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Abstract—With the ever-increasing internet of things (IoT) and
the rise of edge computing, federated learning (FL) is considered
a promising solution for privacy and latency-aware applications.
However, the data is highly distributed among several clients,
making it challenging to monitor node anomalies caused by
malfunctioning devices or any other unforeseen reasons. In this
paper, we propose FedClamp, an anomaly detection algorithm
based on the hidden Markov model (HMM) in the FL envi-
ronment. FedClamp identifies the anomalous node and isolates
them before aggregation to improve the performance of the
global model. FedClamp was tested in a short-term energy
forecasting problem using artificial neural networks when the
FL environment had five clients. The algorithm uses mean
absolute percentage error (MAPE) generated from local models
and clusters them in normal and faulted nodes using HMM.
The anomalous nodes identified using this algorithm are isolated
before aggregation and achieve global model convergence with
few communication rounds.

Index Terms—ANN, Short term load forecasting, Federated
learning, Anomalies, Energy forecasting

I. INTRODUCTION

The value of data science in engineering is becoming more
and more apparent as storage and processing capability are
increasing day by day. Artificial intelligence, machine learning
(ML), smart manufacturing, and deep learning in industrial
engineering have all witnessed tremendous growth in recent
years [1]. However, there are multiple challenges in developing
future ML models. The data used in model training is highly
privacy sensitive and protected under the Data Protection
Regulation (GDPR) legislations [2]. Furthermore, the end
users are more privacy aware; therefore, they are reluctant to
share data. Data collection and storage are also costly and
time-consuming. The problem with traditional ML is how
the model is trained. The server for traditional ML typically
manages data storage and model training. There seem to be
typically two approaches to utilise these trained ML models
[3]. We may either transmit the ML models to any device
interacting with the environment or design a pipeline for the
data to travel via the server [4]. Regretfully, neither of these
methods is the best because their models are incapable of
making quick adjustments [5]. To overcome these challenges,
a new learning paradigm emerged termed federated learning

(FL). In this learning approach, model training is done on
an edge device under the supervision of a centralised entity
without data sharing.

With the development of cheap and powerful electronic
devices, next-generation sensors are capable of edge comput-
ing [6]. Combined with the growing concern of data privacy
has given more importance to FL. The advantage of FL is
distributed and continual learning, which can be achieved
using multiple edge devices [7].

FL has been used in many areas, including mobile apps,
IoT, transportation, and defence. FL is currently being used
for emoji perdition in mobile phones [8], in smart devices
to predict human trajectory [9]; in healthcare applications to
proactively identify health anomalies [10] and predict hospital
stay time [11]. Moreover, it also has applications in domain
of energy network, smart homes and financial modeling [12]–
[15]. Despite its ongoing development and use in a wide
domain of applications, FL still faces many challenges. A few
of the challenges are:

1) High communication cost: One of the bottlenecks of
FL is the high communication cost associated with its
use in a real-world application. [16].

2) High number of communication rounds: High number
of communication rounds combined with huge ML
models leads to increased latency.

3) Data heterogeneity: Since multiple devices are involved
in FL, they might not follow identical independent
distribution (IID) [17], which can create problems in
model aggregation.

4) Asynchronous aggregation mechanism: The loss of
internet connection on edge device can cause a problem
in model aggregation [18].

5) Anomalous edge device/client: If one of the devices
is suffering from an anomaly, it may mislead the server
[19], and also his behaviour might impact other devices.

In FL, the ML model depends on all the devices, and
an anomalous client can affect the devices involved in a
network of devices by drifting the ML model. The anomaly
can be due to malfunctioning of the edge device or any
other reason. Identifying anomalous clients in FL can help us



protect edge devices and prevent any upcoming disaster from
malfunctioning the device. This paper presents FedClamp, an
algorithm for detecting and isolating anomalous nodes in FL
before global model aggregation. The algorithm capitalizes
mean absolute percentage error (MAPE) as a metric to flag
node anomalies and Hidden Markov model (HMM) clustering
to detect anomalous clients. We used the FedClamp to identify
anomalous devices on the hourly energy data set obtained at
the substation level.

II. OVERVIEW OF FEDERATED LEARNING

FL was designed to use ML in a decentralized manner,
where data does not need to be collected on a central server. FL
solves the problems associated with data island, and privacy
[2]. Google reported the first use of FL in 2016, where they
predicted the text entered by the user while keeping the data
on edge devices [20]. A five-step baseline architect of FL is
presented in Fig. 1. Firstly server will send a generic ML
model to all edge devices. In the second step, the sent ML
model is updated using the local data available on each device.
This updated model will be called the local model. In the
third step, all the edge devices will send the weights and
biases of the ML model to the server. In the fourth step, the
server will use some aggregation mechanism to combine all
the weights and biases and make a new ML model. The most
common aggregation method is FedAVG, where the weights
and biases are averaged to make a new model [21]. This model
will be called the global model. The global model will be
sent back to all the edge devices in the final step. These five
steps will complete one communication round between the
server and clients. The entire process will run for pre-decided
communication rounds.

Fig. 1: An Overview of Federated Learning

III. FEDCLAMP

The identification of anomalous clients in FL can help in
the improvement of attaining a more accurate ML model, and
it can also save computation power by reducing the number

of communication rounds. The proposed algorithm will start
by generating a generic ML model at the server. The model
will be sent to the edge devices, where locally stored train data
will be passed through the ML model to generate the local ML
model. Here test data set will be used to test the accuracy of
the ML model by calculating the performance evaluating pa-
rameter such as mean average percentage error (MAPE). The
local weights, biases, and performance evaluating parameters
will be sent to the server for aggregation, such as FedAVG.
After completing all communication rounds, the server will
find the euclidean distances of all the received MAPEs of one
client with all other clients. If any of the euclidean distances is
greater than the given threshold, it means there is an anomaly
in clients. However, this will not identify the anomalous client.
The anomalous client will be found by using HMM clustering
on the sum of each client’s euclidean distances. HMMs are
probabilistic models introduced in the late 60s and are very
helpful in clustering applications [22]. In this work, Gaussian
HMM is used to cluster the normal and anomalous nodes,
using the euclidean distance of MAPE at each client. In this
approach, HMM takes the MAPE distance as a function of
probability distribution function and transform it to given
number of hidden states. In the given problem, the hidden
state with lowest number of elements will represent node level
anomalies.

The entire algorithm is summarised as:

Algorithm 1 FedClamp: Anomaly detection algorithm in
Federated Averaging

Required: T = Communication Round, K = Client Count with
index k, σk = MAPE loss on each client, B local batch
size, E local client epochs, η = learning rate,

1: Server Execution:
2: Initialise the global weights w0

3: for Each round t = 1, 2, ...T do
4: for Client count k = 1, .....K do
5: wk

t+1 ←ClientUpdate(σk, k, wt)

6:
∏k

t ←Compute MAPE Distace (d) of each client
7: if MAPE(d) < threshold then
8: Anomaly Flag = True
9: HMM to identify anomalous node

10: end if
11: end for
12: wt ←

∑K
c=0

nc

n wct

13: end for
14: wt+1 ← wt

IV. EXPERIMENT AND RESULTS

We have evaluated the efficiency of our proposed algorithm
on a real-world energy data set obtained from PJM Intercon-
nection LLC [23], to identify the anomalous client in FL. Each
column in the data set describes hourly energy consumption
in a particular region. In this experiment, only one region is
used.

Here five clients were created, and an artificial neural
network (ANN) having three layers was implemented. Each



Fig. 2: Sample of data set.

client had 6288 samples. An original data sample is presented
in Fig. 2. This data set is used for short-term load forecasting
with the help of five features. The used features involve last
hour data, last day same hour data, previous week same hour
data, 24-hour average data, and last week average data. In
ANN, Layer one had 100 neurons, layer two had 50, and the
third layer had one neuron. All the layers had Relu activation
function. The purpose of this ANN model is to predict energy
consumption. The FL was carried out for 30 communication
rounds with 20 epochs in each communication round. The
results are presented in Fig. 3, where MAPEs of all clients are
plotted with respective communication rounds. It can be seen
that the graph converges around about eight communication
rounds. The euclidean distances of all MAPEs are tabulated
in table I. it can be seen that the highest euclidean distance
Was 27.5 between client five and client two. Here, euclidean
distance of 40, which is almost 1.5 times higher than the
highest euclidean distance, can be assumed as the threshold
for anomaly detection. Moreover, the highest sum of euclidean
distances was 83.1 for client 2.

A. One anomalous client

To create an anomalous client, a tiny random seed was
added to the actual weights of client one’s first layer of the
ML model. The addition of a random seed can be noticed in
Fig. 4. It can be noticed that the graph converges around 17
communication rounds. The euclidean distances of all MAPEs
are shown in Table II. The highest euclidean distance of 50.95
was obtained from clients one and four, which is greater
than the decided threshold. Moreover, the highest sum of
all euclidean distances was 168.15 from client one. HMM
clustering was used to identify the anomalous client, as shown
in Fig 5; here, green is used to identify the anomalous client.

Fig. 3: MAPE of all clients without anomalies.

Fig. 4: MAPE of all clients with an anomalous client.

Fig. 5: HMM clustering with one anomalous client.

TABLE I: Euclidean distance of MAPE of each client

MAPE Client1 Client2 Client3 Client4 Client5 Sum
Client1 0 25.8 8.4 23.2 3.3 60.7
Client2 25.8 0 21.1 8.7 27.5 83.1
Client3 8.4 21.1 0 17.8 10.1 57.4
Client4 23.24 8.7 17.8 0 25.3 75.0
Client5 3.3 27.5 10.1 25.3 0 66.2

TABLE II: Euclidean distance of MAPE of each client with
an anomalous client

MAPE Client1 Client2 Client3 Client4 Client5 Sum
Client1 0 47.12 35.4 50.95 35.04 168.1
Client2 47.12 0 28.05 7.6 35.4 117.2
Client3 35.4 28.05 0 29.14 13.22 105.8
Client4 50.95 6.7 29.14 0 37.04 134.7
Client5 35.04 35.4 13.22 37.04 0 120.6

TABLE III: Euclidean distance of MAPE of each client with
two anomalous clients

MAPE Client1 Client2 Client3 Client4 Client5 Sum
Client1 0 69.3 63.1 67.1 68.3 267.8
Client2 69.3 0 76.3 77.8 73.1 296.5
Client3 63.1 76.3 0 8.4 21.2 169.1
Client4 67.1 77.81 8.4 0 22.8 176.1
Client5 68.3 73.05 21.2 22.8 0 185.3

B. Two anomalous clients

In the second phase of experimentation, a random seed was
added to the actual weights of the first layers of client one and
client 2. The results are presented in Fig. 6 and the sum of
all the MAPEs are tabulated in Table III. Comparing results
with 3, the addition of a random seed is very prominent. Fig.
7, represented HMM clustering; here, green colour is used for
anomalous clients. It can be noticed that HMM clustering has
successfully identified anomalous clients.



Fig. 6: MAPE of all clients with two anomalous clients.

Fig. 7: HMM clustering with two anomalous client.

V. CONCLUSIONS

Recently, researchers have tilted towards the decentralised
ML, known as FL, where ML models are sent to edge
devices and data does not leave the edge device. FL has
many advantages over centralised ML, such as reduced server
cost, enhanced privacy, edge computing, etc. Since multiple
edge devices are involved in the ML training process, it
is essential to know the health of all the involved devices.
This paper proposes FedClamp, an algorithm to identify the
anomalous client in a distributed environment. The core idea
of this algorithm is to find euclidean distances of MAPEs
generated from local models and then use HMM clustering
to identify anomalous clients. The algorithm was tested when
the ML model was used to forecast energy consumption in
the FL environment. We developed experiments in which we
artificially injected anomalous nodes into the system and used
FedClamp to identify these nodes.
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