the accretor. The accreted angular
momentum spins up the accretor, and mass accretion is
restricted when the accretor reaches critical rotation. Mass
falling within a critically rotating accretor’s gravitational
potential will be ejected from the binary with the specific
angular momentum of the accretor (Paxton et al. 2015) in the
form of rotationally enhanced stellar winds, following
Equation (1). At the same time that accretion is spinning up
the outer layers of a nondegenerate star, internal mixing
processes transport the surface angular momentum toward
deeper layers, slowing the star’s rotation rate.

4.2.3. Accretion onto a Degenerate Companion

Mass transfer onto a degenerate star proceeds similarly as
that onto a nondegenerate star, with a few notable exceptions.
The primary exception is that mass transfer is capped at the
Eddington-limited rate. For sub-Eddington mass-transfer rates
onto a CO, mass transfer is assumed to be conservative.
However, for super-Eddington rates, the excess matter is lost
from the vicinity of the accretor as an isotropic wind (i.e., with
the specific angular momentum of the accretor).

We calculate the Eddington-limited rate using standard
formulae (Frank et al. 2002). We first calculate the Eddington
luminosity LEdd for an accretor with mass Macc:

L
GM c4

, 8Edd
acc ( )p

k
=

where κ is the opacity of the incoming material, and c is
the speed of light. For a fully ionized gas, Thompson scatter-
ing dominates the opacity, so κ= 0.2(1+ X) cm2 g−1, where X
is the hydrogen abundance of the donor. By setting LEdd
equal to the radiation released by accreted matter as it falls into
a CO’s potential well (L Mcacc

2h= ), we can recover the

Eddington-limited accretion rate,
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The dimensionless constant η sets how efficiently the rest mass
energy of the incoming matter is converted to outgoing
radiation,

GM

R c
. 10acc

acc
2

( )h =

For BHs, Racc is set by the spin-dependent innermost stable
circular orbit (ISCO), while for NSs, we use a constant Racc of
12.5 km (Most et al. 2018; Miller et al. 2019; Riley et al. 2019;
Abbott et al. 2020a; Landry et al. 2020; Kim et al. 2021;
Biswas 2021; Raaijmakers et al. 2021). Our grids containing a
CO component are currently focused on NS and BH accretors,
for which we simulate a range of masses. The type of a CO is
determined solely on its mass, with COs having gravitational
mass less than 2.5Me being classified as NSs, while those with
mass greater than 2.5Me as BHs. Within our code, the only
difference between these types of accretors is the corresponding
η; otherwise, accretion proceeds identically regardless of the
type of CO accretor.
As these COs accrete material, they ought to accrete angular

momentum. In our current version of the grids, we ignore any
corresponding increase in the spin rate of NSs. For BHs, on the
other hand, we self-consistently incorporate the increase in spin
frequency as well as its effect on η through the radius of the
ISCO (Podsiadlowski et al. 2003),
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where Mi
acc is the initial mass of the accreting BH, and Macc is

its current one. In this equation it is also implicitly assumed that
the birth spin of the BH is ∼0, as has been suggested by several
studies (Fragos & McClintock 2015; Qin et al. 2018; Fuller &
Ma 2019). The corresponding increase in the BH’s nondimen-
sional spin rate, aspin, can be calculated following Thorne
(1974) and King & Kolb (1999),
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These equations both assume that the spin-up occurs due to
angular momentum accretion from a disk that is truncated at
the ISCO.
We do not explicitly stop our simulations if an NS accretes

enough mass to cross our 2.5Me threshold thereby collapsing
into a BH, but we do switch the η instantaneously.

4.2.4. Onset of CE

Stars with radiative envelopes entering RLO respond to mass
loss by shrinking (Hjellming & Webbink 1987); mass transfer
then reaches a natural equilibrium set by the strength of some
driving force (nuclear evolution, tides, thermal expansion, or
some other effect), and how quickly the orbital separation, and
thus the Roche lobe radius, change due to mass transfer
through the inner Lagrangian point. However, in certain

18 The current version of MESA does not allow the reversing of the donor star
in this scheme. Occasionally, a once-accreting star evolves off the MS,
expands, and itself overfills its Roche lobe. In these cases, mass transfer is not
calculated, and the system predominantly leads to L2 overflow.
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circumstances, mass transfer increases in a runaway process,
either because stars expand due to mass loss (e.g., stars with
deep convective envelopes) or because the binary’s orbit
shrinks faster than a donor star’s radius (e.g., Paczyński &
Sienkiewicz 1972). These phases of binary evolution are
notoriously difficult to model as they are intrinsically three-
dimensional processes, and they span many orders of
magnitude in spatial and temporal scales (Ivanova et al.
2013). We therefore stop our MESA models when binaries enter
dynamically unstable mass transfer; we provide a description of
how we address this phase in Section 8.2. Here we focus on the
conditions we use to identify when a binary enters dynamically
unstable mass transfer.

First, we assume that a dynamically unstable RLO phase is
initiated whenever the mass-transfer rate exceeds 0.1Me yr−1.
It is expected that binaries reaching this limit will only further
increase their mass-transfer rates, as this corresponds to a
dynamical limit on the mass-loss rate for giant stars (with
dynamical timescales of years). As a check, we carried out a
calibration test where we followed the evolution of a test binary
to mass-transfer rates even larger than 0.1Me yr−1. In every
test we ran, we found that the mass-transfer rate increases to
arbitrarily high rates, confirming the validity of our limit.
Assigning a limit to the mass-transfer rate also avoids
numerical issues caused by the effort of stellar models to
converge with such extreme mass loss.

As a second condition, we assume dynamically unstable
RLO occurs when the stellar radius of the expanding star
extends beyond the gravitational equipotential surface, passing
through the second Lagrangian point (L2). In such cases, the
lost matter from the L2 point carries substantial angular
momentum, rapidly shrinking the orbit and leading to a
runaway process in which the two stars spiral in and trigger a
CE (Tylenda et al. 2011; Nandez et al. 2014). We use the
prescription from Misra et al. (2020, see Equations (15)–(19) to
define the spherical-equivalent radius corresponding to L2. This
condition cannot occur for MS donors, since the contact
scheme for RLO forces a star’s radius to be contained within its
Roche lobe. For cases where two MS stars overfill both their
Roche lobes, in an over-contact binary, we alternatively use the
prescription from Marchant et al. (2016, see Equation (2)) for
the L2 radius, which considers that both stars can contribute to
the overflow of the L2 volume together.

For CO accretors, we set a third condition for unstable mass
transfer based on the photon trapping radius (Begelman 1979;

King & Begelman 1999). Inside that radius, photons are
advected inward along with accreted matter onto the accretor,
while outside that radius, photons diffuse away. For stable
mass accretion, the photon trapping radius occurs close to the
accretor; however, as the accretion rate increases, the photon
trapping radius expands. Once the photon trapping radius
reaches the Roche lobe radius of the accretor, it is assumed
to lead to a CE phase. Since the radius of the photon
trapping envelope Rtrap depends on the Eddington limit of the
accretor MEdd and the mass-transfer rate from the donor Mdonor ,
we limit the latter assuming an instability condition when
(Begelman 1979):

M M
R

R

2
. 13donor Edd

L,accr

acc
( ) 

As a final condition, occasionally two stars will both overfill
their Roche lobe while one of those stars has evolved off the
MS. Since the contact scheme in MESA can only evolve
binaries in which both stars are on the MS, we assume these
binaries automatically enter a CE.
As a test, we compared the first three dynamical instability

conditions separately to investigate their effect and found that
the limiting mass accretion rates are all similar: as soon as a
binary reaches any one of them, the other two are close to their
limits as well. Therefore, for a particular binary in our MESA
simulation, the binary is considered to enter a CE if any one of
them occurs.

5. Grids of Detailed Single- and Binary-star Evolution
Models

While in Sections 3 and 4 we describe the physics we adopt
in our simulations, here we provide numerical details about
how we produce each of our five MESA grids. This includes our
procedure for producing initial stellar models for each of our
grids (Section 5.1), our termination conditions common across
all of our grids (Section 5.2), and a description for each of our
five grids of binary simulations (Sections 5.3–5.7). We
summarize the basic properties of each grid in Table 2.

5.1. Zero-age Main-sequence Models

We create our own library of ZAMS models for both H-rich
and He-rich stars. For the creation of the H-rich ZAMS models,
we use the MESA revision 11701 template create_zams.
The process begins with creating a fully convective star with no

Table 2
Summary of the Five Detailed Single- and Binary-star Model Grids

Initial State Parameters’ Range and Resolution

Star 1 Star 2 M1 [Me] Mlog10 1D M2 [Me] Mlog10 2D q Δq Porb [day] Plog10 orbD N a Failures b

ZAMS L 0.5–300 0.014 L L L L L L 200 1.5%
ZAHeMSc L 0.5–80 0.055 L L L L L L 40 0%
ZAMS ZAMS 6.2–120 0.025 L L 0.05–0.95 0.05 0.72–6105 0.07 58240 1.5%
Evolved, H-rich d CO 0.5–120 0.06 1–35.88 0.074 L L 1.26–3162 0.13 25200 0.9%
ZAHeMS CO 0.5–80 0.055 1–35.88 0.074 L L 0.02–1117.2 0.09 39480 4.8%

Notes.
a Total number of models in this grid.
b Percentage of models that stopped due to numerical-convergence errors before reaching one of our stopping conditions. These rates describe the finalized grids, after
a series of reruns have occurred; see Section 6.1 for details.
c Zero-age He main-sequence stars.
d Although this grid is initialized with H-rich stars at ZAMS, we ignore the portion of each simulated binary’s evolution prior to the onset of RLO. The initial state of
Star 1 in this grid is therefore somewhat evolved.
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nuclear fusion taking place and adopting our protosolar
abundances (Section 3.1). This model is then evolved with
our adopted nuclear reaction network until the H-burning
luminosity exceeds 99% of the total luminosity.

The He-rich ZAMS (ZAHeMS) models are created in three
steps. First, we create a pre-MS He star with 100% 4He in the
same way that we create an H-rich pre-MS star. In the second
step, we adjust the initial metallicity. In the third step, we
evolve the model until the He-burning luminosity exceeds 99%
of the total luminosity.

The two sets of ZAMS and ZAHeMS models are used as a
starting point for the five grids of single- and binary-star
models.

5.2. Termination Conditions

We set conditions for the termination of our evolutionary
models based on both single-star properties and binary-star
properties. If any one of these conditions are met by an
individual simulation, it is terminated at that time step. Our
termination conditions are:

1. A star’s age exceeds the age of the universe (13.8 Gyr), a
condition that is typically only met for the lowest-mass
stars we simulate (Minit 0.8Me). In our single-star
grids, for numerical purposes, we allow stars to evolve
beyond this condition, then truncate their evolution
afterwards at the end of the MS, which may extend
beyond the age of the universe.

2. A star becomes a WD, a condition we quantify by
checking if the central degeneracy parameter Γc (Cou-
lomb coupling parameter) exceeds 10 (Choi et al. 2016).

3. A star reaches the end of core C-burning, a condition
triggered when the fractional abundances of both C and
He decrease below 10−2 and 10−6, respectively, at the
star’s center.

4. A binary enters a CE phase, as described in Section 8.2.
5. A star reaches the thermally pulsating asymptotic giant

branch (TP-AGB) phase and then reaches a point of
failure (numerical nonconvergence) during thermal
pulsations. Because these are not uncommon and we
consider the nascent WD to be well-formed within the
AGB star, we consider this evolution to be successful.

Our simulations may occasionally end prematurely before
any of the aforementioned conditions are reached. This may
happen because the minimum time step limit within MESA
(10−6 s) is reached or any individual simulation reaches our
maximum run time on our computing cluster (set to 48 hr). We
provide details describing how we approach such runs in
Section 6.1, but these failures are rare, occurring a few percent
or less in each grid.

All single- and binary-star models in POSYDON have a final,
internal structure profile written to correspond precisely to the
last evolutionary phase milestone. These profiles are discussed
further in Sections 6.2, 8.2, and 8.3.

5.3. H-rich, Single-star Grid

Our first grid of single-star evolutionary models contains a
series of nonrotating H-stars with our adopted protosolar
composition of Y = 0.2703 and Z = 0.0142. The grid consists
of 200 masses, ranging from Minit= 0.5Me to Minit= 300Me
with a logarithmic spacing of M Mlog 0.01410 init( )D = dex.

For each star, models were initialized using the procedure
described in Section 5.1, and evolved until one of the
termination conditions provided in Section 5.2 occurs.
To test their validity, we compare POSYDON evolutionary

tracks to the widely used stellar evolution tracks from the
Geneva (upper panel; Ekström et al. 2012), MIST library
(center panel; Choi et al. 2016), and BSE as implemented in
COSMIC (lower panel; Pols et al. 1998; Hurley et al. 2000;
Breivik et al. 2020) groups in Figure 3. In all cases, we show
nonrotating models with initial masses between 1Me and
300Me. The pre-MS evolution is omitted from the MIST

Figure 3. Comparing POSYDON H-rich ZAMS evolutionary tracks (blue in all
panels) with nonrotating Geneva (upper; Ekström et al. 2012), MIST (middle;
Choi et al. 2016), and SSE with default wind mass-loss prescription from
COSMIC version 3.4.0 (lower; Pols et al. 1998; Hurley et al. 2000; Breivik
et al. 2020) tracks in the Hertzsprung–Russell diagram. The mass range shown
is 1–300 Me in all cases. The masses shown are the same as the Geneva grid
of models between 1 and 120 Me with the addition of 175 and 300 Me for
POSYDON, MIST, and COSMIC/SSE. The dotted, gray lines indicate constant
radius at powers of 10 in Re.
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evolutionary tracks, and the TP-AGB and post-AGB phases are
omitted for clarity. All sets of tracks show a similar location for
the ZAMS; the subsequent evolution along the MS and through
He-burning phases differs due to the way each set of models
treats mixing across convective boundaries. The clearest
differences between the POSYDON and other models are in
the location of the hook feature near the MS turnoff for higher
masses (a result of the different adopted core overshoot
treatments) and the positions of later phases (a result of the
different wind mass-loss treatments among the different
groups). The COSMIC tracks extend to larger radii and cooler
effective temperatures, which may place them in the regime of
LBVs; however, none of the other sets of evolutionary tracks
enter this regime. For a more in-depth comparison see, e.g.,
Agrawal et al. (2020, 2022).

Figure 4 compares the final C/O core mass between
POSYDON, MIST, and SSE as implemented by COSMIC.
SSE models are calculated until central C-burning, while MIST
and POSYDON are calculated through central C exhaustion for
those stars with sufficient mass to ignite carbon or to the WD
cooling sequence for lower masses. Differences between the
core masses of MIST and POSYDON are generally due to the
different overshooting parameter (we adopt fov= 0.0415 for
stars with masses above 8 Me, compared with fov= 0.016
adopted by MIST). The COSMIC/SSE models exhibit different
behaviors at larger masses, as these prescriptions are based on
stellar models that only go up to 50 Me; larger masses than this
are an extrapolation.

As a final comparison, Figure 5 shows a Hertzsprung–
Russell diagram of a subsample of POSYDON single-stellar
model where we indicate the different evolutionary POSYDON
stellar states (Figure 17) across a range of stellar masses.

5.4. He-rich, Single-star Grid

Our second grid of single-star evolutionary models consists
of nonrotating He-rich stars with Yinit= 1− Zinit and our
adopted protosolar Zinit= 0.0142. This grid consists of 40
masses ranging from Minit= 0.5Me to Minit= 80Me with a
logarithmic spacing of M Mlog 0.05510 init( )D = dex. For

these masses, stellar evolution models were computed starting
from ZAHeMS models (Section 5.1) and evolved until one of
the termination conditions described in Section 5.2 occurs. For
all but the lowest-mass cases, the core C depletion condition is
the relevant one; models with initial masses below 1.1Me do
not ignite C-burning in the core, and therefore terminate as He-
core WDs.
As a test of our POSYDON He-star models, we compare their

lifetimes to those of the He-star models of Woosley (2019) in
Figure 6. Only the overlapping range of initial masses is shown
here; the Woosley (2019) grid includes models with masses
from 1.8–120Me. These models match to within; 0.1 dex in
log lifetime across the entire range of initial masses.
As a second test, we compare the final masses between the

same two model grids in Figure 7. Although the lifetimes are
similar, the final masses show a significant difference,
particularly at higher initial He-star masses. Woosley (2019)
notes that the change in slope of the initial–final mass relation
around an Mfinal of 11Me is due to the mass-loss prescription
adopted for exposed CO cores; at larger initial He-star masses,
the entire He-star mass is burned to heavier elements. For all of
the single- and binary-star model grids in POSYDON, we adopt
the mass-loss prescription from Nugis & Lamers (2000) for He-
rich stars. The latter predicts on average stronger wind mass
loss than the prescription from Yoon (2017) adopted by

Figure 4. Comparison of the final C/O core mass in SSE as implemented by
COSMIC (magenta), MIST (green), and POSYDON (blue). Differences between
MIST and POSYDON are due to the larger core overshoot parameter adopted by
POSYDON. Disagreement with the SSE models is expected as these models are
based on simulations that were only computed for initial masses up to 50 Me;
more-massive stars are an extrapolation.

Figure 5. Hertzsprung–Russell diagram of a subsample of POSYDON single-
stellar models where the different POSYDON stellar states are indicated
according to the legend.
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Woosley (2019), leading to the substantially different final
masses between the two prescriptions at Minitial 20Me.

Finally, we show the radius evolution of the He star tracks
for the mass interval of 2–10Me in Figure 8. He-rich stars
exhibit a peculiar feature where less-massive stars expand
farther on the giant branch than their more-massive counter-
parts, in agreement with results by Habets (1986). When in a
binary system, this implies that there is a relatively narrow
range of orbital periods in which massive He stars will undergo
RLO. Less-massive He stars expand to hundreds of Re, leading
to a wide range of orbital periods in which these stars can
interact with a putative companion. This behavior is realized in
our binary star grids, and its effects are seen explicitly in
Figure 14.

5.5. Binaries Consisting of Two Hydrogen-rich Main-sequence
Stars

For modeling the evolution of two ZAMS stars in a binary
system, we run a grid of 58,240 separate binary evolution
models, varying the initial mass of the primary star M1, the
initial binary mass ratio q=M2/M1 (where M2 is the mass of

the companion star), and orbital period Porb. We consider 52
values of initial primary masses, ranging from M1= 6.23Me to
M1= 120Me with a logarithmic spacing of M Mlog10 1( )D =
0.025 dex, and 20 values of initial binary mass ratios, ranging
from q = 0.05 to q= 1 with a spacing of Δq= 0.05. Finally,
we cover 56 values of initial orbital period, ranging from
Porb= 0.7 days to Porb= 6105 days with a logarithmic spacing
of Plog days 0.0710 orb( )D = dex, in order to explore all binary
configurations ranging from close systems in initial RLO to
wide systems that never exchange any mass.
We simulate binaries by first separately initializing two

H-rich, single stars at ZAMS following the procedure defined
in Section 5.1. We then place those stars in a binary with a
second relaxation step, where we force their their rotation
periods to be synchronized with the orbital period, implicitly
assuming that the synchronization has happened during the pre-
MS phase. The latter might not be true for wide binaries, but
our assumption induces negligible rotation to the stellar
components of those systems and does not affect their further
evolution. As long as both stars in the binary are under-filling
their Roche lobes after this relaxation step, we start to evolve
the binary. Evolution continues until one of the termination
conditions described in Section 5.2 occurs.
In Figure 9 we provide two two-dimensional slices of this

grid, where we show our simulation outcomes as a function of
M1 and Porb for fixed q values. In the left panel, we show one
example of a mass ratio q = 0.3, and in the right panel, we
show a more equal-mass q = 0.7 slice. Each point in the panels
represents a separate simulation from our grid. Diamond
markers represent models that terminated in a CE, while square
markers represent models that terminated when one of the stars
completed its evolution (e.g., reached core C exhaustion).
These are systems that experienced either only stable mass-
transfer episodes or no mass transfer at all, so their evolution
can be continuously modeled. At the bottom of each panel, we
see systems that are born filling their Roche lobes (black dots).
These systems are assumed to merge, and therefore never
produce a viable binary. Finally, a small fraction of systems
never complete their evolution, producing binary stellar models
that at some point fail to converge (red diamonds).

Figure 6. Lifetimes of the POSYDON and Woosley (2019) single He-star
evolution models match to within ;0.1 dex.

Figure 7. Final masses of the POSYDON and Woosley (2019) single He-star
evolution models. Differences at Minitial  20 Me are due to the stronger wind
mass-loss prescription adopted by POSYDON.

Figure 8. Evolution of radius for He stars with masses between 2 and 10 Me.
Less-massive He stars evolve slower, but expand farther when they become
giant stars. This trend implies that more-massive He stars in binary systems will
undergo RLO for a relatively narrow range of orbital periods, a behavior
exhibited by our binary star simulations and seen in Figure 14.
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Separately, the color of each marker indicates that particular
binary’s mass-transfer history. Systems with sufficiently close
initial Porb tend to lead to contact phases (orange) where both
stars fill their Roche lobes simultaneously. Most, but not all, of
these system end up entering a CE phase. Sufficiently widely
separated (or very massive) systems never fill their Roche
lobes, and therefore never interact (gray markers). For
intermediate orbital periods, the colors differentiate the
evolutionary state of the donor when the latest mass-transfer
phase was initiated, ranging from MS (blue) to post-MS (tan),
to stripped He-MS (brown). Stable mass transfer causes the
donor star to be almost completely stripped of its H-rich
envelope. In the latter case (brown), the low-mass stripped
donors initiate a second mass-transfer phase (Case BB mass-
transfer) when they re-expand (Delgado & Thomas 1981;
Laplace et al. 2020).

Comparison between the two panels shows that the mass
ratio leads to a stark difference in the mass-transfer outcomes.
Whereas nearly all systems with an initial q = 0.7 result in
stable mass transfer, the opposite is true for our q = 0.3
systems. At the same time, some features between the two mass
ratios are similar: (i) The boundary between interacting and
noninteracting systems seems to be insensitive to q (and
therefore the secondary’s mass). At the largest orbital periods,
stars do not expand far enough to overfill their Roche lobes. At
the largest masses, stars have extremely strong winds that
widen their orbits, simultaneously stripping the primary of its

H-rich envelope, and these stars never expand enough to fill
their Roche lobes. (ii) Systems with initial Porb 5 days tend to
result in dynamically unstable mass transfer. (iii) There is a
large region of binaries with initial primary mass ;40–50 Me

that stably overfill their Roche lobes as post-MS stars. These
stars achieve their mass-transfer stability mainly due to their
strong stellar winds, which increases the mass ratio and the
orbit of the system until the moment of overflow.
We model, and keep track of, the properties of both stars in

the binary system throughout their evolution, as well as their
detailed internal structure at the end of the models. In Figure 10
we show, for the same two mass-ratio slices as in Figure 9, the
final rotational rate of the secondary (the initially less-massive)
stars for systems that avoid dynamically unstable mass transfer.
Each marker’s color is set by how close each star’s rotation rate
is to its critical rate. Highly rotating secondary stars have all
experienced substantial mass and angular-momentum accretion
during their evolution. Many of them have reached critical
rotation, 1s s,crit 2( )w w = , early during mass transfer, at
which point further mass accretion becomes nonconservative
(see Section 4.2.2). The right-hand panel shows that the
companion’s rotation rate is closely linked with M1, as
companion stars with lower-mass primary stars also have
lower masses and therefore do not lose as much angular
momentum through their own stellar winds. This behavior is
independent of the assumed initial rotation of the stars.

Figure 9. View of two grid slices, for two different values of initial binary mass ratio (q = 0.3 on the left, q = 0.7 on the right), from our grid of binary-star models
consisting of two H-rich stars, initially at ZAMS. The different symbols summarize the evolution of each of the models. We distinguish between models that
experienced stable or no mass transfer (squares), reaching the end of the life of one of the stars, and the ones that stopped during mass transfer due to one of our
conditions for dynamical instability (diamonds). Different colors distinguish the evolutionary phase of the donor star during the latest episode of mass transfer (or no
RLO at all for gray). Small black dots at low initial periods depict systems that were in initial RLO at birth and red diamonds represent the models that stopped
prematurely for numerical reasons.
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We find a small subset of initially very close systems in the
bottom-right corner (log 10(M1/Me)> 1.75 and log 10(Porb/
days); 0.5) that retain a significant rotational rate even though
they avoid mass transfer. In binaries with such tight orbits, tidal
forces between the stars are sufficiently strong to keep them
fast rotating, despite their strong winds.

5.6. Binaries Consisting of a Compact Object and a Hydrogen-
rich Star, at the Onset of Roche Lobe Overflow

Our second grid of binary star simulations consists of
an H-rich star in a binary with a CO at the onset of RLO. This
grid consists of 25,200 binary evolution models, where we
vary the initial mass of the primary star M1, the initial mass
of the CO MCO, and the orbital period Porb. We consider
40 values of initial primary masses, ranging from M1= 0.5Me
to M1= 120Me with a logarithmic spacing of Mlog10 1(D
M 0.06) = dex, and 21 values of initial CO masses, ranging
from MCO= 1Me to MCO= 35.88Me with a logarithmic
spacing of M Mlog 0.07410 CO( )D = dex. Finally, we cover
30 values of initial orbital period, ranging from Porb= 1.26
days to Porb= 3162 days with a logarithmic spacing of

Plog days 0.1310 orb( )D = dex. Our choice of CO mass range
covers massive WD, NS, and BH accretors.

Our procedure in constructing this grid is different from what
was described in Section 5.5. We start each of the simulations
with binaries composed of a ZAMS H-rich star and a CO,
which in the MESA code is approximated by a point mass.
Initially, and until each of the binary models reach the onset of

RLO, we neglect orbital angular-momentum loss mechanisms,
such as tides, magnetic breaking and gravitational radiation,
while we artificially enforce the synchronization of the
nondegenerate star with the orbit at all times. We do, however,
allow for wind mass loss from the nondegenerate star, which
also results in a widening of the orbit. Once the onset of RLO is
reached, we include the effects of all orbital angular-
momentum loss mechanisms and discard the prior evolution
of the system, treating the onset of RLO as the effective starting
point of our models. Furthermore, from that point onward, we
do not artificially enforce the synchronization of the non-
degenerate star’s spin rotation with the orbit, but we instead
follow the tidal synchronization process self-consistently,
following the prescriptions described in Section 4.1. Finally,
binaries that never reach the onset of RLO are not considered
further; these detached binaries are modeled separately as
described in Section 8.1. There, we also provide a full
explanation of how we use this binary-star grid, composed of
an H-rich star and a CO at the onset of RLO, within a larger
infrastructure to completely evolve binaries from ZAMS to
double COs.
Figure 11 shows two slices of the grid with different CO

masses, MCO= 1.43 Me to represent an NS accretor and
MCO= 14.66 Me to represent a more-massive BH accretor.
The symbols depicted in Figure 11 have the same meaning as
in Figure 9. Although our true initial binary parameters are
regularly spaced, M1 and Porb on the axes shown in Figure 11
are the binary’s quantities at the onset of RLO, the effective

Figure 10. For the same grid slices shown in Figure 9, and only for systems where one of the two stars reached the end of its life, we depict the final ratio of the
angular velocity of the secondary star (the initially less massive) divided by its critical rotation rate, s s,crit 2( )w w . In most cases where mass transfer occurred, the
secondary star accreted mass and spun up, remaining highly spinning until the end of the life of the initially more-massive star.
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starting point of the models; therefore, the grid does not appear
to be regularly spaced (strong winds exhibited by massive stars
tend to expand binary orbits prior to mass transfer). We do not
show those binaries that never interact (even though we ran
these simulations). As already seen in the binary-star model
grid composed of two H-rich stars (Figure 9), binaries too
widely separated will never overfill their Roche lobes, and
binaries with massive H-rich stars have winds too strong to
expand into giant phases. In this grid, Figure 11 shows an
additional region of white space at low mass (M 1 Me) that
occurs because these stars remain on the MS for the entirety of
the simulation, never expanding to fill their Roche lobes within
the age of the universe.

Examining the stability of the mass-transfer phase, Figure 11
shows that nearly every donor star accreting onto a 14.66Me
BH does so stably, whereas only the lower-mass accretors
(M 4.5Me) do so for NS accretors. This difference is
because the stability of a mass transfer in a binary primarily
depends on the mass ratio, with a higher accretor mass allowing
for higher donor masses. Our findings, at least for the case of
NSs, are consistent with recent results from Misra et al. (2020),
who use the same criteria to define the onset of L2 overflow
leading to dynamical instability as done in our work.

Figure 12 shows the relative changes in the accretor masses
in the same two slices in MCO as Figure 14. High amounts of
accretion mainly depends on two factors: a sufficiently high-
mass accretion rate and a long-lasting RLO phase. In both
panels, this happens for binaries with short periods; 1 day,
and pre-RLO mass ratios in the range q∼ 1–2 (defining
q=MCO,i/M1,i). Despite our assumption of Eddington-limited
accretion, for these binaries, stable accretion occurs over a long

time, and in both cases, the binaries transition to low-mass
X-ray binaries. These findings are in agreement with earlier
works by Podsiadlowski et al. (2003), Fragos & McClintock
(2015), and Misra et al. (2020).
The high mass-transfer rates achieved by most initial binary

configurations are explicitly shown in Figure 13, where each
marker’s color corresponds to the peak mass-transfer rate for
each binary. These rates refer to the mass being lost by the
donor star due to RLO; accretion onto the accretor is still
Eddington-limited. In both panels, super-Eddington mass-
transfer rates occur in most binaries, with higher peak mass-
transfer rate encounters in binaries with higher periods and
larger donor star masses. However, since the larger orbital
separation of these binaries implies the donors in these systems
would be more evolved at RLO onset, compared with initially
shorter-period binaries, these mass-transfer phases tend to be
short-lived. Therefore, binaries with short orbital periods (but
not so short that they overfill their Roche lobes initially) will
lead to the most accretion onto a CO.

5.7. Binaries Consisting of a Compact Object and an He-
rich Star

Our final grid of detailed binary-star simulations consists of
39,480 models of He-rich stars with CO companions, where we
vary the initial mass of the primary star M1, the initial mass of
the COMCO, and the orbital period Porb. We consider 40 values
of initial primary masses, ranging from M1= 0.5Me to
M1= 80Me with a logarithmic spacing of Mlog10 1(D
M 0.055) = dex, and 21 values of initial CO masses, ranging
from MCO= 1Me to MCO= 35.88Me with a logarithmic

Figure 11. View of two slices, for two different values of initial CO masses (MCO = 1.43 Me on the left, MCO = 14.66 Me on the right), from our grid of binary-star
models consisting of an H-rich star and a CO at the onset of RLO. The different symbols summarize the evolution of each of the models, as in Figure 9. Binaries that
never initiated mass transfer are not shown here.
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spacing of M Mlog 0.07410 CO( )D = dex. Finally, we cover
47 values of initial orbital period, ranging from Porb= 0.02
days to Porb= 1117.2 days with a logarithmic spacing of

Plog days 0.0910 orb( )D = dex. Our procedure for generating
these binaries closely follows the process described in
Section 5.5 for the grid of binary-star modes composed of
two H-rich stars. Here, we replace the initial primary-star
models with He-rich stars at ZAHeMS, while the companion
COs are modeled as point masses.

Figure 14 shows an example of two slices of this grid, one
corresponding to an NS companion (with MCO; 1.43Me) and
one corresponding to a BH (with an MCO; 14.66Me). The
marker shapes and color scheme follow the same convention as
in Figure 11, but since these simulations are initialized with He
stars, the symbol key is simplified in Figure 14.

When comparing the two panels, the most apparent
difference occurs at large M1 and short orbital period: whereas
accreting NSs enter unstable mass transfer (these systems
typically end up merging in a CE; see Section 10), the
corresponding accreting BHs typically either overfill their
Roche lobes at ZAMS or avoid mass transfer altogether. In
contrast, we find that independently of the CO mass, systems
with low He-star masses (M1� 3Me) mass transfer up to wide
orbital periods (Porb< 103 days). This occurs because low-
mass He stars expand their He-rich envelope much farther
during their later He-shell and C-burning phases (Figure 8).

Both slices of the grid present two islands of failed
simulations, one with M1; 1.8Me and Porb of the order of
days and another island with M1 1Me and Porb of the order
of hours. MESA has difficulty modeling the envelope’s structure
as it expands to large radii in the first island, whereas the
second, short-Porb island is due to MESA having difficulty
following a star’s evolution into an He WD after it has been
spun up due to tides and mass transfer. Combined, failed runs
account for; 5% of the models in this grid. In practice we find
these failed runs do not bias our population synthesis results of
merging NSs and BHs, as these portions of the parameter space
predominantly lead to the formation of WDs.
In Figure 15 we show the same two grid slices, but now the

marker color corresponds to the specific angular momentum of
the He-star j1, at the end of the simulation. MESA allows us to
track this quantity, as it self-consistently models the interplay
between tides (which spin up the star), stellar winds (which
spin down the star and widen the binary), mass transfer (which
alters the orbital period), and internal angular momentum
transport. Comparing Figures 14 and 15, we find that the He
stars with the highest specific angular momenta are those with
either short Porb or stable mass transfer.
The binary-star grid, composed of an He-rich star and a CO

companion, presented in this section closely agrees with those
of Qin et al. (2018) and Bavera et al. (2020, 2021). In contrast
to these previous works, the present grid further expands the

Figure 12. Relative increase in the mass of the CO (MCO,f − MCO,i)/MCO,i due to accretion for systems where the nondegenerate star reached the end of its life. The
grid slices are the same as shown in Figure 11. Although accretion is Eddington-limited, COs in binaries with pre-RLO mass ratios in the range q ∼ 1–2 (defining
q = MCO,i/M1,i) and short initial periods, which will experience long-duration mass-transfer phases, manage to accrete a significant amount of mass.
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parameter space coverage to lower He-star masses and to larger
orbital periods.

6. Grid Postprocessing

Each single- or binary-star evolution simulation produces a
series of data files that must be parsed, analyzed, and collated
before we can use them within POSYDON. Our process
includes: (1) rerunning any failed simulations; (2) adding
postprocessed quantities to our data grids; (3) a postprocessing
procedure used exclusively on our single, H-rich and He-rich
star grids, which allows for an efficient interpolation among
tracks of different masses; (4) the downsampling of our grids to
reduce data size; (5) classifying each model within our grids
based on the different resulting stellar and binary types; and (6)
fitting classifiers and interpolators over the stellar and binary
parameters in each grid. We describe the first four steps next,
while the steps of classification and interpolation are discussed
in Section 7.

6.1. Rerunning Failed Models

After having computed our grids of single- and binary-star
models, we first identify those runs that did not reach our
desired end point (see Section 5.2). This can happen for a
variety of reasons, many of which we have not yet been able to
eliminate. For example, one source of problematic runs appears
to deal with stellar oscillations; in certain cases, MESA tries to

resolve short-timescale evolution driven by the κ-mechanism,
which dramatically shortens the size of successive MESA steps.
We address this problem by rerunning our failed binary
simulations with a maximum radiative opacity ( maxk ) set to
0.5 cm2 g−1. This approximation reduces the failure rate of
each binary grid from ;10.9%, ;8.0%, and ;11.8%, for the
binary-star grids composed of two H-rich stars, an H-rich star
with a CO companion at the onset of RLO, and an He-rich star
with a CO companion, respectively, to ;0.9%, ;1.5%, and
;4.8%. The differences in the resulting evolutionary tracks
with and without the opacity limit are generally small when
compared to differences in tracks of adjacent points in our
initial parameter space and compared to our interpolation
accuracy (Section 7.5).
Figure 16 shows a typical example of a binary-star model,

initially composed of two H-rich ZAMS stars with masses
10.50Me and 5.25Me and an orbital period of 43.94 days.
This binary initially failed to reach the end of the simulation
(dashed, black line; MESA exceeded its minimum time step
limit), but did so successfully when rerun with an upper limit to
the radiative opacity (orange line). The top panel shows that the
stellar radius evolves similarly between the two simulations as
the donor star loses mass. For the radius and effective
temperature (bottom panel), the two properties most affected
by an opacity limit, differences between the two tracks are
typically less than 0.1 dex.

Figure 13. Same as Figure 12, but now the color of the symbols depicts the maximum mass-transfer rate that occurred in the evolution of each binary. A significant
part of the parameter space leads to highly super-Eddington mass-transfer rates, albeit in short-lived phases for most cases, and thus to the potential formation of
ultraluminous X-ray sources. This peak mass-transfer rate refers to the rate the donor star is losing mass through RLO; accretion onto the accretor is limited to the
Eddington rate.
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For further comparison we show an adjacent binary-star
model in the same grid with stars of the same mass ratio and
orbital period but slightly less-massive primary star of
M1= 9.9Me, that successfully reached the end of the
simulation without the need to limit the opacity. Although
the neighboring simulation is better able to match our failed run
when the luminosity dips to low values, comparison between
all three tracks in Figure 16 suggests that any inaccuracies
accrued by our opacity limit are of a similar magnitude to any
differences between adjacent simulations in our model grids.

6.2. Postprocessed Quantities

Our single- and binary-star MESA simulations result in two
types of files: history files that contain the time evolution of the
binary’s and its component stars’ properties and profile files
that define each nondegenerate star’s structure. In this first
version of POSYDON, we save the profiles of stars only at the
end of the simulations. Combined with the MESA terminal
output, we have all of the information necessary to analyze
each simulation.

As a first step, we analyze the final binary properties and
terminal output to broadly determine how and why each binary
simulation ended. We first identify the small subset of binaries
in which, despite the process described in Section 6.1, the
MESA simulation failed to converge; these are ignored
throughout the remainder of this work. For the successful
binary-star simulations, we have four separate conditions (e.g.,
Figure 15): (1) binaries that were already in RLO when
initialized at ZA(He)MS; (2) binaries in which one star reached
the end of its lifetime (i.e., one of the first three termination
conditions described in Section 5.2) and went through stable
mass transfer; (3) binaries that avoided mass transfer and the
two component stars essentially evolved in isolation; and (4)

binaries that entered unstable mass transfer (described in
Section 8.2).
As a second step, we separately analyze each star and assign

it a stellar type at the end of each simulation. For COs, this is a
straightforward task, as the type of CO is dependent only on its
mass. Nondegenerate stars present a more difficult object to
typecast. Most pBPS codes rely upon the k-type stellar
classification introduced in Hurley et al. (2000) and based on
Tout et al. (1997). In POSYDON, we instead use a two-term
classification system, dependent upon both what part of the star
(if any) is undergoing nuclear burning and the envelope’s
composition. Table 3 provides a list of the possible stellar-type
combinations, while in Figure 17 we show the algorithm for
determining them.
As a third step, we assign a designation to the resulting

binary configuration in each of our simulations. These include
detached for binaries in which both stars are confined within
their respective Roche lobes; RLO1 or RLO2 for binaries in
which the primary or secondary star, respectively, is overfilling
its Roche lobe; contact for binaries in which both stars are
overfilling their respective Roche lobes; not_converged for
systems where the binary-star simulations ran into numerical-
convergence problems; and initial_MT for binaries initi-
alized in RLO. These designations of stars and binary states are
used throughout POSYDON and are updated by each evolu-
tionary step. Therefore evolutionary phases modeled with on-
the-fly calculations (see Section 8) also affect the star and
binary states, which result in two additional possible designa-
tions: merger for those binaries that have merged, and
disrupted for those binaries that have become unbound due
to some process.
As a fourth step, we analyze the mass-transfer history of the

binaries we simulate, identifying the donor star’s state when

Figure 14. View of two grid slices for two different values of initial CO masses (MCO = 1.43 Me on the left, MCO = 14.66 Me on the right), from our grid of binary-
star models consisting of He-rich stars and CO companions. The different symbols summarize the evolution of each of the models, as in Figure 9.
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RLO initiated, and whether or not that mass-transfer phase was
stable or unstable (e.g., caseA_from_star1). Note that we
use the canonical definitions for Case A, Case B, and Case C
mass transfer (for a review, see, e.g., Iben 1991). Specifically
these labels (which can be identified by the differing symbol
types and colors shown in, e.g., Figure 11) identify whether the
donor star was on the MS, on the post-MS, or a stripped He
star. In cases where systems evolve through multiple phases of
mass transfer, all phases are included in the label (e.g.,
caseA/B_from_star1 if a Case A mass-transfer phase is
followed by a Case B one).

As a final step, we calculate a number of postprocessed
quantities, ranging from parameters related to specific core-
collapse mechanisms (Section 8.3) to different CE prescriptions
(Section 8.2). These are typically parameters that require
integrals over all or part of a star’s structure, which for
efficiency we precompute. All postprocessed quantities are
summarized in Table 4.

6.3. Resampling of Single-star Grids Using Equivalent
Evolutionary Phases

For our single-star grids, we perform an additional
postprocessing step, which resamples the history output of
the MESA code in a way that facilitates the interpolation of
entire evolutionary tracks. This is necessary for the computa-
tions described in Section 8.1. Using the method from Dotter
(2016), we assign equivalent evolutionary phases (EEPs)
throughout the evolution of a star. This method designates

primary EEPs to major structural changes to a star (e.g., He
ignition), and regularly spaced secondary EEPs in between.
Primary EEPs are extracted directly from the computed stellar
tracks. We then interpolate between the time steps to identify
every quantity of a star that we track at each secondary EEP.
By applying this method to each of our single-star tracks (both
H-rich and He-rich), we can more easily interpolate within our
single-star grids to find the quantities (e.g., radius, core mass)
characterizing a star of any mass, and at any point throughout
its evolution.
The methodology described above is unfortunately not

directly applicable to binary-star evolutionary tracks. For this
interpolation method to work, the defined EEPs must be strictly
ordered a priori. However, binary interactions can happen at
any point during the lifetime of a binary, often more than once,
changing the order of EEPs in a nontractable way. The
interpolation of entire binary-star evolutionary tracks will be
addressed in future releases of POSYDON.

6.4. Downsampling of Binary-star Grids

The evolutionary time steps taken by MESA are typically
small, producing high-resolution binary histories and final
profiles of the individual stars. To reduce the memory footprint
of the data, and decrease computation times when modeling
binary populations, we downsample the binary tracks (i.e.,
keep a subset of the steps).
For each individual run in a binary-star grid, we obtain from the

MESA simulation the evolution of the binary and individual stars’

Figure 15. The final specific angular momentum j1 = J1/M1 where J1 is the He-star AM, and M1 is its mass, at carbon depletion for our grid of He stars with CO
companions. We only show j1 for systems where the nondegenerate star reached the end of its life. The grid slices are the same as those shown in Figure 14.
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parameters, as well as the postprocessed quantities described in
Section 6.2. For a total number of parameters m, the state of the
binary is encoded in the m-dimensional vector h. The evolution of
the binary is a multivariate time series given by hi= h(ti), with
i= 1, L , N, where N is the number of steps, each corresponding
to an age ti. Before the downsampling, the independent variable
(age), and nonphysical parameters (e.g., model number in MESA)
are excluded from h, while all other parameters are rescaled
linearly from 0 to 1.

The downsampling algorithm selects a subset of the
original steps, so that if interpolated at the original time steps
ti, the interpolation absolute scaled error is below a chosen
threshold ò:

h he , 14i i i
ˆ ( ) = - <

where hi
ˆ is the interpolated point using the age as the

independent variable. We use linear interpolation,

h h h h
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where j and j+ 1 are adjacent steps of the downsampled time
series so that tj< ti< tj+1.
The search for the steps in the downsampled data is

performed as follows. Initially, we include only the first (h1)
and last (hN) points. Then we search for the intermediate point
(hj where 1< j<N) with maximum interpolation error. If this
error is below the threshold (ej< ò), then the algorithm has
finished; otherwise, it includes this point and continues the
search in the two parts of the time series before (h1 to hj) and
after (hj to hN) the intermediate point. The process continues
until all original points are well approximated by the
interpolation of the selected subset of steps, i.e., ei< ò, ∀i.
Additionally, we apply this downsampling method to the

stellar profile data, following the exact procedure outlined
above with the mass coordinate as the independent variable. A
shell is kept not only when the interpolation error exceeds the
predefined threshold, but also when the adjacent shells that are
kept have differences in mass larger than 0.5% of the total
stellar mass.
To demonstrate the validity of our method, Figure 18 shows

an example of the downsampling of a track using the same
interpolation error threshold ò= 0.1 we use for our grids.
However, here we apply it to only two parameters (orbital
period and radius of secondary star) for visualization purposes.
When the algorithm operates in a higher-dimensional space, it
retains a large fraction of the initial points to capture the overall
shape, making it hard to inspect its performance through two-
dimensional plots. The downsampled version of the track is
able to follow even the rapid oscillations occurring during the
late-stage evolution of this particular binary.
The choice of ò is a balance between data compression and

interpolation accuracy, a trade-off we demonstrate explicitly for
our model grid composed of two H-rich stars in Figure 19. For our
grids in POSYDON, we set the downsampling threshold to 0.1 and
enforce it only for a list of 22 columns from the simulation output
(see excluded parameters annotated with an asterisk in Tables 5, 6
and 7). This results in a compression factor of∼26 with respect to
original simulation data, but still sufficiently high accuracy with
respect to the original grid. The final size of the three binary-star
grids, after downsampling, is ∼9.3 GB.

7. Our Classification and Interpolation Approach

Even after our various stages of postprocessing, we cannot
use the grids of binary-star simulations within POSYDON as is
for modeling populations (except if we follow a nearest-
neighbor matching approach). While our binary-star simula-
tions have only been run for a select, finite combination of
initial masses and orbital periods, BPS requires us to have the
capability to evolve a binary anywhere within the domain of
interest. We solve this problem in two steps. First, we apply a
classification method to each of our grids to identify regions
that undergo qualitatively different classes of evolution. Then
we separately apply an interpolation method to each class to
calculate stellar and binary properties. We describe the details
of those methods in Sections 7.2 and 7.3, respectively.

Figure 16. Typical example of the evolution of a binary-star model that failed
to reach the end of the simulation due to over-resolved stellar oscillations that
eventually lead MESA to convergence problems. We show the evolution of the
primary’s radius, as a function of its mass (top panel) and its track in the
Hertzsprung–Russell diagram (bottom panel). The binary initially consists of a
10.50 Me and a 5.25 Me H-rich ZAMS stars at an orbital period of 43.94 days.
Comparison between our original, failed simulation (dashed, black line) and a
successful simulation where we artificially limit the radiative opacity to
0.5 cm2 g−1 (orange line) shows that our approximation is typically accurate to
within 0.1 dex for all stellar parameters. We additionally show the evolution of
an adjacent simulation in our binary grid (blue line; same mass ratio and orbital
period but a primary mass of 9.91 Me), which shows that any inaccuracy
induced by our opacity approximation has a similar magnitude to the
differences between neighboring simulations.
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7.1. Transformation and Rescaling of Grid Data

For classification and interpolation purposes, we can
interpret each of our binary grids as a data set that comprises
N input binaries, xn n

N
1{ } = , along with its corresponding scalar

yn n
N

1{ } = and class zn n
N

1{ } = targets. These sets can be columnwise
stacked into the matrices X N3Î ´ , Y M NÎ ´ (where M is
the number of output quantities), and Z of dimension 4× N
(because we classify each run into one of four broadly defined
categories; see Section 7.2). More specifically, each xn

3Î
contains the initial masses and orbital period of the nth binary
in the grid, whereas yn and zn denote the collection of final
binary and single-star quantities, and their associated classifica-
tion, respectively. The N runs are distributed in a uniform three-
dimensional mesh, either on a linear or logarithmic scale
following the description provided in Section 5. This uniform
grid constitutes an initial and naive way of thoroughly covering
the parameter space, which is feasible due to the low
dimensionality of the data.

A convenient preprocessing of the data is crucial for both
interpolation and classification. We apply a series of nonlinear

and linear transformations to numeric data. Choosing the
optimal transformation depends on the task (interpolation or
classification), the method used for each task, and whether we
are dealing with an input or an output quantity.
First, we consider a nonlinear transformation of the data

using the logarithm: inputs can be transformed as xlog i and
targets as ylog i or ylog i( )- if yi< 0. Classification accuracy
will improve when our algorithm uses the logarithm of the
inputs for data sampled evenly in log-space. The effect on
interpolation is different; e.g., a linear interpolation in the log-
space results in a nonlinear interpolation on the untransformed
space. This is similar to an approach where a nonlinear space is
transformed through a kernel to a space in which a linear model
allows for modeling behavior appropriately.
We automatically choose whether to apply a logarithmic

scaling using a cross-validation scheme. The optimal scaling
for both inputs and outputs is chosen using the lowest relative
error out of all of the feasible scalings that could be applied to
the given variable.
As a second step, we apply a min–max scaling to the inputs

so that the transformed features xi
t are confined to the range

Table 3
List of the Different Stellar Types We Adopt in POSYDON

Compact Nondegenerate Star States

WD H-rich_Core_H_burning H-rich_Core_He_burning H-rich_Shell_H_burning
NS H-rich_Central_He_depleted H-rich_Central_C_depletion H-rich_non_burning
BH stripped_He_Core_H_burning stripped_He_Core_He_burning stripped_He_Shell_H_burning

stripped_He_Central_He_depleted stripped_He_Central_C_depletion stripped_He_non_burning

Figure 17. The state of compact objects (COs) is determined during the core-collapse step: if the mass of the pre-SN C/O core is less than 1.37 Me, then we form a
WD. Otherwise an SN will occur, and the state of the CO is determined based on its mass. For nondegenerate stars, the state is a combination of a surface-composition
state, and a nuclear burning state. The former is decided solely by the presence or absence of hydrogen at the surface, whereas the burning state depends on whether a
species (H, He, or C) has been depleted from the core, and the burning of which species still contributes to the nuclear luminosity (Lnuc).
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[–1, 1], and we standardize the outputs such that they have
zero-mean and unit variance,
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y y
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The choice of scaling for the inputs is derived from the uniform
nature of the input grid data. Although it is possible that we
sampled our data in a nonoptimal way, in practice we find the
best results occur when our data scaling follows our grid
sampling. In the case of the interpolated quantities, standardi-
zation produces improved metrics, particularly because it is less
sensitive to outliers.

7.2. Classification of Our Grids

Accurate classification is a critical aspect of the POSYDON
approach to evolving binary systems. Therefore, we separate
our binaries into four categories based on their mass-transfer
histories. The categories are: stable mass transfer, unstable
mass transfer, binaries that never interact, and those in RLO at
ZAMS (Section 6.2). In addition to using their mass-transfer
history, we could further segregate binaries into more refined
classes; however, we find this to be currently unnecessary, and
we can accurately interpolate our binaries given these four
broad classes.
For each of our three binary-star grids, we generate a

classification object that determines which of the four

Table 4
Postprocessed Variables Referring to the Final State of Each Binary in Our Grids

Name Description Unit

termination_flag_1 Termination reason from MESA output, or reach cluster time limit
termination_flag_2 RLO state (indicating which star is the donor), or contact_during_MS in case of stellar merger
termination_flag_3 State of primary star
termination_flag_4 State of secondary star
interpolation_class Classification based on termination flags 1 and 2, indicating broad groups based on mass transfer
surface_other Surface abundance fraction of elements excluding 1H, 4He, 12C, 14N, and 16O
center_other Central abundance fraction of elements excluding 1H, 4He, 12C, 14N, and 16O
direct_state CO state for the direct collapse prescription of the star
direct_SN_type SN type for the direct collapse prescription of the star
direct_f_fb Fallback mass fraction for the direct collapse prescription of the star
direct_mass CO mass for the direct collapse prescription of the star Me

direct_spin CO spin for the direct collapse prescription of the star
Fryer+12-rapid_state CO state for the Fryer et al. (2012) rapid prescription of the star
Fryer+12-rapid_SN_type SN type for the Fryer et al. (2012) rapid prescription of the star
Fryer+12-rapid_f_fb Fallback mass fraction for the Fryer et al. (2012) rapid prescription of the star
Fryer+12-rapid_mass CO mass for the Fryer et al. (2012) rapid prescription of the star Me

Fryer+12-rapid_spin CO spin for the Fryer et al. (2012) rapid prescription of the star
Fryer+12-delayed_state CO state for the Fryer et al. (2012) delayed prescription of the star
Fryer+12-delayed_SN_type SN type for the Fryer et al. (2012) delayed prescription of the star
Fryer+12-delayed_f_fb Fallback mass fraction for the Fryer et al. (2012) delayed prescription of the star
Fryer+12-delayed_mass CO mass for the Fryer et al. (2012) delayed prescription of the star Me

Fryer+12-delayed_spin CO spin for the Fryer et al. (2012) delayed prescription of the star
Sukhbold+16-engineN20_state CO state for the Sukhbold et al. (2016) N20 engine prescription of the star
Sukhbold+16-engineN20_SN_type SN type for the Sukhbold et al. (2016) N20 engine prescription of the star
Sukhbold+16-engineN20_f_fb Fallback mass fraction for the Sukhbold et al. (2016) N20 engine prescription of the star
Sukhbold+16-engineN20_mass CO mass for the Sukhbold et al. (2016) N20 engine prescription of the star Me

Sukhbold+16-engineN20_spin CO spin for the Sukhbold et al. (2016) N20 engine prescription of the star
Patton&Sukhbold20-engineN20_state CO state for the Patton & Sukhbold (2020) N20 engine prescription of the star
Patton&Sukhbold20-engineN20_SN_type SN type for the Patton & Sukhbold (2020) N20 engine prescription of the star
Patton&Sukhbold20-engineN20_f_fb Fallback mass fraction for the Patton & Sukhbold (2020) N20 engine prescription of the star
Patton&Sukhbold20-engineN20_mass CO mass for the Patton & Sukhbold (2020) N20 engine prescription of the star Me

Patton&Sukhbold20-engineN20_spin CO spin for the Patton & Sukhbold (2020) N20 engine prescription of the star
avg_c_in_c_core_at_He_depletion Average carbon 12 abundance at carbon core at the state of He depletion of the star
co_core_mass_at_He_depletion Carbon–oxygen core mass at the state of He depletion of the star
m_core_CE_1cent Mass of the hydrogen-deficient (i.e., helium) core, with the core-envelope boundary defined as the outermost

layer where the hydrogen mass fraction drops below 1%
Me

m_core_CE_10cent As m_core_CE_1cent, but for hydrogen mass fraction of 10% Me

m_core_CE_10cent As m_core_CE_1cent, but for hydrogen mass fraction of 30% Me

m_core_CE_pure_He_star_10cent Mass of the hydrogen- and helium-deficient (i.e., carbon–oxygen) core, with the core–envelope boundary
defined as the outermost layer where the sum of hydrogen and helium mass fraction drops below 10%

Me

r_core_CE_1cent Radial coordinate of the core as defined in m_core_CE_1cent Re

r_core_CE_10cent Radial coordinate of the core as defined in m_core_CE_10cent Re

r_core_CE_30cent Radial coordinate of the core as defined in m_core_CE_30cent Re

r_core_CE_pure_He_star_10cent Radial coordinate of the core as defined in m_core_CE_pure_He_star_10cent Re

Note. Quantities referring to single-star quantities (i.e., all except termination flags and interpolation class) are prefixed with S1_ and S2_ to distinguish the
corresponding star in the grid (e.g., S1_surface_other or S2_direct_mass). These variables, along with the last values of the single and binary history
variables (see Tables 5 and 6; e.g., S1_log_L), comprise the final values tables stored in the grids.
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previously defined outcomes will be the result of a binary with
any particular combination of two masses and orbital period. In
this first version of POSYDON, we use a k-nearest neighbors
(kNN) classifier, a simple and robust classifier that achieves
high precision in this task. We use the Euclidean distance as a
distance metric for the transformed input grid and weight each
neighbor in the neighborhood proportionally to their inverse
distance.

We optimize the number of nearest neighbors we use by
applying a Monte Carlo (MC) cross-validation scheme and
selecting the k that produces a higher balanced accuracy
(bACC). The bACC metric averages the statistical recall for

each class (recall is the number of true positives divided by the
combined number of true positives and false negatives) to
produce a metric that accounts for any imbalances between
classes.
Figure 20 shows the average cross-validation performance

for our three grids in terms of bACC as a function of the
number of neighbors in the kNN classifier starting from k= 1
and highlights the location of the optimum. We train our final
classifier on our regularly spaced grids using the optimal k,
listed at the top of each panel in Figure 20 and indicated by a
vertical black line.
Figure 21 shows our classifier applied to one slice in each of

our three grids, with the colors indicating different regions.
Overlaid gray contours, pronounced near class boundaries,
indicate classification uncertainty. We ignore the no mass-
transfer class for the grid of H-rich stars with CO companions,
as this grid only applies to interacting binaries.
To evaluate the accuracy of our classifiers, we use the

validation data set associated with each of our three binary grids.
For each grid, this validation set comprises binaries randomly
sampled with the same range and scale, linear or logarithmic, as
its training counterpart. Each of the three validation sets contain
3000 samples that roughly represent ∼5%–12% of the number of

Figure 18. The evolution of a 37.6 Me star with a 22.6 Me companion with an
initial Porb of 6.82 days. We compare the complete track provided by MESA
(orange) comprising 3412 steps to our downsampled track (black dots)
containing 122 steps for the binary’s orbital period (top panel) and each stars’
radius (bottom two panels). In this particular case, the compression ratio
is ∼155, but the ratio varies from star to star and depends on which parameters
are accounted for by the algorithm. The downsampling algorithm captures even
the rapid variations seen in the two stars’ radii between 4.8 and 5.3 Myr (shown
in the insets).

Figure 19. The accuracy (P90(r); top panel) and compression ratio (bottom
panel) of our downsampling algorithm as applied to the HMS–HMS binary
grid, as a function of the downsampling threshold. We compare the
performance of the algorithm when it is applied to all output columns in the
data (circular markers) or only a selected list of columns (×; see excluded
parameters annotated with an asterisk in Tables 5 and 6). As the downsampling
threshold ò increases from 10−3 to 10−1, the compression ratio dramatically
improves, but at the cost of the accuracy (P90% represents the average of the
90th percentile of the interpolation relative errors across all runs and either all
or selected parameters). For our grids, we use only selected columns with
ò = 10−1, which gives us a compression ratio of ;26, while limiting any errors
that could be accrued from this process to within a few percent.
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binaries in the regular grid. By applying our classifiers to the same
initial values as those of our validation binaries, we can evaluate
the accuracy of our classifiers. In Figure 21 our validation data is

indicated by points (correctly classified) and crosses (incorrectly
classified). It is evident that incorrectly classified validation
binaries are very rare.

Table 5
Variables in Historical Tables in Our Grids, Taken from the MESA Output

Name Description Unit

he_core_mass Helium core mass Me

c_core_mass Carbon core mass Me

o_core_mass Oxygen core mass Me

he_core_radiusa Helium core radius Re

c_core_radiusa Carbon core radius Re

o_core_radiusa Oxygen core radius Re

center_h1 Center 1H mass fraction
center_he4 Center 4He mass fraction
center_c12a Center 12C mass fraction
center_n14a Center 14N mass fraction
center_o16a Center 16O mass fraction
surface_h1a Surface 1H mass fraction
surface_he4a Surface 4He mass fraction
surface_c12a Surface 12C mass fraction
surface_n14a Surface 14N mass fraction
surface_o16a Surface 16O mass fraction
c12_c12a Decimal logarithm of the burning power from the 12C + 12C reaction [Le]
center_gammaa Plasma coupling parameter, ratio of the Coulomb to thermal energy
avg_c_in_c_core Average 12C abundance at carbon core
surf_avg_omegaa Average surface angular velocity yr−1

surf_avg_omega_div_omega_crita Ratio of the average and critical surface angular velocity
log_LHa Decimal logarithm of the hydrogen burning power [Le]
log_LHea Decimal logarithm of the helium burning power [Le]
log_LZa Decimal logarithm of the total burning power excluding LH and LHe and photodisintegration [Le]
log_Lnuca Decimal logarithm of the total nuclear burning power [Le]
log_Teff Decimal logarithm of the effective temperature [K]
log_L Decimal logarithm of the luminosity [Le]
log_R Decimal logarithm of the radius [Re]
total_moment_of_inertia Total momentum of inertia g cm2

spin_parametera Dimensionless stellar spin parameter
log_total_angular_momentum Decimal logarithm of the total angular momentum [g cm2 s−1]
conv_env_top_massa Mass coordinate of the top boundary of the outermost convective region Me

conv_env_bot_massa Mass coordinate of the bottom boundary of the outermost convective region Me

conv_env_top_radiusa Radial coordinate of the top boundary of the outermost convective region Re

conv_env_bot_radiusa Radial coordinate of the bottom boundary of the outermost convective region Re

conv_env_turnover_time_ga Global convective turnover time yr
conv_env_turnover_time_l_ba Local convective turnover time half of a scale height above the outermost convective zone bottom boundary yr
conv_env_turnover_time_l_ta Local turnover time one scale height above the outermost convective zone bottom boundary yr
envelope_binding_energya Binding energy of the envelope erg
mass_conv_reg_fortidesa Mass of the most important convective region for equilibrium tides, as defined in Equation (7) Me

thickness_conv_reg_fortidesa Thickness of the most important convective region for equilibrium tides, as defined in Equation (7) Re

radius_conv_reg_fortidesa Radial coordinate of the most important convective region for equilibrium tides, as defined in Equation (7) Re

lambda_CE_1centa Common-envelope parameter of the envelope binding energy for core-envelope boundary where hydrogen mass
fraction becomes lower than 1%

lambda_CE_10centa Common-envelope parameter of the envelope binding energy for core-envelope boundary where hydrogen mass
fraction becomes lower than 10%

lambda_CE_30centa Common-envelope parameter of the envelope binding energy for core-envelope boundary where hydrogen mass
fraction becomes lower than 30%

co_core_mass Carbon–oxygen core mass Me

co_core_radiusa Carbon–oxygen core radius Re

lambda_CE_pure_He_star_10centa Common-envelope parameter of the He-rich envelope binding energy for core-envelope boundary where the
sum of hydrogen and helium mass fraction becomes lower than 10%

log_L_div_Ledda Decimal logarithm of the ratio of the luminosity and Eddington luminosity

Notes. The star_age is not included since we provide the age variable in the binary history (see Table 6), which refers to both the systems, and its components.
Since these quantities are undefined for COs, historical tables are not provided for NSs and BHs; however, the evolution of the mass is given in the binary historical
tables.
a Property not accounted for when downsampling the grids (Section 6.4).
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To evaluate the quantitative accuracy of our classifier, we
provide a confusion matrix for each of three grids in Figure 22.
Diagonal squares indicate the fraction of systems that were
correctly classified, while off-diagonal squares indicate the
fraction of incorrectly classified systems. The matrices are
calculated such that each row sums to unity. All classes in all
grids have an accuracy in excess of 90%, often much more so,
except for unstable mass transfer for binaries with an He-rich
star and a CO companion. Examination of two slices of this
grid in Figure 15 shows that the unstable mass-transfer class
comprises a relatively small portion of the overall grid, existing
at small orbital periods, small CO masses, and large companion
masses. Reliable classification of small classes is difficult, but
improving our classification accuracy will be a focus of future
efforts (Section 11).

7.3. Interpolation of Our Grids

Once classified based on their mass-transfer characteristics,
we separately interpolate binaries falling into each class for
each of our three binary-star simulation grids. We only
interpolate quantities for three of our binary classes, since
those binaries overfilling their Roche lobe at ZA(He)MS are
dismissed.

We use an N-dimensional (where N is the number of
binaries) linear interpolation: the data is divided into a set of N-
simplices, tetrahedra in our three-dimensional data, by means
of a Delaunay triangulation (which is not unique given the
regular structure of our grids). The interpolated value for a
given point corresponds to the value at the hyperplane that
passes through the vertices of the simplex, which contains the
point. The choice of whether to apply a nonlinear transforma-
tion on yi, ylog i depends directly on that magnitude. For each
output magnitude, we select the optimal scaling via MC cross-
validation with x iterations and p% of test data comparing the

average relative error across iterations. The final interpolator is
trained using all binaries within a particular class for each grid.
The linear interpolation method is not capable of extrapola-

tion: the value for any point that lies outside the convex hull
defined by the constructed Delaunay triangulation will be
undetermined. Although we are not, in general, interested in
interpolating outside the training grid, there will be a small
region between the convex hull of the linear interpolation and
the decision boundary provided by the classifier where we still
want to obtain system properties. For this small sliver of
parameter space, we adopt values of the nearest point in
parameter space of the same class. This is a problematic region
where the probability of belonging to the interpolable class will
be low, expressing the uncertainty we have about those binaries
with the current resolution of the grids. We are currently
exploring a method of tackling this problem by incorporating
new simulations along the decision surface, identified using an
active-learning scheme (Rocha et al. 2022).

7.4. Ensuring Physical Congruity of Interpolated Values

The linear interpolation method described here treats each
feature independently without preserving possible physical
correlations. However, the interpolated results may produce
incongruous quantities within a resultant star. For example, the
Stefan–Boltzmann law connecting the luminosity, radius, and
effective temperature of a star might not hold for an
interpolated binary. As another example, the He-core mass of
a star must always be less than the star’s total mass. We have
carefully identified a number of physical constraints within the
quantities that we are interpolating that must be satisfied by any
realistic star, each of which we list in Table 8.
To address this issue, we process the interpolated quantities

for a given binary so that they respect this list of constraints,
which fall into one of three different types depending on the

Table 6
Variables in Binary Historical Tables, Taken from the MESA Output

Name Description Unit

model_numbera The model number of the final state
agea Binary age yr
star_1_mass Mass of the first star Me

star_2_mass Mass of the second star Me

period_days Orbital period in days d
binary_separation Binary separation Re

lg_system_mdot_1 Decimal logarithm of rate of mass loss from the system from around the first star due to inefficient mass transfer [Me yr−1]
lg_system_mdot_2 Decimal logarithm of rate of mass loss from the system from around the second star due to inefficient mass transfer [Me yr−1]
lg_wind_mdot_1a Decimal logarithm of rate of mass loss of the first star due to wind [Meyr

−1]
lg_wind_mdot_2a Decimal logarithm of rate of mass loss of the second star due to wind [Meyr

−1]
lg_mstar_dot_1a Decimal logarithm of rate of mass loss of the first star [Me yr−1]
lg_mstar_dot_2a Decimal logarithm of rate of mass loss of the second star [Me yr−1]
lg_mtransfer_rate Decimal logarithm of mass-transfer rate [Me yr−1]
xfer_fractiona Mass-transfer fraction
rl_relative_overflow_1a Roche lobe overflow of the first star in units of donor Roche lobe radii
rl_relative_overflow_2a Roche lobe overflow of the second star in units of donor Roche lobe radii
trap_radiusa Trapping radius Re

acc_radiusa Radius of the compact object cm
t_sync_rad_1a Tidal synchronization timescale of the first star for stars with radiative envelopes s
t_sync_conv_1a Tidal synchronization timescale of the first star for stars with convective envelopes s
t_sync_rad_2a Tidal synchronization timescale of the second star for stars with radiative envelopes s
t_sync_conv_2a Tidal synchronization timescale of the second star for stars with convective envelopes s

Note.
a Property not accounted for when downsampling the grids (Section 6.4).
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basis of the corrective action required. When quantities are
connected via an equation (Type I), then the interpolated value
of one parameter is ignored and inferred by solving the
equation on the interpolated values of the remaining

parameters. The Stefan–Boltzmann equation provides an
example of a Type I constraint: we only interpolate each stars’
R and L, while Teff of the interpolated star is derived. In the
case of inequalities between quantities (Type II), the quantity
that must be less than another is limited by the value of the
latter. Finally, there are cases where all quantities ought to add
to a certain value (Type III). For instance, the fractional
chemical abundances of a star’s core must, by definition, sum
to unity. We ensure these constraints are satisfied by normal-
izing our interpolated outputs. In one case described in the
Table 8 footnotes, a parameter is subject to two separate
constraints, in which case we are careful to apply them in the
correct order.
In the case of the constraint involving the interpolated quantities

Rconv.reg. and Dconv.reg., the middle point ( R R 2b,conv.reg( )º + )
and the thickness (≡ Rt,conv.reg− Rb,conv.reg) of the convective
region for the computation of tides, respectively, a special
treatment is required. Both quantities must be positive and less
than the star’s radius. However, constraining them indepen-
dently as in other Type II constraints does not work, as the inner
and outer radius of the convective region must both be inside the
star: 0< Rconv.reg.−Dconv.reg./2< Rconv.reg.+Dconv.reg./2< R.
We decompose this relationship into three inequalities:
Dconv.reg./2� 0, Rconv.reg.�Dconv.reg./2, and Rconv.reg.+
Dconv.reg./2� R. In the Dconv.reg.–Rconv.reg. plane, the constraints
form a feasibility region in the shape of a triangle with the
vertices (0, 0), (0, R), and (R, R/2), where R is a fixed values. If
the constraints are violated, then the interpolated values lie
outside of the triangle. The triangle’s centroid (R/3, R/2) and
the point corresponding to the interpolated values define a line l.
The intersection between l and the border of the triangle satisfies
the constraint inequality, and is used to assign new values to the
parameters. Figure 23 provides a pictorial representation of the
algorithm.
To assess how often our constraints defined in Table 8 are

violated in practice without imposing constraints, we inter-
polated 3000 binaries for each one of the three grids using the
random initial conditions of their validation sets (Section 7.5).
For each binary, we checked all of the constraints (two checks
per binary system, and 23 checks per nondegenerate compa-
nion star) and counted the violations. In the case of Type I
constraints (equations), we consider violation a relative error of
more than 0.001 in the inferred quantity. Overall, we found
57,035 violations in the 274,560 checks (∼20.8%) we

Table 7
Quantities of Final Profiles of the Stars, Taken from the MESA output

Name Description Unit

radius Radius at the outer boundary of the zone [Re]
massa Mass coordinate of the outer boundary of the zone [Me]
logRho Decimal logarithm of the density at the center of the zone [g cm−3]
omega Angular velocity [rad s−1]
energya Specific internal energy [erg g−1]
x_mass_fraction_Ha Mass fraction of all isotopes with atomic number 1
y_mass_fraction_Hea Mass fraction of all isotopes with atomic number 2
z_mass_fraction_metalsa Mass fraction of all elements except for those in x_mass_fraction_H and y_mass_fraction_He
neutral_fraction_Ha Fraction of neutral hydrogen (HI) of all of the 1H
neutral_fraction_Hea Fraction of neutral helium (HeI) of all of the 4He
avg_charge_Hea Average charge of all of the 4He isotopes electron charge [e]

Note.
a Property not accounted for when downsampling the grids (Section 6.4).

Figure 20. The optimal k in our kNN classification scheme for each of our three
grids. The bACC is calculated using 10-fold MC cross-validation, and averages
the statistical recall of each of our four classes described in Section 7.2. The
highest bACC for each grid is provided at the top of each panel and is indicated
by the vertical lines; we use these ks when classifying our grids for running
populations. Although we use the optimal k for each grid, our results are
relatively insensitive to that choice.
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performed. After applying the algorithm defined here, all
violations were corrected.

7.5. How Accurate Are Our Interpolation Methods?

To assess the performance of the interpolation scheme, we
use the same validation data sets that we used to evaluate our
classification accuracy, described in Section 7.2. Our trained
interpolators are applied to the same initial binary parameters as
those of the three sets of 3000 binaries comprising our
validation sets, one for each of our three binary grids. Since
these binaries are not used in the training phase, the difference
between this set and our interpolated predictions for them
provides an ideal comparison from which we can determine the
accuracy of our methods.

Figure 24 provides the accuracies for 11 selected binary and
stellar parameters for our grid of two H-rich stars evolved from
ZAMS. We have split these samples by their mass-transfer
histories so we can separately identify our algorithm’s accuracy
for the stable mass-transfer (red) and unstable mass-transfer
(blue) cases in the top panel and no mass-transfer case (green)
in the bottom panel. For nearly all parameters and all classes,
our median errors are below 1%. Some parameters such as age
and J1 are significantly more accurately interpolated, while
others such as MC O core,1- may be somewhat less accurate. The
distributions are quite broad, suggesting that inaccuracies may
exist when parameters show sharp variations as a function of
input binary parameters. This is particularly apparent for our
unstable mass-transfer channel, likely a result of the relatively
smaller number of simulations that enter unstable mass transfer

Figure 21. Decision boundaries of the kNN classifiers for a single slice in each of the three grids as a function of the primary star’s mass on the horizontal axis and the
orbital period on the vertical axis (the choice of q or MCO for each slice is indicated in each panel’s title). Shaded gray regions overlaid onto class regions represent the
confidence of the classifier in that region. Points on top of the decision boundaries represent the validation data, where the edge color of each point shows the ground
truth of the given point, and the fill color shows the classifier’s prediction. Only in rare circumstances and only near classification boundaries does our classifier make
incorrect predictions for our validation set.

Figure 22. Confusion matrices for each of our three binary grids. Each value at grid cell cij represents the fraction of binaries that belong to class j (vertical axis) and
were classified as class i (horizontal axis). Each row is normalized so that the sum of each row is 1, and the color of each cell indicates the magnitude of the value in
the cell. Accuracies are all above 90%, with the exception of unstable mass transfer for the He-rich star with a CO companion.
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and the varying evolutionary stages of the donor stars at the
onset of the dynamical instability. For instance, the relatively
large error distribution for MC O core, 1- for our unstable mass-
transfer class is likely due to the rapid core growth during the
giant phase when donor stars typically enter dynamical
instability. Furthermore, despite their large error distributions,
some parameters, such as R1, have little impact on the evolution
of a binary. Whether the primary star’s next evolutionary phase
is core collapse (in the case of the stable mass-transfer scenario)

or a CE (in the case of unstable mass transfer), the mass at the
outermost part of the star has little impact on the binary’s
outcome. Nevertheless, we plan to improve these accuracies
with future enhancements to our interpolation schemes.
In Figure 25 we provide analogous results for our stable

mass-transfer and unstable mass-transfer binaries for our grid
of H-rich stars with a CO companion. Our models tend to show
larger variations in accuracy compared with our grid of two
H-rich stars. Median errors tend to range from 1%–10% with
certain parameters such as age and MC O core,1- performing
noticeably worse. At the same time, certain parameters like M2

are very accurately determined, as these parameters vary during
the evolution of the binaries in this grid (CO companions in this
grid typically accrete little mass). One ought to consider the
importance of each parameter when evaluating the accuracy of
our models. For instance, for stars going through unstable mass
transfer, MHe,1 is a much more important parameter than
MC/O,1, and Ysurf has no impact on a binary’s future evolution.
Finally, Figure 26 shows the accuracies for our grid of He-

rich stars with CO companions. Any edges in the distributions
are genuine representations of the underlying data. Our trained
interpolators provide the most accurate predictions of our three
grids; median accuracies are typically between 0.1% and 1%
for the stable mass-transfer and unstable mass-transfer classes,
and somewhat better for the no mass-transfer class.
The accuracies provided in Figures 24, 25, and 26 all refer to

the data sets and associated interpolation objects provided in
v1.0 of POSYDON. One could use the POSYDON infrastructure
to evolve larger numbers of binaries than we have provided
along with v1.0, which would improve our interpolation
accuracy. A focus on regions where our interpolation methods
are least accurate would provide the largest benefit. Using a
combination of active-learning techniques, more complex
machine-learning algorithms, and much more computation
time, we expect that future versions of POSYDON will only
exhibit substantially improved classification and interpolation
accuracies (Section 11).

Table 8
Constraints That Are Ensured for Our Interpolated Quantities

Constraint Relation

Type I constraints: equations
Kepler’s Third Law a G M M P 41 2 orb

2 2 1 3[ ( ) ]p= +
Mass-transfer fractiona x M M1 sys,2 tr = -
Stefan–Boltzmann Law T L R4eff

2
SB

1 4( )p s=
Sum of nuclear luminosities Lnuc = LH + LHe + LZ

Type II constraints: inequalities
Mass loss from the system from the vicinity of a starb M Msys,1 tr < and M Msys,2 tr <
Core masses and radii M M MC O core He core< <- - and R R RC O core He core< <- -

Envelope masses and core radiic Menv < M and R Rcore <
Mass, thickness, and middle radius of the convective region (for tides) Mconv.reg. < M and 0 < Rconv.reg. − (1/2)Dconv.reg. < Rconv.reg. + (1/2)Dconv.reg. < R
Remnant baryonic mass Mrembar < M

Type III constraints: constrained sum
Central abundances Xc,H1 + Xc,He4 + Xc,C12 + Xc,N14 + Xc,O16 + Xc,other = 1
Surface abundances Xs,H1 + Xs,He4 + Xs,C12 + Xs,N14 + Xs,O16 + Xs,other = 1

Notes. Type I relations are written such that the left-hand side indicates the quantity that is inferred from the rest.
a This constraint is applied after constraint.
b Since the mass-loss rate has to be less than the mass-transfer rate. Moreover, x is set to 1 if no mass is transferred.
c There are four pairs of these quantities corresponding to the radii where the 1H fraction drops below 1%, 10% and 30%, and finally where the 4He fraction drops
below 10% for pure He stars.

Figure 23. The convective envelope radius Rconv.reg. and width Dconv.reg. need
to simultaneously agree with three separate inequalities defined in Table 8. The
feasibility region (dark gray) represents the overlap of all three inequalities
decomposed from the constraint. When our interpolation method proposed a
point outside the feasibility region, we reassign it to a new point determined
from the intersection of the border of the feasibility region and the line drawn
from the centroid of the region to the constraint-violating, proposed point.
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7.6. Limitations of Our Approach

There are a few limitations of our approach. First, our
approach first classifies the binary’s type and subsequently
performs interpolation. The effect of such a technique is that by
performing two optimization problems, the second of which
relies on the first, it is possible to propagate error throughout
the pipeline. Treating the entire problem as one optimization
problem has the potential to reduce error.

Additionally, we transform the grid space by logarithmic
transformations before performing linear interpolation, which
results in a nonlinear interpolation model. Such an approach
is similar to using a kernel, where a space is transformed
through a kernel function to a space in which a linear model
allows for accurate modeling of the behavior of the space

(Theodoridis & Koutroumbas 2009). A more systematic
approach is to consider a kernelized-interpolation approach,
by applying kernel selection techniques. In the case of a
Gaussian process, for example, we may consider a whole family
of functions that are specified by a kernel function, to allow for
more flexibility on the prior belief of the space (MacKay 2003).
Finally, upon finding an interpolated value, we physically

enforce the constraints, as detailed in Section 7.4. However, in
principle, such a technique, which does not consider the
constraints in the optimization objective itself, does not
guarantee an optimal solution subject to the constraints. One
way to incorporate the constraints in our model is to add a
regularizer term in our loss function to enforce the constraints
(Ivezić et al. 2014), i.e., the loss function balloons when
constraints are violated.

Figure 24. Interpolation scheme accuracy for 10 selected parameters when applied to our grid of two H-rich stars, as calculated using our set of validation binaries. We
separate our sample by their different mass-transfer histories to independently evaluate their individual accuracy. Median relative errors (er) indicated by the horizontal
lines in each distribution are typically 1% or lower for the stable mass-transfer and unstable mass-transfer cases (top panel) and the no mass-transfer case (green;
bottom panel). Improving this accuracy will be a focus of future work.

Figure 25. The interpolation accuracy for the same 10 parameters as in Figure 24 for our grid of H-rich stars with a CO companion. Since we never use the models
from this grid that do not undergo RLO, we do not evaluate the no mass-transfer binaries. In most cases, typical errors are 1% or better, but several of the distributions
have tails extending toward larger er.
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8. Evolutionary Processes Separate from Single- and
Binary-Star Model Grids

In addition to computing, processing, classifying, and
interpolating the five separate grids of single- and binary-star
models, additional steps are required to follow the complete
evolution of a stellar binary from ZAMS to double CO
formation (and potentially its merger). These are defined by
three separate processes: orbital evolution in eccentric,
detached binaries, CE evolution, and stellar core collapse.
While the latter two are standard elements of BPS codes, the
need for the former requires some explanation. Binaries are
intrinsically eccentric after an SN occurs, yet our precalculated
grids of binary-star models are initiated with circular orbits.
Including eccentricity as an input to our MESA models would
add an additional dimension to our simulation grids, challen-
ging our computational capabilities. Furthermore, self-consis-
tently modeling binary mass transfer along with stellar
evolution and tides in eccentric orbits is an active area of
study (Sepinsky et al. 2007, 2009, 2010; Dosopoulou &
Kalogera 2016a, 2016b; Hamers & Dosopoulou 2019), and to
date no detailed binary evolution grids have included initially
noncircular binaries.

Nevertheless, in a detached binary, tidal forces cause an
eccentric binary to both circularize and synchronize, an effect
that must be taken into account, along with other orbital
angular-momentum loss processes (e.g., wind mass loss,
gravitational radiation, and magnetic breaking). To specifically
address this, we evolve binaries after an SN event using a
separate process described in Section 8.1. We only switch back
to using the precalculated grid of binary-star models once RLO
occurs.

In the current version of POSYDON, binaries that success-
fully exit from a CE phase initiated by two nondegenerate stars,
are also modeled following the process described in Section 8.1
(see also Figure 1). These are binaries consisting of an H-rich
and an He-rich, or two He-rich stars in a close circular orbit.
We follow their evolution as detached binaries until one of the
two stars reaches core collapse. In a small fraction of post-CE
binaries (∼0.3% of the total population) typically consisted of a
low-mass (4 Me) He-rich and an H-rich MS star, the He-rich
star overflows its Roche lobe as it expands to become a giant
He star, and initiates mass transfer onto the H-rich MS star.
Since we do not have a grid of detailed binary-star models
covering this part of the parameter space, we cannot follow
further the evolution of these binaries. We plan to address this
in future versions of POSYDON. Finally, the evolution of all
binaries that are in orbits wider than what is covered by our
grids of detailed binary-star models, and thus will never initiate
RLO, is also followed as described in Section 8.1.
In the subsequent sections, we provide details about how we

evolve binaries through an eccentric, detached phase, a CE
evolution phase, and core collapse.

8.1. Evolution of Eccentric, Detached Binaries

8.1.1. Matching with a Single-star Track

Even though a nondegenerate star in a detached binary is
influenced by its companion (for instance, due to tides), we are
making the assumption that so long as RLO is not occurring,
our single-star, nonrotating models provide reasonable approx-
imations for the evolution of nondegenerate stars in these
detached binaries. We first match the nondegenerate star in the
detached binary system with the closest model (searching

Figure 26. The interpolation accuracy for the same 10 parameters as in Figures 24 and 25, but for our grid of He stars with CO companions. As with our other two
grids, this grid has typical median errors below 1%; however, tails of the distribution extend toward larger er, especially for the stable mass-transfer and unstable mass-
transfer cases (top panel). Our no mass-transfer case (bottom panel) is much more accurate than the corresponding binaries in our grid of two H-rich stars in Figure 24.
The apparent truncations in the distributions (e.g., MC/O-core, 1 and Jlog10 1( )) are genuine representations of the data.
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across different masses at all ages) from our single-star (both
H-rich and He-rich) evolutionary tracks. The matching is
achieved by minimizing the sum of the squares of key
parameters describing the structure of a star. These parameters
differ depending on the evolutionary phase of the star.

For the matching process, we distinguish among: (i) MS
stars that still have H in their core (with central H mass
abundance Xcenter> 0.01), (ii) stars that evolved off the MS and
retain even a thin H-rich envelope (post-MS, with Xcenter< 0.01
and surface H mass abundance Xsurf> 0.01), and (iii) evolved
stripped stars that are effectively an H-deficient core
(Xsurf< 0.01). In case (i), the parameters whose differences
are minimized are the total mass of the star, its central H
abundance Xcenter, and the radius of the MS star. After the first
core collapse of the system occurs, most binary companions are
in this state, being the initially less-massive secondaries that
evolved more slowly than the primary that has formed a CO.
For case (ii), we replace the central H abundance with the He
one (Ycenter) and the radius with the mass of the fully developed
He core. In case (iii), for stripped He-rich stars, we use as
minimized parameters the He-core mass of the star (which is
equal to its total mass), the radius, and its center He mass
abundance.

We normalize the chosen quantities, such that they have
similar weighting in the minimization process. The normal-
ization factors are chosen from typical ranges of each parameter
for the stars that we focus on: 20Me for the total mass of MS
or post-MS stars; 10Me for He-core masses of stripped He-rich
stars, 2.0 for R Rlog ;10( ) and 1.0 for chemical mass-fraction
abundances.

We quantify the quality of the matching by calculating the
difference of various quantities from the previous step. In
Figure 27, we see that the difference between the new
interpolated total mass in the beginning of the detached step
and its previous value, ΔM=Mmatch−Mprev,step, is typically
better than 0.2Me. He-core masses are matched even more
precisely, to within 0.05Me. Other parameters (we show R,
Ycenter, and Ysurf in Figure 27) are also closely matched,
justifying our assumption that the nondegenerate star in a
detached binary can be accurately represented by a single-star
model, at least so long as it remains detached.

A CO component in the binary system is treated as a point
mass and does not need a matching process. We also keep the

orbital separation and eccentricity constant in this transition,
and thus any small difference in the matched star’s mass from
the previous step results in a small relative change in the orbital
period. In addition, by conserving the spin angular momentum
on nondegenerate stars during the matching step, we can
determine their initial angular frequency Ω at the beginning of
the detached step.

8.1.2. Further Evolution of an Eccentric Detached Binary System

Once matched with single-star models, we evolve the stars in
detached binaries as essentially single stars, accounting for
their effects on the binary’s orbit. For a nondegenerate star, its
parameters (e.g., mass, radius, and moment of inertia) are
evolved according to its interpolated stellar track. At the same
time, its spin Ω as well as the system’s a and e are evolved
solving a set of coupled ordinary differential equations that
describe their rate of change due to wind mass loss, tides,
magnetic braking, and gravitational radiation. That we assume
the back-reaction of each of these effects does not significantly
impact the internal structure of either star so that our single-star
models are sufficiently accurate. For instance, although we
follow each star’s spin using the moment of inertia of the
single-star models, we cannot account during this phase for the
star’s internal differential rotation and effects such as rotational
mixing.
This approach can only handle scenarios where no RLO

mass transfer takes place between the two stars; as soon as an
H-rich star enters RLO, we stop the binary’s evolution and
transition to our grid of MESA mass-transfer simulations
described in Section 5.6. Binaries are assumed to circularize
instantaneously upon RLO with an orbital separation equal to
the binary’s separation at periastron. Alternatively, we also
allow for a user to choose to circularize the orbit assuming
angular momentum is conserved.19 Likewise, this step of
evolution also ends if a nondegenerate star reaches the end of
its life, in which case the binary is sent to a step that handles
core collapse (Section 8.3).
A third stopping condition exists for binaries consisting of

two COs, which merge due to GW radiation. Note that when

Figure 27. Distributions of the difference between the matching point of a single-star model in the beginning of the detached step and the values from the previous
step, for various physical quantities of a nondegenerate star. We show the relative difference in mass ΔM, He-core mass MHe coreD - , and logarithm of the radius

R Rlog10( )D , as well as the difference in the He central and surface abundances Ycenter and Ysurf, respectively. Vertical, dashed lines from left to right delineate the
5th and 95th percentiles of the distributions. The distributions all suggest that the nondegenerate stars in detached binaries can be accurately matched to a single-star
model.

19 This option results in circularized orbits where the star does no longer fills
its Roche lobe. In this case, we allow for the start to further evolve until it fills
its Roche lobe again, but without changing the orbit.
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modeling two COs, only effects due to GW radiation contribute
to orbital evolution. We calculate the orbital decay until the
merger or the maximum simulation time is reached.

Orbital evolution during the detached step is due to a
combination of the relevant pieces of physics, which we
assume have an additive effect:

a a a a a , 17wind tides,1 tides,2 GR ( )    = + + +

e e e e , 18tides,1 tides,2 GR ( )   = + +

, 191 wind,1 intertia,1 tides,1 mb,1 ( )    W = W + W + W + W

. 202 wind,2 intertia,2 tides,2 mb,2 ( )    W = W + W + W + W

The orbital separation, eccentricity, and stellar spins are
evolved using a set of self-consistent, coupled equations. We
describe each of the terms in Equations (17)–(20) below.

Mass Loss: We ignore mass accretion onto a star (either
nondegenerate or CO) from a companion star’s wind. So
nondegenerate stars will only lose mass due to their own stellar
winds, with the mass lost carrying away the specific orbital
angular momentum of the mass-losing star (Jeans-mode mass
loss; for a review, see Tauris & van den Heuvel 2006):

a a
M M

M M
. 21wind

w,1 w,2

1 2
( )

 
= -

+
+

For CO binary components, M 0w = , while in general for
spherical, isotropic fast winds, the orbit-averaged e due to
winds is zero. We discuss the effect of mass loss on stellar spin
later in this section.

Tides: Changes in the orbit’s period and eccentricity due to
tidal forces are described by a set of ordinary differential
equations, according to Hut (1981). In order to be able to
compute tidal spin–orbit coupling, we treat the donor star of
mass M, radius R, and of moment of inertia I as a solid body
rotating with angular velocity Ω. The initial angular-momen-
tum budget of the nondegenerate star is assumed to be the same
as from the end of the previous step.

The change of the orbital separation due to tidal forces on the
first star (subscript 1) is given by:
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where Ωorb= 2π/Porb is the mean orbital angular velocity.
When both stars are nondegenerate, they each have their own
contribution to the orbit’s evolution. Therefore an analogous
equation exists providing atides, 2 , where R1 is replaced with R2,
the k/T term is calculated for the secondary star, and M1 and
M2 are switched.

The k/T term in Equation (22) depends on a star’s structure
and the associated physical process of tidal dissipation. We
calculated them separately for dynamical and equilibrium tides,
in the same way as in our detailed, binary-star model grids
(Section 4.1) described in Equations (4) and (6), respectively.
We apply the maximum of these two at each time step.

The change of the orbital eccentricity and the stellar spin
from tidal forces is also calculated as
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As in Equation (22) for atides , when the companion star is
nondegenerate, etides,2 and tides,2

W terms exist, which can be
calculated by switching subscripts 1 and 2 in Equations (23)
and (24). The fi(e

2), i= 1− 5 terms in Equations (22), (23), and
(24) can all be found in Hut (1981).
Stellar Evolution: During the detached orbital evolution, we

also take into account the change of stellar spin due to the
evolution of the stars themselves. This includes spin-down
because of wind mass loss that carries away the specific angular
momentum of the star’s surface, as well as changes in its spin
due to the evolution of its moment of inertia due to changes in
its internal structure,
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where I is the rate of change of its moment of inertia. For
binaries in which both stars are nondegenerate, an equation
equivalent to Equation (25) exists for wind inertia,2

W + .
Nondegenerate stars tend to spin-down, due to their

expansion and their wind mass loss. However, they may also
be spun up in phases where they contract. Therefore, for
numerical-stability reasons, we artificially limit the second term
in Equation (25) to +100 rad yr−2 (usually reached during a
sudden contraction to form a WD). Although we take into
account the effect of stellar spin on the orbit via tidal spin–orbit
coupling, we do not include effects of spin on the stellar
structure, such as stellar deformation, rotational mixing, or
rotationally enhanced winds.
Magnetic Braking: For the case that the binary contains low-

mass nondegenerate stars, spin-down due to magnetic braking
can become important, i.e., the loss of spin angular momentum
due to ionized material ejected from the star that is trapped in
its own radial magnetic field. The spin-down rate is given by

I
, 26mb,1
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1
( ) t
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where τmb,1 is the torque calculated as in Equation (36) of
Rappaport et al. (1983),
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with γmb= 4 (Verbunt & Zwaan 1981). We apply the full
torque to all nondegenerate stars below 1.3Me and assume no
magnetic braking for stars above 1.5Me, with linear inter-
polation in between. Again, for binaries with two low-mass,
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nondegenerate stars, an equation equivalent to Equation (26)
exists for mb,2

W .
GW Radiation: Finally, we take into account orbital changes

due to gravitational radiation (Peters 1964; Junker &
Schaefer 1992),
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2),
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These general-relativistic terms of orbital evolution are
usually negligible apart from cases of close binaries. For
binaries consisting of two COs, only Equations (28)–(33)
govern the evolution of the binary’s orbit.

8.2. Common-envelope Evolution

Binary interactions can lead to a dynamically unstable mass-
transfer phase (Ivanova et al. 2013, 2020). We have described
in Section 4.2.4 all of the conditions that are assumed to trigger
an unstable mass-transfer episode: a maximum mass-transfer
rate of 0.1Me yr−1, L2 overflow, a contact phase with a post-
MS star, or exceeding the threshold of the trapping radius
during accretion onto a CO.

If the donor star that triggered the unstable phase is in its MS
phase or is a stripped He star during its He core-burning phase,
we assume that the two stars promptly merge, as no distinct
core has formed yet in its interior. In v1.0 of POSYDON, we do
not follow the further evolution of stellar merger products.

For all of the other donor stellar states, a trigger of unstable
mass transfer is assumed to lead to a CE phase. If the donor has
an H-rich envelope at the beginning of the phase, this envelope
is considered to form the CE, inside of which the donor’s He-
rich core and its binary companion will spiral in. For stripped
donors, the He-rich envelope engulfs the companion, which
spirals in around the donor’s C/O core. For the case in which
the companion star also has a giant-like structure with a distinct
core-envelope separation (i.e., anything but an MS star, an He
star in its He-MS, or a CO), then its envelope also may
contribute in a (double) CE.

The outcome of the CE phase is calculated using the
αCE–λCE prescription (Webbink 1984; Livio & Soker 1988),
which equates a fraction αCE of the orbital energy released
during the spiral-in with the binding energy of the CE. The αCE

parameter is set equal to 1 in the example population runs
shown in Section 10, following previous population synthesis
works (e.g., Hurley et al. 2002), but is, in general, a free
parameter in POSYDON.
The parameter λCE has been introduced to parameterize the

binding energy of the envelope using the total stellar radius and
mass (de Kool 1990). In POSYDON, λCE values are calculated
from the detailed stellar profile of the donor star at the
beginning of CE (or of both stars, in the case of a double CE).
This is an important quantitative improvement of POSYDON,
compared to pBPS codes. The latter needs to adopt λCE-value
fits from the literature, based on single-star models with often
inconsistent stellar physics, and apply them to post-interacting
stars. In our common CE energy calculation, we integrate both
the gravitational and the internal energy of the envelope from
the detailed stellar structure profiles of our binary models,
subtracting the recombination energy from the internal energy.
In Figure 28 we show the λCE for a few example single-star
POSYDON models. The parameter λCE tends to decrease as the
star evolves and expands as a giant. However, for initially very
massive (20 Me) stars that strip their H-rich layers due to
their own wind mass loss, λCE increases again. We find
comparable trends and values with other works that study the
detailed stellar structures of giant stars (e.g., Kruckow et al.
2016; Klencki et al. 2021).
The binding energy of the envelope (and thus the outcome of

the CE phase) is sensitive to the exact assumed core-envelope
boundary of the donor, as the deeper envelope layers tend to be
the most tightly bound (Dewi & Tauris 2000; Ivanova et al.
2013; Fragos et al. 2019). For this reason, we allow for
different core-envelope boundaries, defined for H-rich stars as
the outermost layer where the H mass fraction drops below 0.3,
0.1 (default), and 0.01 and for stripped stars when the sum of H
and He drops below 0.1.
Given the properties of the binary at the onset of the CE, the

assumed αCE value and the estimated λCE, one can calculate

Figure 28. Evolution of λCE parameter of POSYDON single-star models of
different initial masses. For these calculations, the assumed core–envelope
boundary is located at the point where the H mass fraction drops below 10%.
The triangle, diamond, and star markers represent the start of shell H-burning,
the start of core He-burning, and the end of core He-burning, respectively.
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how much a binary’s orbit shrinks in order for the released
orbital energy to fully unbind the CE. The final post-CE orbital
separation apost,CE is given by solving (Webbink 1984):

GM M

a

GM M

a

GM M

R2 2
, 34don,core acc

post,CE

don acc

pre,CE

don don,env

CE CE don
( )

a l
- =

where Mdon, Mdon,core, and Mdon,env are the total, core, and
envelope masses of the donor star, respectively, Rdon is the
donor star’s radius, Macc is the mass of the accreting star, and
apre,CE is the orbital separation at the onset of the CE. If the
final estimated apost,CE is such that neither the accreting star nor
the stripped core of the primary star are filling their respective
Roche lobes, then the CE is consider successful and results in a
detached, circular, tight binary. Alternatively, the binary is
assumed to merge, and its evolution is not further followed in
v1.0 of POSYDON.

One complication with the flexibility we offer regarding the
core–envelope boundary definition is that the post-CE stripped
donor star might still contain some H in its outer layers, while
in the next evolutionary steps, we assume that the H envelope
is fully removed. Exactly how much H remains depends on the
user’s choice of 0.01, 0.1, or 0.3 for a fractional H abundance
when defining the core-mass boundary. We account for this
inconsistency by assuming that either the remaining H-rich
layers are either removed by stellar winds or these layers re-
expand after the CE and are removed via stable mass transfer
(e.g., Fragos et al. 2019). Both assumptions result in slight
corrections to the post-CE donor masses and orbital separation.
Although the former assumption is the default one in
POSYDON, we find they both lead to correction at the level
of only a few percent, and thus the choice between the two is in
practice inconsequential.

8.3. Core-collapse and Compact-object Formation

The end fate of stars primarily depends on their masses. The
most massive stars undergo all nuclear burning phases
(hydrogen, helium, carbon, neon, oxygen, and silicon) up to
the formation of an iron core . The iron core keeps growing by
silicon shell burning to a mass of around the Chandrasekhar
mass limit∼ 1.44Me when electron degeneracy pressure can
no longer stabilize the core and it collapses. This runaway
process can lead to the explosion of a star in an SN or to a
direct collapse into a BH, which is known as a core-collapse
SN (CCSN; see Janka et al. 2007, for a review).

Lower-mass stars do not complete all nuclear burning phases.
For stars that do not ignite oxygen but for which their He-cores
masses are  M M M1.4 2.5He core–  (Podsiadlowski et al.
2004), we assume a star collapses into an NS in an electron-
capture SN (ECSN). POSYDON alternatively includes the option
to determine whether a star undergoes an ECSN based on its
C/O core mass:  M M M1.37 1.43C O core–  (Tauris et al.
2015). Stars with core masses below the lower limit for ECSN
evolve into white dwarfs.

In Figure 29, we show, for a slice at a fixed initial mass ratio
q = 0.7 of the binary-star model grid composed of two H-rich
stars, the core-collapse type as a function of initial orbital
period primary star mass. The transition region between
the ECSN and CCSN occurs at ZAMS masses of;8Me
(consistent with previous studies; e.g., Nomoto 1984; Jones
et al. 2014), but depends somewhat on the initial Porb.

8.3.1. Pulsational Pair-instability SN

During the post-carbon-burning phase of massive stars (not
modeled here), photons produced in the core can be energetic
enough to produce electron–positron pairs, softening the
equation of state and diminishing the pressure support of the
core (Woosley et al. 2007, and references therein). In such
stars, the core rapidly contracts and the temperature increases,
leading to explosive oxygen burning (e.g., Woosley &
Heger 2015) that creates a series of energetic pulses that eject
material from the stellar surface. This phenomenon of material
ejection due to pulses is known as pulsational pair-instability
SN (PPISN) and occurs for stars with He-core masses in the
range∼ [32, 64]Me (Yoshida et al. 2016; Woosley 2017;
Marchant et al. 2019; Renzo et al. 2020). For more-massive
stars with He-core mass in∼ [61, 124]Me, the first pulse is so
energetic that it can unbind and destroy the whole star in a so-
called pair-instability SN (PISN; Fowler & Hoyle 1964;
Rakavy & Shaviv 1967; Barkat et al. 1967), leaving no
remnant behind.
To identify systems that will undergo PPISN and PISN, we

adopt a polynomial fit, as implemented in Breivik et al. (2020;
see Equation (4) therein), to MESA single-star simulations (at
Z= 0.1Ze) by Marchant et al. (2019; see Table 1 therein). This
fitting formula is used to map the He core mass at carbon
depletion in the range  M M M31.99 61.10He core–  to the
stellar mass collapsing to form the CO. We use PPISN models
computed at 1/10 solar metallicity, as it was shown that such a

Figure 29. The core-collapse type for the q = 0.7 slice of our binary-star model
grid composed of two H-rich stars. We distinguish between WD formation,
electron caption SN (ECSN) following Podsiadlowski et al. (2005), CCSN, and
pair-pulsational instability SN (PPISN) following Marchant et al. (2019).
Models that did not reach the end of stellar evolution are indicated in black.
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limit is independent of metallicity (Farmer et al. 2019), while
highly dependent on the uncertain 12C(α, γ)16O reaction rates
(Farmer et al. 2020). In our case, these reaction rates follow
Cyburt et al. (2010), consistent with the rates used by Marchant
et al. (2019).

In Figure 29, we can identify two systems that enter the
regime of PPISN as they possess an He-core with mass slightly
larger than 31.99Me at carbon depletion. Other mass ratio
slices show a few more similar systems but without becoming
statistically relevant. We expect PPISNe to be more present at
subsolar metallicities, as stellar wind mass loss at Ze prevent
the stars from reaching carbon depletion with an He-core mass
in the relevant mass range for PPISNe.

8.3.2. Remnant Baryonic Mass

In this version of POSYDON, we calculate the mass left
behind by the collapse using different models: (i) direct
collapse where all of the stellar mass is conserved; (ii) fits to the
results of two-dimensional core-collapse models of Fryer et al.
(2012); (iii) nearest-neighbor interpolations of the results of the
detailed one-dimensional core-collapse models of Sukhbold
et al. (2016); and (iv) with the explodability criteria of Patton &
Sukhbold (2020). The last is our default option.

Fryer et al. (2012) presented two mechanisms that are known
as rapid and delayed based on how quickly convective
instabilities are expected to grow after core bounce. The rapid
prescription produces a mass gap between BHs and NSs by
assuming strong convection, which allows instabilities to grow
quickly after core bounce, producing a more energetic SN
explosion. In contrast, the delayed mechanism produces a
continuous spectrum of compact remnant masses. Both
prescriptions determine the baryonic mass of the compact
remnant Mrembar given the pre-SN C/O core mass, MCO core- .
More precisely, MC O core- determines whether the star explodes
into an SN, and what fraction, ffb, of the ejected mass falls back
onto the CO. In the case that the star directly collapses to form a
BH, ffb= 1. For the rapid prescription, direct collapse occurs for

M M7.6C O core - while, for the delayed prescriptions, direct
collapse occurs for M M11C O core - .

In Sukhbold et al. (2016), the outcome of the collapse of
their pre-SN models was calibrated against the well-studied SN
1987A progenitor. We have implemented several of their SN
engine calibrations, namely N20, S19.8, W15, W20, and W18;
although for the training of the initial–final interpolation, we
only consider the default N20 option, which is the most
optimistic option for successful explosions. In contrast to Fryer
et al. (2012) results, Sukhbold et al. (2016) found sharply
varying behavior between the initial star mass and the final core
properties, linked to convective carbon-burning episodes
occurring in the later evolutionary phases. This results in a
region of the parameter space where the outcome of the
collapse, i.e., NS and BH formation, appears stochastic in its
nature. To mitigate interpolation errors, we determine the
remnant baryonic mass of a collapsing star using a nearest-
neighbor technique on the He-core mass at carbon depletion to
map our stars to the Sukhbold et al. (2016) simulation results.

In the Patton & Sukhbold (2020) prescription, the C/O core
mass and the average carbon abundance of the core at carbon
ignition are used to determine the explodability of the pre-SN
core. For every single- and binary-star model in our grids, we
store these two values, and by applying a kNN interpolation,
with k= 5, we map to the explodability parameters M4 and μ4

from Ertl et al. (2016), as described in Patton & Sukhbold
(2020). These two explodability parameters allow us to infer
whether an SN is successful, and, if so, we estimate the
resulting NS mass to be approximately equal toM4. We assume
that BHs are produced only from failed explosions that result in
a direct collapse. Finally, for the Patton & Sukhbold (2020)
prescription, we have implemented the same SN engine options
as for Sukhbold et al. (2016) with N20 as our default option,
using the updated calibration from Ertl et al. (2020).
In Figure 30, we show a comparison between the final CO

state for the same grid slice as Figure 29, as predicted by the
Fryer et al. (2012) delayed prescription and the Patton &
Sukhbold (2020) prescription, based on the N20 engine,
respectively. The differences between our choice of SN
prescription are slight, but noticeable when focusing on the
NS/BH boundary. The Fryer et al. (2012) delayed prescription
produces BHs for somewhat less-massive stars, while the
Patton & Sukhbold (2020) prescription shows a more variable
boundary between NSs and BHs.
In both Sukhbold et al. (2016) and Patton & Sukhbold

(2020) prescriptions, we assume fallback fractions of ffb= 1 for
BHs and ffb= 0 for NSs. For Fryer et al. (2012) prescriptions,
the fallback fractions are computed explicitly, with the
exception of NS ECSN where we assume ffb= 0.

8.3.3. CO Gravitational Mass

To convert the remnant baryonic mass to gravitational mass,
we use the prescription by Zevin et al. (2020), which is an
updated version of the one by Lattimer & Yahil (1989) based
on the neutrino observations of SN 1987A. This new conver-
sion caps the maximum neutrino mass loss to 0.5Me (C. Fryer,
private communication) and removes any artificial discontinu-
ity in the mass spectrum between NS and BH formation (in the
case of direct collapse or the Fryer et al. 2012 delayed
mechanism) as
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If Mgrav< 2.5Me, we classify the CO as an NS, and otherwise
as a BH. There is a large uncertainty in the exact maximum NS
mass and this range spans 2.0–2.7Me (Lattimer & Prakash
2010; Margalit & Metzger 2017; Rezzolla et al. 2018; Ai et al.
2020; Shao et al. 2020; Lim et al. 2021; Miller et al. 2021;
Raaijmakers et al. 2021). In POSYDON, the maximum NS mass
is set to M M2.5NS

max
= (see discussion in Abbott et al. 2020b,

and references therein).
In the left panel of Figure 31, we show the gravitational mass

of the CO as predicted by the Patton & Sukhbold (2020) N20
prescription for the same grid slice as Figure 30.
Finally, in the case of BH formation, POSYDON also allows

us to take into account the detailed internal structure of the star
at the moment of collapse. As illustrated in the next section, we
can then make an estimate of the spin of the CO taking into
account the angular momentum profile of collapsing star.
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8.3.4. Birth Spins of COs

We estimate the spin of the resulting BH following the
collapse of the stellar profile as presented in Bavera et al.
(2021; their Appendix D). For convenience, we summarize
here the key assumption of this procedure. The final mass and
spin of the BH resulting from the collapse is calculated by
following the accretion history of Mrembar soon after the direct
collapse of the central core of the star, which forms a proto-BH
of mass 2.5Me. The mass lost in neutrinos during the
formation of this proto-BH, also carry away specific angular
momentum equal to that of the collapsing central part of the
core that forms the proto-BH. If Mrembar<Mstar, we assume the
ejected mass takes away the outer layers of the star.

The angular momentum content of the infalling material can
in principle support the formation of an accretion disk. We
consider a collapsing star to be a collection of shells with radius
r, mass mshell, and angular velocity Ωshell that falls one by one
onto the central BH. A shell of mass is accreted by the BH
once it reaches the BHʼs event horizon. The specific
angular momentum of the infalling material, j r,( )q =

r r sinshell
2( ) ( )qW , where θ is the polar angle, determines the

properties of the accretion flow. Disk formation occurs when
the specific angular momentum of the shell j(r, θ) exceeds the
specific angular momentum of the ISCO, jISCO. This condition
can be redefined as the polar angle at which disk formation
occurs as

j
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The portion of the shell with θ< θdisk will collapse directly
onto the BH on a dynamical timescale transferring j(r, θ) to the

hole, while the portion of the shell with θ� θdisk will form a
disk and transfer only jISCO to the BH. The disk will be accreted
on a viscous timescale, which is assumed to be much smaller
than the fallback timescale of the following shell (Batta &
Ramirez-Ruiz 2019).
Therefore, each collapsing shell contributes to the angular

momentum of the BH by
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The mass energy accreted onto the BH from the disk is
M M cosdisk shell disk( )e q= while the fraction 1 1h eº - = -

GM c r1 2 3BH
2

ISCO
1 2[ ( )]- is radiated away (Bardeen 1970;

Thorne 1974). Here, rISCO is the radius of the ISCO of the
accreting BH. This means that the resultant BH will have a
mass smaller than Mgrav, as a fraction of the disk will be
radiated away. The dimensionless spin parameter of the BH is
updated after each shell is accreted onto the BH with the
following relation:

a
cJ

GM
, 38BH

BH
2
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where JBH is the angular momentum of the BH, and MBH is its
mass after accreting the directly infalling part of the shell and,
if formed, the thin disk.

Figure 30. The CO state for the q = 0.7 grid slice of HMS–HMS MESA simulations in the initial primary mass–orbital period plane. We distinguish between the COs:
white dwarf (WD), neutron star (NS), and black hole (BH) according to the legend. Models that did not reach the end of the stellar evolution are indicated in black.
The two panels compare the Fryer et al. (2012) delayed core-collapse mechanism (left) with the outcome of Patton & Sukhbold (2020) N20 core-collapse engine
(right).
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The presented treatment is applicable only to the case of BH
formation. For simplicity and the lack of firm alternatives in
this version of POSYDON, we assume a zero spin for NSs.

In the right panel of Figure 31, we show the CO spin for the
q = 0.7 mass ratio slice of the binary-star grid composed of two
H-rich stars, as predicted by the stellar profile collapse
assuming the remnant baryonic mass is determined with Patton
& Sukhbold (2020) N20 prescription.

8.3.5. SN Kicks

During an SN, the binary system experiences abrupt mass
loss, away from the center of mass, affecting its orbital
parameters (Blaauw 1961; Boersma 1961). Furthermore,
asymmetric ejection of matter (Janka & Mueller 1994; Burrows
& Hayes 1996; Janka 2013) or asymmetric emission of
neutrinos (Bisnovatyi-Kogan 1993; Socrates et al. 2005) can
provide a momentum kick to the newly formed CO. Here we
assume that the magnitudes of the asymmetric kicks (vk) are
drawn from a Maxwellian distribution with dispersion σ:

f v
v v2
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. 39k
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As our fiducial assumption, we take 265 km sCCSN
1s = -

(Hobbs et al. 2005) and 20 km sECSN
1s = - (Giacobbo &

Mapelli 2019) for CCSN and ECSN, respectively. However,
these velocities are free parameters. POSYDON supports

multiple kicks rescaling options, e.g., if the prescription used
to calculate the remnant baryonic mass assume mass loss, i.e.,
the fallback mass fraction ffb< 1, the kick is then rescaled by
1− ffb (Fryer et al. 2012). Alternatively, BH kicks are rescaled
by a factor 1.4Me/MBH (using the gravitational mass) while
NS kicks are not rescaled (our default option). Finally, a user
can opt to either not rescale any kicks or turn off SN kicks
altogether.
These kicks can tilt the orbit of the binaries, add eccentricity,

or disrupt it. We take into account all of these orbital changes
including orbital changes for eccentric binaries following the
analytical calculations of Kalogera (1996) and Wong et al.
(2012).
We assume the collapsing star lies on the origin of the

coordinate system moving in the direction of the positive y-
axis. The companion lies on the negative x-axis, and the x-axis
completes the right-handed coordinate system (see Kalogera
1996, and Figure 1 therein). The semimajor axis after the kick
af is computed given the instantaneous orbital separation
r a e E1 cosi i i[ ( )]= - pre-SN, where E is the eccentric
anomaly, as
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where Mtot
f is the binary total stellar mass after the core

collapse, vr is the pre-SN velocity of the collapsing star relative

Figure 31. The CO mass MCO1, and spin aCO1 for the q = 0.7 grid slice of HMS–HMS MESA simulations in the initial primary mass–orbital period plane as predicted
by the Patton & Sukhbold (2020) N20 engine. We assume that both the neutrino mass loss up to 0.5 Me and the ejected mass during core collapse carries away the
corresponding angular momentum. Spinning BHs are formed in binary systems avoiding mass transfer or undergoing stable mass transfer during the contact phase or
Case A mass transfer; see Figure 9.
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to the companion directed along the positive y-axis, and v y
k is

the y-axis component of the kick. The eccentricity after the kick
is then

e
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where Mtot
i is the binary total stellar mass before the core

collapse, ψ is the polar angle of the position vector of the
collapsed star with respect to its pre-SN orbital velocity in the
companion’s reference frame, and
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In the above equations, in the case that the CO receive no natal
kick vk= 0 km s−1 but the star loses some mass, the orbit is still
readjusted to conserve Kepler’s third law.

We consider a binary to be disrupted if it does not satisfy the
condition that demands the post-SN orbit passes through the
pre-SN position (Flannery & van den Heuvel 1975; Willems
et al. 2005),
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or if it is outside the limits of the amount of orbital contraction
or expansion that can take place for a given amount of mass
loss and a given magnitude of the kick velocity (Kalogera &
Lorimer 2000; Willems et al. 2005)
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Finally, we also verify that ef does not exceed 1 or that the
argument of the square root in Equation (41) does not become
negative; if this is the case, the binary is considered to be
disrupted.

9. How POSYDON Evolves an Individual Binary System

To evolve a single binary within POSYDON, we use a
hierarchy of classes. Every binary system is represented as a
BinaryStar class containing two SingleStar classes,
each with attributes that define their current state. To evolve the
binary through each step, we have implemented a Pythonic
flow, which takes the combination of a binary’s state and event,
and each stars’ state to direct a particular binary to its next step.
We have a complete flow set as default, which can self-
consistently track the evolution of binaries from their ZAMS
state comprising two H-stars, through all parts of the
evolutionary tree shown in Figure 1.

All steps in POSYDON are Python classes that update a
binary via the user-defined call method. Steps are imple-
mented based on on-the-fly calculations for evolutionary
phases such as the CE or the core collapse, or based on
precalculated grids of detailed binary-star models, which is a
novel component of POSYDON. In the latter case, to estimate
the evolution of systems for which no detailed model exists for
the exact initial binary properties, we use initial–final
classification and interpolation algorithms, trained on the grids
of detailed binary-star models (Section 7) or alternatively a

nearest-neighbor matching scheme. As the binary and its
component stars evolve through these steps, the BinaryStar
and SingleStar characteristics are appended to the objects,
so every binary maintains a historical record of its evolution.
If any system enters a phase that does not require further

evolution, we use an end step to halt the evolution. This is used
for binaries that either merge, disrupt, or reach the maximum
physical time. For binaries whose evolution time ends in the
middle of a step based on a precalculated grid of models (e.g.,
if our star formation history randomly generates an initializa-
tion time for a binary within a few megayears of the end run
time), we can no longer use our pre-trained classification, and
interpolation algorithms as these only apply to the end state of
the binary. In these cases, we instead use the system’s nearest-
neighbor precomputed track directly (interpolating full binary
tracks is nontrivial and is being investigated for future versions
of POSYDON). This is the default behavior of all MESA grid
steps, with various classification and interpolation algorithms
ready to use.
Figure 32 depicts the complete evolution of one particular

binary from ZAMS to the formation of a BBH system that
merges within a Hubble time. Each vertical, colored band
indicates an extended stage of a binary’s evolution, whereas the
two core-collapse events and the CE phase are essentially
instantaneous processes, occurring in between the other,
extended phases.
The initial masses of the system are M1= 97.07Me and

M2= 39.86 Me in a Porb= 39.45 day circular orbit. The first
part of the evolution of the system is based on the HMS–HMS
binary grid (Section 5.5), and its subsequent evolution is
followed either through the nearest-neighbor interpolation
(orange lines) or through initial–final interpolation (black dots;
using our classification and interpolation methods) for the same
initial configuration. In both cases, we adopt the same SN kick
after the two core-collapse episodes in order to compare them
as closely as possible.
The system does not experience mass transfer before the first

SN; however, the primary experiences strong stellar wind mass
loss during the Wolf–Rayet phase, which widens the orbit
shortly after the primary collapses into a∼14.96Me BH with a
low spin 1( )a . The subsequent detached evolution (Section 8.1)
of the mildly eccentric system (due to the BH natal kick), after
matching the companion of the BH to a single-star grid, leads
to a small increase of the period predominantly due to winds.
Eventually the secondary star fills its Roche lobe at periastron,
where we assume that the system circularizes. Mass transfer
onto the BH is interpolated through the binary grid of COs with
H-star companions (Section 5.6) and lasts for a few thousand
years, becoming unstable and leading to a CE episode
(Section 8.2). The system survives the process, forming a tight
binary comprising a BH with a stripped He star on a ∼0.2 day
orbit. Tidal forces become important in this tight orbit, spinning
up the He star (Section 5.7), which eventually also forms a
mildly spinning (aspin,2∼ 0.48) BH of 7.90Me. The two BHs
merge after 183Myr from birth, due to GW radiation.
We have specifically chosen a binary where the differences

between the nearest-neighbor and initial–final interpolation
schemes are relatively small, so that we can accurately display
how the binary evolves through each step. Differences between
the two evolution options for binaries in general are
significantly larger, and the initial–final interpolation scheme
is our default choice.
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The binary shown in Figure 32 was evolved using our
default configuration, although we have purpose-built POSY-
DON to be modular. Throughout the previous sections, we have
described possible changes to physical prescriptions that a user
can make. However, a user can also easily supplement their
own functions for specific steps, or even define the entire
binary flow.

Finally, for debugging, we keep track of any errors or
warnings raised throughout a binary’s evolution. This allows us
to isolate the problematic step for a binary, or a stellar and
binary state–event combination that our flow structure cannot
handle. This error tracking can be especially useful for user-
defined steps and flow structures.

10. How POSYDON Evolves a Binary Population

Generating a model binary population for comparison to
observations requires two separate steps: initializing individual
binaries and then evolving those binaries, which we describe in
Sections 10.1 and 10.2 below. Finally, in Section 10.3 we
describe a sample binary population evolved with POSYDON.

10.1. Initialization

The primary function of POSYDON is to produce synthetic
populations of binaries, which requires evolving a random
distribution of binaries from ZAMS. We generate an initial
population by sampling binary parameters from standard
distributions.
Component Masses: For the primary component mass of a

binary, we implement the initial mass functions (IMF) from
Salpeter (1955), Kroupa et al. (1993), and Kroupa (2001). By
default, we use the Kroupa (2001) IMF in the range M1ä [7,
150]Me with α= 2.3. Then the secondary component mass is
given by drawing the mass ratio q=M2/M1 from a flat
distribution [0, 1] with M2ä [0.35, 150]Me.
Orbital Parameters: For a binary population’s initial orbital

period, Sana et al. (2013) described a power law in log-space,
while Opik’s Law describes a log-flat distribution in orbital
separation rather than orbital period space (Abt 1983).
In POSYDON we allow for both models to be adopted, with

our default being that of Sana et al. (2013). The minimum
orbital period is set by systems that undergo RLO at ZAMS,

Figure 32. Evolution over time, from ZAMS to binary BH formation, of one example binary system with initial properties M1 = 97.07 Me and M2 = 39.86 Me in
Porb = 39.45 days. The top two rows of panels show the evolution of the binary’s Porb and e for our nearest-neighbor matching scheme (orange lines) and our initial–
final interpolation method (black, circular markers). In the bottom three rows, we show the primary star’s (1; solid lines) and secondary star’s (2; dashed–dotted lines)
properties using the nearest-neighbor interpolation method and compare them against the same binary using the initial–final interpolation method (circular markers for
primary, star markers for secondary). The binary’s evolution is followed across its different evolutionary steps (note that the timescale varies for each step), through
both MESA grids (Section 5) and on-the-fly calculations (Section 8).
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and the default maximum orbital period is set to be 6000 days.
The orbital period distribution from Sana et al. (2013) is
undefined for Porb< 1 day; therefore, we extend this distribu-
tion so that it is uniform in Plog10 orb space down to a Porb of
0.35 days. We further set the maximum Porb to 103.5 days.
Although binaries may form at wider separations, we choose
this upper limit to account for all interacting binary models
(e.g., Figure 9).

Since we only model circular binaries in our detailed binary-
star models with the MESA code, the binary eccentricity e at
ZAMS is set to zero (see Sections 4 and 8.1). Since we plan to
generalize this assumption in future work, we also add the
option to generate e from a thermal distribution (Duquennoy &
Mayor 1991).

Star Formation History: To account for the star formation
history of a binary population, we assign to each binary in the
population the same maximum age. Then different star
formation rates (SFRs) can be modeled by modifying the
distribution of birth times. In POSYDON we offer two options
for the SFR: a burst of star formation or a constant SFR. For the
burst model, all binaries have identical birth times some
number of years prior to the end of the simulation. For a
constant SFR, we randomly generate birth times from a
uniform distribution within a user-defined range. The average
metallicity of the Galaxy and the greater universe evolve over
time, but this is something that we cannot currently model
accurately, as our grids of models presented in v1.0 of
POSYDON are only calculated for stars at solar metallicity.

10.2. Evolution

Evolving a population of ZAMS binaries initialized using
the distributions described in Section 10.1 requires implement-
ing the procedure outlined in Section 9 for each binary. In
POSYDON we have created an overarching BinaryPopula-
tion class, which is a container for a list of individual
BinaryStar instances. Each BinaryStar instance is then
iteratively evolved until the entire population has been
processed.

The BinaryPopulation class contains a number of
additional capabilities to efficiently and easily evolve popula-
tions of binaries. First, evolved populations are automatically
saved in an efficient hdf5 file format with two data sets: one
that contains each binary as a single line providing both its
initial and final states, and a second data set that contains the

entire evolutionary history of each binary. Second, populations
can be evolved either serially or in parallel, so that large (> 106

binaries) populations can be run quickly on a high-performance
computing cluster. Third, we have implemented routines that
catch and keep warnings and errors from each binary, so that
the code does not crash when a single binary fails to complete
its evolution due to a bug. We have found this to be useful for
identifying and resolving coding bugs when implementing new
physical prescriptions. Last, we have implemented various
routines that allow a user to easily select only certain types of
binaries (e.g., only BBHs or only double COs).
We envision that a typical user will interact primarily with

the BinaryPopulation class and its associated Simula-
tionProperties class, which, when combined, provide the
interface for customizing a particular user’s BPS needs.

10.3. Example Population

To demonstrate the results of a BPS run with POSYDON, we
construct a basic population of 106 binaries generated with the
default initial conditions described in Section 10.1. We choose
a constant star formation history over the past 10 Gyr. The
simulation on our high-performance computing cluster,
Trident, takes approximately 2 hr of wall time using five
nodes, each with 20 cores, i.e., less than 1 s of CPU time per
binary.
From the resulting binaries, we select those that evolve into

bound NS–NS, NS–BH, or BH–BH systems. The present-day
properties of these binaries are provided in Figure 33; this can
be compared with the results of other studies, e.g., Figure 3
from Breivik et al. (2020) with similar initial conditions at solar
metallicity. Overall we find good agreement reaffirming that
the code is producing reasonable results. In the left two panels,
we show distributions of the component CO masses. Our NS
masses are in very close agreement with those of Breivik et al.
(2020); although, the BHs we produce extend to larger masses.
The reason for this is that current stellar models with stellar
structure and evolution parameters calibrated to the latest
observations (e.g., overshooting) produce cores more massive
compared to those in the late-1990s models used in rapid BPS
codes. The third panel from the left shows the semi–latus
rectum of the population. Again, the distribution results are
qualitatively similar, with a preference for NS–NS systems at
smaller a(1− e2), and NN–BH and BH–BH systems having
larger a(1− e2). Finally, the rightmost panel of Figure 33

Figure 33. Example of the double CO populations produced by POSYDON. Quantities shown are the final distributions, as the binary populations appear today. We
separately indicate the parameters for NS–NS, BH–NS, and BH–BH systems. Results from a population synthesis using linear interpolation are indicated with the
solid lines, while results using the first nearest-neighbor approach are shown with the dashed lines. Comparison with COSMIC (Figure 3 from Breivik et al. 2020)
shows morphological similarities, but important quantitative differences between the same binary CO populations.
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shows an increasing formation timescale (from ZAMS to the
second SN) as we move from BH–BH to NS–BH to NS–NS
systems. This is expected since BHs tend to form from more-
massive systems that complete their evolution more quickly.
Our binary CO populations appear morphologically similar to
those produced by COSMIC and described in Breivik et al.
(2020). We will undertake detailed descriptions of the specific
binary populations of interest to separate, scientific studies.

11. Summary and Future Work

Here we present POSYDON, a new, next-generation
computational tool for general population synthesis of single
and binary stars. POSYDON incorporates full stellar structure
and evolution sequences for interacting binaries, using the
MESA code. Compared to other existing BPS code, there are
significant advances: (i) binary evolution is treated self-
consistently without analytical fits of single-star evolutionary
tracks and the need for simplified or artificial recipes to emulate
the behavior of stars in interacting binaries; and (ii) initial–final
classification and interpolation methods trained on the
precalculated grids of binary evolution models, allowing
general synthetic simulations of binary populations. The code
base along with the existing evolutionary-track grids are
publicly available through the POSYDON collaboration’s web
portal20 along with full documentation and tutorials for how to
use the code. An advanced query system is also available for
users to be able to mine the grids of single- and binary-star
evolutionary tracks and download relevant data using prepro-
grammed and customized queries (e.g., Teng et al.
2021a, 2021b). Finally, we provide a user-friendly web-
application that allows a user to perform small-scale simula-
tions with POSYDON online, without the need of code
installation and configuration.

Compared to current rapid population synthesis codes,
POSYDON has a smaller set of free parameters, for many of
which there are already multiple options for the user to choose
from. The code structure is modular, and an advanced user is
able to implement their own choices of evolutionary parameters
(from as simple as changing the initial properties of the binaries
to as complex as incorporating their own custom-made
evolutionary-track grids). In this first instrument POSYDON
paper, we describe in detail the first version of the code, but
technical and astrophysical advancements are ongoing, and
improved code versions will be released in the near and long-
term future.

Our focus on the technical front is on classification and
interpolation methods. Our current process of first classifying
the grids and then performing interpolation can lead to errors
propagating throughout the pipeline. Instead, these two could
be combined into a joint treatment to reduce errors, making
additional use of covariances between the different grid types
(Singh et al. 2016). We will also explore adopting kernelized-
interpolation approaches (i.e., Wilson & Nickisch 2015;
Gardner et al. 2018; Narayan et al. 2021). To illustrate the
use of such an approach, it is observed in Figure 22 that the
confusion matrix for our grid of He-rich stars with CO
companions has a lower accuracy for unstable mass transfer.
This is perhaps due to the nonlinearly separable decision
boundary, as visible in Figure 21. Adopting a kernelized-
interpolation technique has the potential to increase the

class-specific interpolation accuracy. In particular, kernel-based
approaches such as support vector machines and Gaussian
processes may prove fruitful. In principle, we may also use
neural networks. Also, improvements can be made by adopting
non-Euclidean metrics when defining our distance functions in
our kNN classifiers in Section 7.2.
Apart from methods exploration for the existing classifica-

tion and interpolation processes, we will focus on the next step
of interpolations critical for astrophysical studies: interpolation
between whole evolutionary tracks along time. This is a
challenging problem that is of particular interest for any study
that requires tracking binary properties as a function of their
age (e.g., XRB luminosities). In parallel, we are already
working on increasing the computational efficiency of building
the precomputed grids necessary for future POSYDON versions.
Specifically, for any future grid development, we will take
advantage of a new active-learning method developed by our
team (Rocha et al. 2022) that allows us to achieve the same
classification and interpolation accuracies with a significantly
smaller MESA tracks, by dynamically placing them at class
boundaries in the parameter space. Such dynamic placement,
informed by active learning, leads to grids with nonregular, but
smart, placement of evolutionary tracks. This work becomes
more critical as we expand to more metallicities and add
eccentricity as another dimension in order to keep the
POSYDON package sizes appropriate for downloads.
The first version of POSYDON is fully functional as an

astrophysical tool in the sense that it can be used for complete
simulations of binary populations from ZAMS to either
formation of a binary with two COs or binary distractions
(stellar merger or binary disruption), but it is still limited in two
ways. Our current precomputed grids are for primaries massive
enough to likely form an NS or a BH and are calculated at solar
metallicity only. Our next version will expand to a grid of
metallicities appropriate for populations across the universe
instead of just the Milky Way. Challenges related to the
convergence of single- and binary-star evolutionary models
often depend on metallicity, e.g., because the different opacities
will result in massive stars reaching the Eddington limit within
their interiors at different mass ranges and evolutionary phases.
Typically, however, such challenges become less severe with
decreasing metallicity. Interpolation across metallicities will be
a follow-up step as well, once grids at a sufficient number of
metallicities have been computed. All of the interpolation and
classification methods we have developed scale naturally to
additional dimensions in the initial conditions parameter space.
Furthermore, we will expand our grids to low-mass primaries
so populations with WDs can also be modeled. Expansion of
the grids will inevitably increase data set sizes proportionally.
The development of interpolation methods for not only the final
properties of each grid but also the entire evolutionary tracks,
which is one of our primary future objectives, will allow future
POSYDON releases to come only with with the pre-trained
interpolation objects. The latter are expected to have a
significantly smaller data footprint compared to the down-
sampled grids we currently ship with POSYDON.
We will also continue to improve the physics treatment of

binary evolution. Specifically we are already working on three
improvements: (i) in this first version, our treatment of the CE
phase, once dynamical instability is recognized (taking into
account the full stellar structure of the RLO star), is similar to
what is done in pBPS codes, apart from the self-consistent20 https://posydon.org
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calculation of the CE’s binding energy. However, since we
model binaries with MESA, we are able to treat the phase in a
more physical way, either by following the CE inspiral self-
consistently using one-dimensional hydrodynamic simulations
(e.g., Fragos et al. 2019) or by following the long-term
response of the RLO star to losing its envelope on a very high
rate and have its Roche lobe shrinking rapidly (e.g., Marchant
et al. 2021; Gallegos-Garcia et al. 2021). One of the objectives
of the next version of POSYDON will be to improve the physics
of our CE treatment. (ii) Like all binary population modeling
to date, we assume that binaries circularize instantly upon
RLO, and for this reason we also assume that all ZAMS
binaries are circular. However, the physics of secular binary
evolution through mass transfer in eccentric orbits has been
fully developed recently (Sepinsky et al. 2007, 2009, 2010;
Dosopoulou & Kalogera 2016a, 2016b; Hamers et al. 2021)
and will be implemented in future POSYDON versions. (iii)
Most recently, more physical models for magnetic braking
have been developed and calibrated against single-star
rotational-velocity data (e.g., Van & Ivanova 2019; Gossage
et al. 2021; Van & Ivanova 2021), and we will use them to
update the options for magnetic braking evolution in binaries.
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