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Summary
Background Association studies have identified several biomarkers for blood pressure and hypertension, but a thor-
ough understanding of their mutual dependencies is lacking. By integrating two different high-throughput datasets,
biochemical and dietary data, we aim to understand the multifactorial contributors of blood pressure (BP).

MethodsWe included 4,863 participants from TwinsUK with concurrent BP, metabolomics, genomics, biochemical
measures, and dietary data. We used 5-fold cross-validation with the machine learning XGBoost algorithm to identify
features of importance in context of one another in TwinsUK (80% training, 20% test). The features tested in Twin-
sUK were then probed using the same algorithm in an independent dataset of 2,807 individuals from the Qatari Bio-
bank (QBB).

Findings Our model explained 39¢2% [4¢5%, MAE:11¢32 mmHg (95%CI, +/- 0¢65)] of the variance in systolic BP
(SBP) in TwinsUK. Of the top 50 features, the most influential non-demographic variables were dihomo-linolenate,
cis-4-decenoyl carnitine, lactate, chloride, urate, and creatinine along with dietary intakes of total, trans and saturated
fat. We also highlight the incremental value of each included dimension. Furthermore, we replicated our model in
the QBB [SBP variance explained = 45¢2% (13¢39%)] cohort and 30 of the top 50 features overlapped between cohorts.

Interpretation We show that an integrated analysis of omics, biochemical and dietary data improves our under-
standing of their in-between relationships and expands the range of potential biomarkers for blood pressure. Our
results point to potentially key biological pathways to be prioritised for mechanistic studies.
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Introduction
Hypertension, defined as high blood pressure (BP), is
the leading modifiable risk factor for cardiovascular dis-
ease, affecting >1¢5 billion adults globally.1

BP is a complex multifactorial phenotype involving a
multitude of physiological pathways in conjunction
with genomic, demographic, lifestyle, and environmen-
tal factors.2�4 BP levels above a threshold are termed
hypertension, however, this is a false dichotomy as car-
diovascular risk increases with every mmHg increase in
BP from 115 mmHg systolic, with clinical guidelines
progressively reducing the threshold for hypertension
treatment since the 1970s.5 Discovering causal
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Research in context

Evidence before this study

Blood pressure is a complex polygenic multifactorial
trait that is determined by a multitude of genetic,
molecular, and physiological pathways interacting with
one another. Although office blood pressure is highly
variable, evidence from clinical trials conducted over
the last five decades provide unequivocal evidence that
higher blood pressure levels from either office or out-
of-office measurements are highly predictive of early
cardiovascular events and mortality. Understanding the
mechanisms that regulate blood pressure so far comes
from genetic and physiologic studies and this has led to
effective treatment for hypertension. Omics studies
hold the promise of identifying novel biological path-
ways that can lead to novel therapies. Genomic, metab-
olomic and other high-throughput technologies have
allowed generation of valuable data and hypothesis
generating insights, but the challenge for multifactorial
traits such as blood pressure is the integration of several
dimensions of data including multi-omics for discovery
studies that truly represents the physiology of BP regu-
lation. Machine learning allows for data from multiple
sources to be integrated without many underlying
assumptions and potentially offers an opportunity to
derive insights from multimodal data. Previous studies
that have attempted this have been limited by small
sample size, lack of replication, or are restricted because
they focused on a limited number of domains.

A study on 434 participants from the Finnish Twin
cohort has integrated transcriptomic, methylation, clini-
cal, metabolomics, and four clinical polygenic risk scores
(for SBP, DBP, BMI and coronary artery disease) using
the multi-block partial least square regression models
and identified that a clinical polygenic risk score con-
tributed to BP variability most, followed closely by
metabolomics. Zheng and Yu (2021) integrated 12 clini-
cal and lifestyle features in 500 participants, showing
that the ML model could predict blood pressure to the
highest standard set by governing bodies, including the
British Hypertension Society.

Added value of this study

In the most comprehensive study to date, we have
applied ML on multimodal domains covering environ-
mental, dietary, genetics, metabolites, biochemical, and
clinical data and identified the key features contributing
to BP regulation. We have demonstrated the value of
ML in dissecting blood pressure. The list of the most
important features identified will trigger future studies
to build on our model, validate those features, and iden-
tify novel pathways that may be targetable by drugs.

Implications of all the available evidence

We have extended this body of work by applying ML
and big data from multiple domains and we provide an
incremental advance of our current understanding of
blood pressure regulation. The results from this study

align with and extend other models. For instance, our
study integrated 264 variables in a ML model to identify
the top 50 variables that influence blood pressure. We
speculate that this set of variables may provide the
foundation for future study designs considering a mini-
mal informative set of variables to be included. Our top
variables will inform validation studies followed by
investigation of underpinning pathways.

The results of our study are early in the clinical trans-
lation runway. They provide an incremental advance to
prioritise certain metabolic pathways in conjunction
with diet and biochemical pathways. The next step
would be to focus on these pathways to identify under-
pinning mechanisms.
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pathways that determine blood pressure and its dysre-
gulation has resulted in effective pharmacotherapy and
public health policies to reduce the burden of hyperten-
sion.6 This includes the recognition of numerous socio-
demographic and risk factors, such as, educational sta-
tus,7 and race,8 and research into aldosterone receptors,
which resulted in the development of dihydropyridine
calcium channel blockers, a drug with profound effects
on BP.9 However, the pace of progress has faltered over
the last 2 decades with no new drugs licensed for hyper-
tension and a plateauing of the rate of hypertension con-
trol achieved worldwide.10�12 This may partially be
explained by the limitation of underpinning studies that
hitherto informed prevention and treatment of hyper-
tension that were based on the investigation of single
mechanistic pathways,13 described in greater detail in.2

Recent advances in high-throughput technologies that
allows detailed data on different biological systems to be
generated, along with newer analytic methods including
machine learning (ML), opens-up opportunities to con-
duct integrated analyses of hypertension that truly cap-
tures its underlying complexity. Thus allowing for new
insights to be generated in the drive for new drug devel-
opment or diagnostic/preventive applications. Drouard
and colleagues14 integrated genetic, methylation, tran-
scriptional, and metabolomic data in a cross-sectional
cohort and found a clinical polygenic risk score to be
the most important dimension for predicting BP, fol-
lowed closely by metabolomics. While Zheng and Yu15

have shown that a ML model built on clinical and life-
style features can predict BP with a low margin of error.

ML can be applied to every aspect of the human con-
dition.16 In contrast to commonly employed statistical
techniques, ML algorithms are powerful tools with the
capacity to integrate multimodal data, typically without
making many assumptions of the underlying data and
their applications in hypertension research is growing.17

Decision trees in particular are a supervised ML method
with the capacity to rank the input features based upon
their relative importance on the outcome.18

In this large cross-sectional study, we applied the
decision tree-based machine learning method Extreme
www.thelancet.com Vol 84 Month , 2022
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Gradient Boosting (XGBoost) to improve our under-
standing of the multifactorial contributors of BP regula-
tion in context of one another by identifying the top BP
contributors. We integrated multimodal data (metabolo-
mics, genomics, biochemical, and dietary data) from the
deeply phenotyped TwinsUK cohort and validated our
results in the Qatari biobank (QBB) cohort.
Methods

Study participants
Discovery: Our discovery dataset was comprised of
twins enrolled in the TwinsUK registry, a national regis-
ter of adult twins recruited as volunteers without select-
ing for any particular disease or traits.19 This sample
included 4,863 participants (1,113 monozygotic twin
pairs, 1,136 dizygotic twin pairs and 365 singletons)
aged between 17 and 75 years, who were not on any BP-
lowering treatments, with concurrent measurements
for metabolomics assessed by Metabolon (Metabolon
Inc, Durham, USA), and genomics available as well as
phenotypic information including age, BMI, sex, elec-
trolytes and estimated dietary intake from food fre-
quency questionnaires (FFQs).

Replication cohort: We then tested model perfor-
mance, trained in TwinsUK, in an independent sample
from the QBB. The QBB is a prospective, population-
based cross-sectional cohort in Qatar. QBB was estab-
lished to investigate a host of health-related questions
through evidence-based research and described in detail
in.20,21 Here, we included 2,807 individuals who had
blood pressure data as well as metabolomics assessed
by Metabolon (Metabolon Inc, Durham, USA), and con-
current phenotypic information including age, BMI,
sex, and electrolytes. FFQs were not available.
Data acquisition and processing
The phenotypic data was collected using questionnaires
and anthropometric measures taken during visits to a
clinical research facility.
Metabolomics
Samples were collected after an overnight fast for Twin-
sUK, while QBB participants were non-fasted. Circulat-
ing metabolite levels were measured from plasma and
serum samples using an untargeted LC/MS and GC/
MS platform by Metabolon Inc., Durham, USA as previ-
ously described.22,23 Briefly, proteins were precipitated
and chemically diverse metabolites were isolated with
methanol under vigorous shaking for 2 minutes fol-
lowed by centrifugation. The resulting extract was
divided into four fractions: one for analysis by ultra-
high performance liquid chromatography-tandem mass
spectrometry (UPLC-MS/MS; positive mode), one for
analysis by UPLC-MS/MS (negative mode), one for
www.thelancet.com Vol 84 Month , 2022
analysis by gas chromatography�mass spectrometry
(GC-MS), and one sample was reserved for backup.
Three types of controls were analysed in concert with
the experimental samples: samples generated from a
pool of human plasma (extensively characterized by
Metabolon, Inc.) served as technical replicates through-
out the data set; extracted water samples served as pro-
cess blanks; and a cocktail of standards spiked into
every analysed sample allowed instrument performance
monitoring. Experimental samples and controls were
randomised across the platform run.

The UPLC-MS/MS platform utilized a Waters Acq-
uity UPLC and a ThermoFisher LTQ mass spectrome-
ter, which included an electrospray ionization source
and a linear ion-trap mass analyser. The instrument
was set to scan 99-1000 m/z and alternated between
MS and MS/MS scans. The instrumentation was set to
monitor for positive ions in acidic extracts or negative
ions in basic extracts through independent injections

All samples were analysed on a Thermo-Finnigan
Trace DSQ MS operated at unit mass resolving power
with electron impact ionization and a 50-750 atomic
mass unit scan range. Metabolites were identified by
automated comparison of the ion features in the
experimental samples to a reference library of chemi-
cal standard entries that included retention time,
molecular weight (m/z), preferred adducts, and in-
source fragments as well as associated MS spectra
and curated by visual inspection for quality control
using software developed at Metabolon.24 Identifica-
tion of structurally named chemical entities is based
on comparison to a mass spectroscopy library of
>2,400 purified standards. Peaks were quantified
using area under the curve.

Only known metabolites were included and they
belonged to the following major classes - amino-acids,
peptides, carbohydrates, energy intermediates, lipids,
nucleotides, cofactors and vitamins, and xenobiotics.
Genomics
Genomic sequencing data was generated from blood
samples taken during a clinical visit using the Illumina
HumanHap300 BeadChip and Illumina Human-
Hap610 QuadChip (Illumina, Cambridge, UK). Non
-genotyped variants were then imputed using the 1000
Genomes reference panels. Quality control was per-
formed by validating pooling by visually inspecting 100
random, shared Single Nucleotide Polymorphisms
(SNPs) for overt batch effects, and visually checking for
erroneous genotype assignment using intensity cluster
plots of significant SNPs. SNPs exhibiting any of these
characteristics were discarded.

891 SNPs from the large BP genome-wide associa-
tion study (GWAS) conducted by Warren and collabora-
tors25 were included and the polygenic risk score (PRS)
for BP risk was calculated by summing an individual’s
3
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risk alleles, which were weighted by effect sizes derived
from GWAS data.25,26
Clinical phenotypes

Blood pressure. BP was measured by a trained nurse
and performed with the patient in the sitting position
for 3 minutes as previously described.27 The cuff was
placed on the subject’s arm so that it was approximately
2-3 cm above the elbow joint of the inner arm, with the
air tube lying over the brachial artery. The subject’s arm
was placed on the table or supported with the palm fac-
ing upwards, so that the tab of the cuff was placed at the
same level of the heart. Triplicate measurements were
taken with an interval of approximately 1 minute
between each reading, with the mean of the second and
third measurements recorded.

Besides omics data and BP measurements, data rele-
vant to the present study included biochemical meas-
ures [sodium, bicarbonate, potassium, and chloride,
measured using the Kodak Ektachem dry chemistry
analyser21,28].
Diet. FFQs based upon the EPIC FFQ,29 an FFQ vali-
dated against biomarkers in the European Prospective
Investigation into Diet and Cancer Norfolk (EPIC) were
used to estimate dietary intake.29,30 FFQs were then
coded and processed using FETA,31 an open-source,
cross-platform tool designed to process dietary data
from the EPIC FFQ, in accordance with their guide-
lines. Intakes for 45 nutrients and energy intake were
then estimated by the software and adjusted for energy
intake using the residual method.32 We included FFQs
data that were on average 2.5 (3.1) years from the BP
measurement.
Statistical analysis
A flowchart of the study design is presented in Figure 1.
Data quality control
The original raw dataset consisted of 5,657 individuals
(Figure 1). As with ML algorithms missing data reduces
statistical power, introduces bias in the estimation of
parameters and decreases the representativeness of the
samples,33 we imputed the missing data across different
omics datasets as detailed below.

Genotypes: missing genotype data was imputed from
a twin in a monozygotic twin pair using the genotype
data of the other twin. The remaining individuals
with missing genotype data were excluded.

Metabolites: Quality control of metabolomics data
was carried out as previously described. Briefly,
metabolite concentrations were inverse normalised
using a Rank-based inverse normal transformation34

to counteract abnormal distribution. To avoid spuri-
ous false-positive associations because of a small
sample size, metabolic traits with>20%missing val-
ues were excluded. Missing values were then
imputed using the minimum run day measures.

Phenotypes: Any traits with >20% missing values
were excluded. The remaining missing values were
imputed using the K nearest neighbour’s imputation
algorithm (KNN), which uses the weighted average
from the nearest neighbours of the sample.

As the BP of patients with narrow or widened pulse
pressure was likely to be influenced by an underlying
condition35 the dataset was further filtered based on the
following exclusion criteria: >75 years of age, if age <

50 years & pulse pressure > 60 or pulse pressure < 30
(Figure 1). The final dataset of 4,863 patients was then
used for several pre-analysis tasks, including encoding
categorical data and predictors into numerical values,
and feature selection (see Figure 1).
Machine learning model
We constructed ML models for SBP and DBP sepa-
rately. A total of 264 features were included for the con-
struction of the ML models: metabolites: 206
circulating metabolites of known biochemical identity;
genetics: the polygenic risk score for BP risk; dietary
data: energy intake and intake of 45 nutrients and bio-
chemical measures: alongside the traditional risk fac-
tors, age, BMI, and sex. To account for family
relatedness and clustered effects, one variable indicating a
unique identifier per family and metabolite batches in
the input data was included. The inclusion of cluster IDs
as candidates in the splitting process to adjust for clus-
tered effect in decision tree-based model has been proven
to be practical and unlikely to distort the results.36,37

Traditional linear regression models often fail when
input features have a non-linear relationship with the
outcome, or when there are interactions between the
features. To better capture the complex mechanisms
underlying blood pressure control by multiple biological
factors, the decision tree-based XGBoost algorithm was
employed. The XGBoost algorithm has been success-
fully used for a wide range of medical applications,
including disease diagnosis, survival estimation, out-
comes, prognosis, drug research and development.38

XGBoost was created by Chen and Guestrin39 as an
ensemble of multiple decision trees. Decision trees are
a robust ML model capable of a high degree of accuracy
and interpretability.39,40 They start with a root node,
which contains all the features included in the training
data. The root node is then split into multiple smaller
nodes, each containing a subset of the features. The
decision on when to make a split is based on the
www.thelancet.com Vol 84 Month , 2022



Figure 1. Consort diagram of data quality control, machine learning model building and model evaluation. Data included tra-
ditional risk factors (age, sex and BMI), biochemical measures, 206 known metabolites, a BP polygenic risk score, and energy intake
and dietary intake for 45 nutrients (including salt intake).
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reduction of variance in the child node compared to the
parent node after a split.41

This process continues recursively until the variance
in a node reaches zero or there are no more features for
splitting. The final node where further splitting is no
longer feasible is referred to as a leaf or a terminal node.
Afterwards, the resulting model can predict the out-
come for a new observation based on its covariates by
determining which terminal node it belongs to.

The XGBoost algorithm generates a sequence of
weak decision tree models, as above, with every subse-
quent tree aiming to correct the errors made by the pre-
vious tree. XGBoost does so by recursively fitting new
models to the residuals of the previous models.
www.thelancet.com Vol 84 Month , 2022
Essentially, each new tree in the sequence will focus on
minimising the errors of the previous tree. As a result,
the final ensemble model will have better performance
than its base tree models. Accordingly, when hyperpara-
meters are tuned appropriately (hyperparameter tuning
in this study is shown in Supplementary Table 1),
XGBoost is perfectly suited to investigate and rank the
most important features involved in a health outcome,
such as blood pressure regulation.
Model evaluation
Here, we used a hypothesis generating approach and
did not apply any prior knowledge to feature selection.
5
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The performance of the model is evaluated using 5-fold
cross-validation. This split ratio is based on the Pareto
Principle (80/20 rule),42 which specifies that 80% of
outcomes are derived from 20% of causes. In the stan-
dard cross-validation approach, the training set is split
into 5 smaller sets. The model is trained using 4 sets
(80% of original dataset) and is validated using the
remaining set (20% of original dataset). This process is
then repeated 4 more times, each time with a different
test and training set (Figure 1).

However, in this approach, the splitting of the data-
set is entirely random. As such, one twin may be
included in the training set and the other twin in the
testing set. This may lead to data leakage, resulting in
overly optimistic results. Hence, Sklearn’s GroupShuf-
fleSplit method was employed in the present study43,44

to constrain the splitting process of each fold with the
family ID, such that every twin pair will always stay
together in either the training or testing set. To prevent
double counting, the test set of each fold was further
split into 2 smaller sets (namely, a test 1 and test 2),
with each twin of a pair being randomly allocated into
one set. The final performance measure reported by the
cross-validation is the average of the values computed in
all 5 folds (Figure 1).
SHapley Additive exPlanation (SHAP) values
To further understand and interpret the features within
our model, we used SHapley Additive exPlanation
(SHAP)45 values to determine feature importance and
visualise the inner workings of our ML model. The
SHAP method was developed by Scott Lundberg and
Su-In Lee45 based on the concept of game theory. SHAP
values can be calculated by individually adding features
to the feature set and checking the change in model out-
put accordingly to determine a feature’s relevance to the
final prediction. In other words, the SHAP value can be
rationalised as the average of the marginal contributions
across all permutations, given a particular model out-
put. SHAP values have an explicative role, and they
quantify the magnitude of contribution (feature impor-
tance) as well as the direction (positive or negative) of a
feature’s effect on a prediction, which can then be used
to explain each of the features’ role on the prediction of
the ML model. SHAP values from all 5 cross-validation
folds were pooled to construct the final SHAP value set.
In this study, we pruned the input features to generate
a manageable list of the top 50 features and the SHAP
summary plot is depicted to identify the relative impor-
tance of these features.

To further interpret the most influential features of
our ML model and understand their relative relation-
ships to one another, we further conducted a principal
components analysis (PCA) in the top 50 features and
visualised the output in the form of a biplot using the
python library sklearn.43 We then investigated the roles
of the top 50 features from our algorithm in various bio-
logical pathways as implemented in the Ingenuity Path-
way Analysis (IPA) database46 (QIAGEN Inc, https://
www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis). IPA pathway analysis connects our
top 50 features which are likely to be part of the same
signalling or causal mechanism in hypothesis net-
works.
Replication in QBB
The XGBoost model was then used again in the QBB
cohort integrating the same input data as was used in
TwinsUK. The model was deployed utilising the Linux-
based Docker package.47 We then used a SHAP sum-
mary plot to visualise the top 50 features influencing
SBP in the QBB cohort.
Ethics
In accordance with the declaration of Helsinki, all par-
ticipants provided informed written consent. The Twin-
sUK study was approved by St. Thomas’ Hospital
Research Ethics Committee (REC Ref: EC04/015). The
Qatar Biobank study was approved by Hamad Medical
Corporation Ethics Committee and Qatar Biobank insti-
tutional review board. Use of the Qatar Biobank data
was approved under reference Ex -2019-RES-ACC-
0160-0083.
Role of the funding source
The funding sources had no role in the study design,
collection of data, analysis, or interpretation of data,
writing of the manuscript or the decision to submit for
publication.
Results

Demographics
The demographic characteristics of the study popula-
tions are included in Table 1. Briefly, the discovery
cohort comprised 4,863 individuals (92¢8% female)
who were not using antihypertensive treatments. The
mean age of the cohort was 53¢46 (§13.2) years, and on
average they were marginally overweight with a mean
BMI of 26¢15 (§4¢9) kg/m2 and normotensive (SBP:
127¢42 (§18) mmHg and DBP: 77¢24 (§10.1) mmHg).

The QBB cohort, on the other hand, was 49.8%
female, younger, with an average age of 39.1 (§12)
years, had an average BMI of 28.92 (§5.9) kg/m2 and
were also normotensive (SBP: 114.6 §15.2, DBP: 73.29
§10.5).
Feature importance in TwinsUK
The XGBoost ML algorithm was leveraged to identify
the importance for each of the 264 features in BP
www.thelancet.com Vol 84 Month , 2022
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Phenotype TwinsUK QBB

n 4,863 2,807

Female, n (%) 4513 (92.8%) 1,398 (49.8%)

Mean SD Mean SD P

Age, yrs 53.46 13.2 39.11 12.0 8.06£ 10�14

BMI, kg/m2 26.15 4.9 28.92 5.9 3.88£ 10�4

SBP, mmHg 127.42 18 114.6 15.2 1.59£ 10�7

DBP, mmHg 77.24 10.1 73.29 10.5 7.29£ 10�3

Creatinine, µmolL 73.24 22.06 67.67 19.7 0.06

Macronutrient intake*:

Energy, Kj 7991.46 2316

Carbohydrates, g 238.91 77.4

Protein, g 80.37 22.9

Total fat, g 68.01 25

Electrolytes:

Chloride, mmol/L 103 3.19 101.1 2.16 1.89£ 10�6

Sodium, mmol/L 140.61 2.38 140.3 2.19 0.34

Potassium, mmol/L 4.16 0.32 4.32 0.32 5.07£ 10�4

Bicarbonate, mmol/L 25.52 2.45 26.39 2.02 6.73£ 10�3

Calcium, mmol/L 2.37 0.1 2.39 0.092 0.14

Phosphate, mmol/L 1.11 0.16 1.14 0.171 0.20

Table 1: Demographic characteristics of the study population.
*Prior to adjustments for energy intake.
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regulation (the top 50 are shown in Figure 2). As
expected, the traditional risk factors, age, and BMI were
the features with the largest magnitude of effect on SBP
and these were followed by 7 biochemical measures, 5
dietary variables, and 35 metabolites in the top 50 fea-
tures. However, the PRS did not make the top 50 fea-
tures. The feature importance plot for DBP is similar,
with a large preponderance of metabolites, 16 of which
overlapping with SBP.

The SHAP summary plot visualises the SBP analysis
using XGBoost (Figure 3) and delineates the top 50 fea-
tures of the prediction model. Age and BMI ranked as
the most important variables contributing to both SBP
and DBP models. For SBP, of the 35 metabolites, the
SHAP analysis identified dihomo-linolenate, cis-4-dece-
noyl carnitine, lactate, and cortisol as the most impor-
tant, while urate, phosphate, chloride, and dietary fat
intake ranked as some of the most influential features
for electrolyte and dietary variables (Figure 3). Similarly,
SHAP analysis of DBP features also highlights the
influence of cis-4decenoyl carnitine, lactate, urate, die-
tary trans-fat intake and dihomo-linolenate (Supple-
mentary Figure 1). The x-axis indicates the SHAP values
of the top 50 features of importance, while the y-axis
shows the features used in the model’s predictions. The
features are ranked in descending order, with the top
feature having the highest influence on the model. For
every feature, each dot represents an individual patient
from the original dataset (n=4,863). Dots are coloured
www.thelancet.com Vol 84 Month , 2022
according to the magnitude of the features for the
respective patients. Red depicts higher feature values,
while blue depicts lower feature values. The horizontal
location of a dot shows whether its corresponding fea-
ture value is associated with a higher or lower predic-
tion. A feature with higher SHAP value contributes
more towards higher BP prediction.
Model performance in TwinsUK
5-fold cross-validation of the prediction model on the
test set indicated a mean absolute error (MAE) of 11¢32
mmHg (95% CI, +/- 0¢65), mean absolute percentage
error MA%E) of 8¢92% (95% CI, +/- 0¢51%), and R2 of
39¢2% (95% CI, +/- 4¢5%). A sensitivity analysis was
also performed by excluding males from our dataset
(350 male participants, 7¢2%). Prediction estimates
were consistent. The female-only model (n=4513) pro-
duced a MAE of 11¢43 mmHg (95% CI, +/- 0¢92),
MA%E of 9¢0% (95% CI, +/- 0¢66%), and R2 of 33¢5%
(95% CI, +/- 8%). Our sample did not have enough
male participants to conduct a male-only model. This
marginal increase in variance in the female-only model
is to be expected with a 7¢2% reduction in sample size.
Additionally, to determine if our ML algorithm can pick
up subtle differences even between twins, we conducted
a sensitivity analysis by removing the cluster id from
our model. Results were consistent with only minor dif-
ferences between the model with and without the
7



Figure 2. Importance of top 50 features in SBP. Bars represent SHAP values indicating the average relative importance of each
feature, coloured according to the type of data. Base layer labels indicate metabolite super pathways, where; A=Amino Acids,
Ch=Carbohydrates, L=Lipids, N=Nucleotides, P=Peptides, and CoV=Cofactors and vitamins.
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clustering id (Supplementary Table 2). When exploring
the added benefits of included dimensions, we found
that our input features explained an extra 6% of the var-
iance in BP over traditional risk factors (Supplementary
Table 2). We also note that the addition of metabolites
to biochemical measures and traditional risk factors
brought about a 1% increase in R2, though the further
addition of dietary features to biochemical measures,
traditional risk factors, and metabolomic features only
improved R2 by a further 0¢1%.

Figure 4 presents a scatter plot showing a relatively
linear relationship between the actual SBP and the SBP
generated by the algorithm, supporting the accuracy of
our model to depict SBP from metabolomic, electro-
lytes, and other biochemistry data. The values in the
plot are pooled from all 5 folds of the cross-validation
process. However, the paucity of individuals with
SBP>150 mmHg within our dataset limits our model’s
capacity to predict SBP values above this value
(Figure 4).

We further employed PCA to identify plausible path-
ways and clusters/relationship of features involved in
BP regulation (Figure 5). Our PCA identified 2 clusters,
one involving 3 metabolites of Androstren - sterol/ste-
roid pathways and the other comprising 2 gamma-glu-
tamyl metabolites with pseudouridine. Furthermore,
the loading plot (Figure 5) highlights patterns of fea-
tures in different quadrants that suggest possible inter-
acting pathways for future studies.

We finally interrogated the top 50 features from our
ML model using pathway analysis in IPA. This
highlighted more than 10 of the features most
www.thelancet.com Vol 84 Month , 2022



Figure 3. SHAP plot of top 50 features influencing our model’s prediction of SBP. Features are ranked in descending order
based on their influence on our model and the x-axis denotes SHAP values. Each dot represents an individual subject and coloured
according to the magnitude of the feature (red depicts a higher feature value, and blue depicts a lower value). The horizontal loca-
tion of a dot (x-axis) depicts whether it corresponds with a higher or lower prediction.
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Figure 4. Scatter plot of SBP within our sample and predicted SBP of the XGBoost algorithm. Actual SBP of each subject within
our sample plot along the y-axis and predicted SBP from our model across the x-axis (in mmHg). The colour gradient of each point
denotes the density of participants within a particular region of the plot.
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influential to our algorithm are significantly involved in
systemic inflammatory pathways, pro-oxidative states
via lipid peroxidation, and reactive oxygen species and
nitrogen oxide radical generation. Canonical pathway
analysis indicates a preponderance of features are repre-
sented in signalling, degradation, and biosynthesis
pathways (Supplementary Figure 2).
Model replication in QBB
We further tested the performance of our model in the
QBB cohort. The test produced a mean absolute error of
14.69 mmHg, mean absolute percentage error of
13.39% and an R2 of 45.2% (Supplementary Figure 3). A
SHAP plot of the top 50 features influencing SBP in the
QBB cohort (Supplementary Figure 4) supports our
findings from the TwinsUK cohort. In QBB, the top 50
features consisted of the 3 traditional risk factors, 4 bio-
chemical measures, and 43 metabolites. Of these, 30 of
the top 50 features identified in TwinsUK (Figure 3)
were also identified in the top 50 features found to influ-
ence SBP in QBB (Table 2). Moreover, 8 of the top 10
features overlap between both cohorts, with age, BMI,
dihomo-linolenate, urate, cis-4-decenoyl carnitine, and
lactate being among the most influential features.
Discussion
In this study, using a ML approach integrating tradi-
tional risk factors, biochemical measures, multi-omics,
and dietary phenotypes to pull known risk factors
together and understand how they interact, we were
able to account for the multifactorial nature of BP and
create a model that can explain 39¢2% (§ 4¢5%) of the
variance in SBP in TwinsUK and 45¢2% (§ 13¢39%) in
an ethnically diverse sample from QBB, overcoming the
standard limitations of single omics and univariate
models. We are also able to demonstrate the incremen-
tal value of each additional dimension included in the
multivariable model indicating the considerable magni-
tude of effect of conventional variables and the smaller
contributions from metabolomics and dietary data. Fur-
ther interpretation of our model delineates the contribu-
tions of each feature involved in BP regulation while in
context of one another. With the exception of age and
BMI, the main features contributing to BP regulation
were the metabolome, representing 35 of the top 50 fea-
tures, 7 biochemical measures, including chloride, cre-
atinine, calcium and potassium and dietary intake of 5
nutrients, including total fat, saturated fat, trans fat,
sucrose and selenium (Figure 2). Moreover, a substan-
tial proportion of these features overlap with the top 50
features influencing SBP in QBB highlighting the
robustness of our analysis.

Although, other studies have attempted to integrate
different types of data to predict BP,14,15 there are no
other ML studies of BP, which have integrated data cov-
ering environmental, dietary, genetics, metabolites, bio-
chemical, and clinical data to identify the top
contributors.
www.thelancet.com Vol 84 Month , 2022



Figure 5. Bi plot depicting the principal component analysis of features most influential to our SBP model. Lines depict how
strongly each feature influences a principal component, and the angle between each feature represents the correlations between
those features.
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Metabolites
Our findings underscoring the involvement of the
metabolome in BP, using an untargeted approach, is in-
line with numerous metabolomic studies.14,48�54 Aside
from clinical PRS, Drouard et al. report that metabolo-
mic data contributed most to the predictive capacity of a
ML model, with isoleucine, leucine, and several lipids
performing best.14 Dietrich and colleagues51 investi-
gated predictive metabolites for hypertension incidence
using a targeted metabolomics approach in the EPIC
cohort. Researchers identified 6 of the 127 metabolites
to be most predictive for the development of hyperten-
sion (mean follow-up of 9¢9 years). Among those, the
up-regulation of both serine and glycine were associated
with higher predicted hypertension-free survival.
www.thelancet.com Vol 84 Month , 2022
Likewise, our ML algorithm also identified glycine
within the top 50 features involved in both SBP and
DBP regulation and serine within the top features
involved in DBP. Furthermore, SHAP analysis shows
that higher levels of both glycine and serine correlated
with lower predicted BP (Figure 3).

Figure 3 also shows that the metabolite 4-Androsten-
3b,17b-diol disulfate 1, was the 17th most influential fea-
ture involved in SBP, and it the 6th most influential fea-
ture for DBP. Previously, our work has reported
independent associations between this metabolite and
both SBP and DBP (t test from linear regression mod-
els, SBP=1¢82 (1¢25; 2¢38) P=3¢95 £ 10⁻10, DBP=1¢25
(0¢87;1¢63) P=1¢4 £ 10�10),52 giving validation to our
results. From our PCA analysis we see that 3
11



Feature order Discovery: TwinsUK Replication: QBB Replicated*

1 Age Age Yes

2 BMI BMI Yes

3 Dihomo-linolenate (20:3n3 or n6) Sex Yes

4 Urate Dihomo-linolenate Yes

5 Cis-4-decenoyl carnitine Urate Yes

6 Lactate Cis-4-decenoyl carnitine Yes

7 Glucose Lactate No

8 Cortisol Phenylacetylglutamine Yes

9 Phosphate Cortisol No

10 Chloride Histidine Yes

11 Histidine Gamma-glutamylphenylalanine Yes

12 Glycine Isobutrylcarnitine No

13 HWESASXX* 1-Oleoyl-GPE No

14 4-Androsten-3beta,17beta-diol monosulfate 4-Androsten-3beta,17beta-diol disulfate1* No

15 1-Dihomo-linolenoyl-GPC (20:3n3 or 6)* Chloride No

16 N-Acetylglycine N-Acetylglycine Yes

17 4-Androsten-3beta,17beta-diol disulfate1* Creatine Yes

18 1-Arachidonoyl-GPE (20:4n6)* Proline Yes

19 Creatine Phenol sulfate Yes

20 Phenylacetylglutamine Lysine Yes

21 1-Oleoyl-GPE (18:1) Gamma-glutamyltyrosine Yes

22 Fructose Pentadecanoate No

23 4-Androsten-3beta,17beta-diol disulfate2* 1-Arachidnoyl-GPE Yes

24 Calcium Glycerol Yes

25 Potassium Carnitine No

26 Sex 4-Androsten-3beta,17beta-diol disulfate2* Yes

27 Dietary fat 3-Hydroxybutyrate No

28 Alanine Leucine No

29 Hydroxyphenylacetic acid monosulfate 1,5-Anhydroglucitol No

30 Dietary saturated fat N-Acetylthreonine No

31 2-Aminobutyrate Malate No

32 Dietary trans fat Arginine No

33 Gamma-glutamyltyrosine 1-Arachidnoyl-GPI Yes

34 Lysine Glutamine Yes

35 Leucine Pseudouridine Yes

36 Phenol sulfate Calcium Yes

37 Isobutyrylcarnitine Glycochenodeoxycholate No

38 Glycerol Cortisone Yes

39 Gamma-glutamylphenylalanine Glycocholate Yes

40 Dietary sucrose 1-Palmitoleoyl-GPC No

41 Adrenate (22:4n6) Tryptophan Yes

42 Glycocholate Adrenate Yes

43 Pseudouridine Glycerophosphorylcholine Yes

44 Carnitine Gamma-glutamylleucine Yes

45 N-Acetylthreonine Octanoylcarnitine Yes

46 Pyroglutamine* Bilirubin (E,E) No

47 Dietary selenium Octadecanedioate No

48 1-Arachidonoyl-GPI (20:4)* 1-Palmitoleoyl-GPE Yes

49 N-Acetylcarnosine Stearate No

50 Biliverdin Idolepropionate No

Table 2: Top 50 features between discovery and replication cohorts.
*Feature replication column denotes if the feature in TwinsUK appeared in the top 50 features in QBB.
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androstenediol metabolites, all of which were present in
the top 50 features influencing SBP, separate from the
other features to form a cluster (Figure 5). Androstene-
diols are intermediates in the biosynthesis of testoster-
one, a highly potent androgen.55 Multiple studies have
suggested that androgens elicit positive effects on car-
diovascular function, which is thought to be brought
about by the mitigation of adipocyte and endothelial
dysfunction.56 Though the molecular mechanisms
behind this remain unclear, the leading hypothesis
relates to immune and inflammatory responses via Nf-
kB.56 Interestingly, canonical pathway analysis of the
top 50 features influencing SBP in the IPA database
suggests 13 of our top 50 features to be significantly
linked to inflammatory response (Fisher’s Exact test,
P=1¢56 £ 10�2,) and 8 with inflammatory disease (Fish-
er’s Exact test, P=1¢3 £ 10�4).

Our PCA analysis further shows gamma-glutamyl-
tyrosine, gamma-glutamylphenylalanine, and pseudour-
idine separate to form a cluster. Gamma-glutamyl
transferases (GGT) are enzymes responsible for the
transfer of gamma-glutamyl to amino acids, and com-
monly used as biomarkers for alcohol intake and liver dis-
ease.57 GGT has also been previously linked with an
increased risk of hypertension (RR = 1¢2 (1¢1: 1¢31)).57 Inter-
estingly, a determinant of elevated GGT is male sex, and in
our PCA analysis conducting in a largely female sample
(92¢8%), we see no correlation between the gamma-glu-
tamyl metabolite cluster and sex (Figure 5).
Biochemical measures
Here, our ML algorithm signifies the role of multiple
biochemical measures in BP regulation, including
urate, and chloride (Figure 2).

Large epidemiology studies report inverse associa-
tions between serum chloride levels and mortality.58 In
a longitudinal cross-sectional study, which was followed
for at least 10-years, De Bacquer and Co.59 report an
increased risk of all-cause, cardiovascular and non-car-
diovascular mortality, independent of other classic risk
factors. Researchers reported that the increased risk of
cardiovascular mortality in women with low serum chlo-
ride more than doubled [RR = 2¢16 (1¢11: 4¢22)].59 Simi-
larly, Figure 3 shows that lower chloride levels predicted
higher SBP in our model. Likewise, there are numerous
large-scale epidemiology studies reporting associations
between urate and hypertension53,60,61 or cardiovascular
events.62,63 Here our ML algorithm implicates the role
of urate for both SBP and DBP regulation. Moreover,
urate featured 4th within our SHAP plot (Figure 3), only
behind age, BMI and dihomo-linolenate.
Dietary intake
We report intake of total fat, saturated fat, and trans-fat,
to greatly influence our SBP ML algorithm. Trans fat
www.thelancet.com Vol 84 Month , 2022
also featured highly within the SHAP analysis of fea-
tures involved in DBP (Supplementary Figure 1). Con-
trary to some beliefs of a detrimental role of saturated
fat intake in BP regulation, our SHAP plot (Figure 3)
illustrates that those with greater dietary saturated fat
intake had lower SBP. This is in keeping with our previ-
ous research, where we also show a significant negative
correlation between saturated fat intake and SBP.64

Yet, the addition of dietary features to biochemical
measures, traditional risk factors and metabolomic fea-
ture only marginally improved R2, however, this could
be a result of diet already being proxied by the metabolo-
mic data,65 or because of the subjectivity and innate
high variability of dietary intake.
Genomics
Despite including 891 recognised25 SNPs weighted by
effect sizes into a PRS for BP, while in context of the
other omic and biochemical measures, the PRS did not
feature within the top 50. This supports the notion of a
limited capacity for genomics to predict variation in
BP.66,67 In contrast, although they aimed to measure
the predictive utility of a ML model using different
input feature to our study, Drouard and collaborators
suggest a high predictive capacity for clinical PRS relat-
ing to body fat and known CVD risk factors, such as
immune cell counts.14

Our work benefits from a large discovery cohort with
an independent replication. It also benefits from a
robust, clinically relevant ML algorithm which follows
the current guidelines for ML studies17,68 and is able to
integrate multiple omics and biochemical measures,
and thereby explain a large proportion (39¢2% §4¢5%)
of the variance in SBP. A large proportion of features
were identified in both cohorts, and some of those have
also been previously established with BP, highlighting
the robustness of our methods and results. However,
our results should also be interpreted in the presence of
a few caveats. First, our discovery sample was on aver-
age, middle-aged, and 92¢8% were female and all were
of white European descent, as such, we are unable to
translate our findings to males. Nevertheless, we suc-
cessfully replicated our results in an ethnically diverse
replication sample, more than half of which were males.
Second, dietary data was not available in QBB, which
accounts for 5 (24%) of the top features that did not
overlap between cohorts. Third, our data is cross-sec-
tional, preventing any inferences of causation without
further investigation. Fourth, dietary intake was mea-
sured using FFQs, which have numerous limitations,
including reporting bias. Moreover, the duration
between BP measurement and FFQ completion was on
average 2¢5 years, during this period habitual diet may
have changed. However, any changes that may have
occurred would have likely been marginal.69 Fifth, the
algorithm used is unable to answer the question of
13
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reverse directionality, and any follow-on studies should
seek to address this. Sixth, as this is the first ML model
of BP to integrate this type of data, there are no other
studies for direct comparisons or benchmarking. Sev-
enth, we only had data to explore office BP. Office blood
pressure has several limitations, including measure-
ment error, and white coat effect.70 Other methods,
such as continuous ambulatory BP can mitigate some
of those limitations and is considered a more robust
measurement of blood pressure. However, ambulatory
BP was not available in TwinsUK. Finally, we imputed
missing values across the entire dataset prior to cross-
validation and this could result in data leakage into the
test set, leading to potential overfitting.71 To minimize
this possible bias from data leakage, we imputed the
missing data in our study using an unsupervised imputa-
tion technique (KNN). The imputed data thus provided
the ML model no insight into the later predictions.72

Moreover, recent studies observed negligible influence of
conducting imputation on the whole dataset as compared
to the training dataset on cross-validated performance.71,72

Hence, though we acknowledge this potential source of
bias, as the top 50 features in our model had <3.8%
missingness on average (Supplementary Table 3), we
believe that the risk of data leakage and introduction of
bias into the data with imputation prior to cross-validation
is likely minimal. Future studies with even larger sample
sizes should implement imputation by first imputing the
training data, followed by application to the test set within
each fold of cross-validation.

In conclusion, our study highlights the value of ML
methods to integrate multimodal omics data to uncover
the multifactorial contributors underlying the complex-
ity of BP regulation. In doing so, we find that the most
predictive features of BP are the traditional risk factors,
metabolites and diet, while genetics (SNPs) does not
appear to have a large role in this respect. This range of
potential biomarkers for blood pressure should inform
future studies. This set of follow-on studies should
include validation in independent datasets, with a
diverse sample, to infer clusters of factors that define
population strata for clinical trials enhancing successes
in identifying new treatments.
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