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A B S T R A C T

Due to its propellantless nature, a solar sail can provide the primary propulsion system for a high energy
mission, such as that of a multiple asteroid rendezvous. Upon arrival at an asteroid, it is often desirable to
interact with the surface of the body, such as for sample extraction. The deployment of a lander from a solar
sail carries the difficulty of an instantaneous, and sometimes considerable, change to the system dynamics at
the point of separation. This paper investigates the effects of changing sail performance during the release of
multiple ‘‘ChipSat’’ probes as well as a large MASCOT-type lander and the control of the sail into a positional
hold at an equilibrium point or periodic orbit. In one scenario, 20 ChipSat probes are released, with one-
hour spacing between each release. The sail is then controlled to maintain the sailcraft close to the initial
deployment point. The performance of a Linear Quadratic Regulator (LQR) is compared with maintaining a
fixed sail attitude after deployment. In a second scenario, at the point of separation of the larger MASCOT-type
lander, there will be a considerable instantaneous change in the sail characteristic acceleration, as opposed to
the gradual small change for the staggered deployment of the small ChipSat probes. It is shown that the Time-
Delayed Feedback Control (TDFC) method is effective in controlling the orbit of the sail after this deployment.
The sail converges to an orbit in the same region of phase space when deployment is made from both a lower
and higher inclination orbit.
1. Introduction

Each mission to visit an asteroid seeks to answer some of the many
unanswered questions about the origins of our solar system [1]. Addi-
tionally, each mission seeks to better understand the physical properties
of these bodies such that we might better defend ourselves against the
threat of an Earth impact [2]. As such, most of these missions have,
and will, require some interaction with the surface of the asteroid.

There have already been several examples of the successful de-
ployment of a lander from a spacecraft, as well as the landing of a
spacecraft itself, to the surface of an asteroid. The first landing on
an asteroid was performed in February 2001 by the NEAR-Shoemaker
mission at asteroid Eros [3]. This landing was not a part of the set
objectives but was improvised at the end of the mission. The Hayabusa
mission to asteroid Itokawa brought about a sample return excursion
to the surface in November 2005 [4]. A follow-up mission, Hayabusa2,
made multiple successful surface interactions with the MINERVA II
and MASCOT landers, as well as performing a sample return with
the Hayabusa2 spacecraft itself. Most recently, the OSIRIS-REx mis-
sion successfully extracted a sample of asteroid Bennu in September
2020, which is now returning to Earth [5]. Most of these missions,
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with notable exceptions such as the Dawn mission, have targeted a
single body. However, advances in propulsion technologies make it
possible to envision missions which can target multiple asteroids. This
is made possible by the application of solar sail, and solar electric
(SEP), technology [6–11]. Solar sails and SEP have also been proposed
as a potential hybrid propulsion system when combined [12]. This
combination allows the advantages of both systems to be exploited;
the propellantless nature of the sail and the freedom to thrust in any
direction with SEP. The combination of these systems also allowed
for an increase in the delivered mass in a study for a mission to
comet 45P [13]. This mission study also showed that the sail was
predominantly useful for inclination changes, a notoriously propellant
intensive manoeuvre which indicates the potential for this combined
approach. In the near future, NASA will launch its NEA Scout, the first
solar sail mission to flyby a Near-Earth Asteroid (NEA) [14].

A mission which seeks to interact with the surface of an asteroid
must also deal adequately with the irregular gravity field generated
by the uneven mass distribution of the small body. This uneven mass
distribution has a considerable effect on the system dynamics within a
vailable online 6 September 2022
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few body radii of the surface [15,16]. Outside of a few radii, it is suffi-
cient to model the body as a point mass. There has been much work in
the literature regarding the multi-body dynamics of the Sun–asteroid–
spacecraft system. This model is referred to as Hill’s problem [17],
where the mass ratio of the smaller primary body to the larger primary
body tends to zero. This body of work has shown the existence of
families of periodic orbits [18–22], provided analysis of the motion
of a solar sail [23,24], the limitations of a solar sail in the weak
gravitational field of the asteroid [25] and shown the feasibility of con-
trolling a solar sail around artificial equilibrium points [26], themselves
displaced by the addition of the solar sail to the system dynamics.

When the spacecraft is close to the asteroid, within a few radii,
it is necessary to take account of its irregular shape. However, it is
possible to consider only the gravitational potential of the asteroid
itself, given the relatively weak effect of the Sun. When the spacecraft
is very close to the surface, an accurate shape model should be applied
to take account of the true surface topology. A considerable body of
work has been produced on the 2-body dynamics of an irregularly
shaped body modelled using highly detailed polyhedron models [27–
31]. However, these models require many thousands of calculations at
each time step of a numerical integration. For initial work in which the
effectiveness of a method is being tested, the computational expense
involved is limiting. It has been shown in Ref. [16] that the ‘‘shape’’ of
the gravitational potential field very quickly becomes ellipsoidal as the
query point moves away from the body. As such, an ellipsoidal model is
an appropriate choice for preliminary work. The Restricted Full 2-Body
Problem (RF2BP) has been applied to such a problem where the 𝐶22
ravity coefficient, which provides the body ellipticity [32], is included
o model the asteroid as an ellipsoid [33].

The problem of spacecraft motion on or near the surface of an
steroid has been widely treated in the literature [34–38] and will not
orm part of this work, but landing trajectories will be presented for
ompleteness.

Farrés et al. [24] examined the problem of delivering a lander
o the surface of one of Jupiter’s Trojan asteroids from a solar sail
pacecraft. Although this work addressed the problem of ensuring the
ander remained on the asteroid surface, it did not study the problem
t the point of lander separation and the control of the sail thereafter.

This paper will envisage two alternative mission scenarios: the first
ill be in the deployment of a series of small ChipSat-like probes [39]

hereby referred to simply as ‘‘ChipSat’’) from a stationary point, and
he second will be the deployment of a single large MASCOT-type
ander [40] from an orbit around an asteroid. Developed by DLR
ith close cooperation from CNES and JAXA, the MASCOT (‘‘Mobile
steroid Surface SCOuT’’) lander is a surface science platform that was
uccessfully deployed as part of the JAXA Hayabusa2 mission to the
urface of asteroid Ryugu [40].

A ChipSat is a centimetre-scale spacecraft contained on a printed
ircuit board (PCB). With the miniaturisation of technology, it is pos-
ible for the PCBs to contain inertial measurement units, attitude
etermination and control systems and wireless radio frequency com-
unications [39]. In addition to hosting these systems, the high area-

o-mass ratio of the ChipSat means that it can also produce thrust from
RP [41,42]. Their small size and mass make them very attractive
o solar sail missions given the dependency on the sail performance
o the area-to-mass ratio of the sailcraft. During deployment, the sail
aintains a hover condition at a chosen (artificially sail-displaced)

quilibrium point. The balance of forces required for the existence
f an equilibrium point must consider the force contributed by the
ontinuous acceleration of the sail. As each probe is released, the
hanging sail mass and hence acceleration means that this equilibrium
oint changes position. The control strategy is to maintain the sailcraft
s close to the original hover point as possible. As each ChipSat is
f a relatively small mass compared with the larger spacecraft, each
elease has a very small effect on the sail acceleration. As the resulting
183

hange in the system dynamics due to each probe release is expected to r
Table 1
Dynamical regimes with the radius at which the regime applies in terms of asteroid
mean radius (𝑟0) and associated dynamical models, shape models and reference
frames.

Outer regime Inner regime

Regime operational radius >5𝑟0 ≤5𝑟0
Dynamical model SSHR3BP Two-body
Shape model Point-mass Ellipsoid/Polyhedron
Reference frame Sun–asteroid synodic Body-fixed

be small, this work will use and compare maintaining a fixed attitude
with the use of a feedback controller, in this case a Linear Quadratic
Regulator (LQR), for control after deployment [43,44].

For the deployment of the single large lander, the sail is in orbit
closer to the asteroid surface. At the point of deployment, there is a
single instantaneous large increase in the sail characteristic accelera-
tion. The control strategy in this scenario is to maintain a bound orbit
around the asteroid after this instantaneous increase in performance. As
there is a considerable change to the dynamics, there is no reference
trajectory for the LQR to follow. As such, a Time-Delay Feedback
Control (TDFC) [33] is employed. This method does not require a
reference trajectory as it takes the state of the spacecraft one period
ago as the reference point at each time step.

This paper aims to show that a solar sail can be successfully con-
trolled after the release of a probe or lander which results in an
instantaneous, often considerable, change to the dynamics around the
asteroid. Section 2 describes the dynamical models and frames of
reference used throughout the paper. Section 3 discusses the control
methods which are used. Section 4 describes the deployment of a
series of small ChipSat probes from the sailcraft, and finally, Section 5
describes the deployment of the single large MASCOT-type lander from
the sailcraft.

2. Dynamics

There are two dynamical models and three shape models used for
the motion of the particle (this term generalises where the discussion
may involve either the sailcraft or the lander/probe) around the aster-
oid used in this work, and each is applied depending on the distance
at which the particle will operate with respect to the asteroid, and
the corresponding dynamical regime in which it finds itself. There
are two dynamical regimes in this work: the outer and inner regimes.
Table 1 defines the radius at which each regime is applied as well as the
corresponding dynamical models, shape models and reference frames,
which will be discussed in the following sections.

When the particle is distant from the body (>5𝑟0, where 𝑟0 is the
ean asteroid radius), the asteroid shape has a negligible effect on the

ravitational field [15], while the gravitational force from the Sun is
ot negligible; hence, a point-mass 3-body model (Solar Sail Hill’s re-
tricted 3-Body Problem, (SSHR3BP)), which includes the gravitational
ffect of the Sun as well as the effect from solar radiation pressure
SRP), is used. This region is referred to as the ‘‘Outer Regime’’. When
he particle is within approximately five mean asteroid radii [16], a 2-
ody model will be used. This will be referred to as the ‘‘Inner Regime’’.
n the inner regime, and when the trajectory of the particle will take
t very close to the surface of the asteroid (i.e. for the analysis of
mpact on the surface), a high resolution polyhedron shape model will
e applied. Otherwise, an ellipsoidal shape model is used. Subsequent
ections here will describe each of the models used in this work, after
n introduction to the different reference frames used.

.1. Target asteroid

Although the work in this paper makes an attempt to generalise the

esults for application to any asteroid, it is necessary to define some
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Fig. 1. Synodic reference frame centred on the asteroid.

physical parameters to enable simulations. Morrow and Scheeres [45]
define upper limits for a size of sail which can maintain bound motion
around an asteroid of a given size with the maximum characteristic
acceleration (defined in Section 2.3), given as:

𝑎𝑀𝑐 =
𝑟2𝑎𝑢
16

𝜇̄
𝑟0

(1)

where 𝑟𝑎𝑢 is the distance of the sun to the asteroid in AU and 𝜇̄ is the
asteroid gravitational parameter in dimensional units. This relationship
also indicates that missions to asteroids further out in the solar system
would allow the same sail to operate around smaller bodies, given
the inverse square scaling for the magnitude of the sail acceleration
(see Eq. (5)). The sail should also be suitable to perform the in-
terplanetary transfer, although small sails have been shown capable
of multi-asteroid rendezvous missions [11]. In order to avoid issues
where the sail acceleration may be too large in the relatively weak
gravitational field of a small asteroid, the decision was made to use
a large body. In order to also provide analysis of trajectories very
close to the asteroid surface, an asteroid which has been visited by
a spacecraft and which contains a high resolution shape model was
also sought. The asteroid Vesta met these conditions and the work
throughout this paper will use the physical parameters (including the
true mass) and shape model for this body. However, in order that
the maximum acceleration available from the sail is maintained and
remains constant, the asteroid orbit will be placed at 1 AU in a circular
orbit. At this distance, the maximum available acceleration from the
sail is the characteristic acceleration, 𝑎𝑐 . An eccentric asteroid orbit
would simply result in a varying magnitude of sail acceleration. The
choice of Vesta is made purely for the physical parameters and available
high resolution polyhedron shape model of that body and not out of
interest in a mission specific to Vesta.

2.2. Frames of reference

This work utilises two main frames of reference: the synodic frame
for the outer regime and the body-fixed frame for the inner regime.

The synodic reference frame, illustrated in Fig. 1, is centred on the
asteroid centre of mass and rotates with the Sun–asteroid line, with the
Sun’s position fixed along the 𝑥-axis.
where 𝛺 is the rotational velocity of the Sun–asteroid system. As the
asteroid is at a considerable distance from the Sun, the Sun-sail line
(which will be used for calculating the SRP) can be assumed equal to
the Sun–asteroid line, and in the Synodic frame is given by:

𝐒̂ = [1, 0, 0] (2)

The body-fixed frame is used in the inner regime where the gravi-
tational effect from the Sun is ignored, but where the shape and the
184
Fig. 2. Body-fixed reference frame.

Fig. 3. Composite of synodic and body-fixed reference frames, centred on the asteroid,
with rotation of the body-fixed frame at arbitrary time, 𝑡.

rotation of the asteroid play an important part in the gravitational
field. The frame of reference is fixed on the asteroid centre of mass
and rotates with it. As the frame is rotating, the position with the Sun
appears to rotate around the asteroid and so the Sun-particle line is
given by [23]:

𝐒̂ = [cos(𝜔̄𝑡),− sin(𝜔̄𝑡), 0]𝑇 (3)

where 𝜔 is the rotational velocity of the asteroid and the bar notation
denotes dimensional units.

Where the shape model used is that of an ellipsoid, the 𝑥-axis
is set along the largest dimension of the ellipsoid, the 𝑧-axis along
the axis of rotation and the 𝑦 axis completes the right-handed set.
For a simple rotator of homogeneous density, the 𝑧-axis is also the
shortest of the ellipsoid dimensions, with the 𝑦-axis being the next
shortest which migrates into the equatorial plane. Where the high
resolution polyhedron models are used, the axis directions are defined
by the models which are obtained from observation data [46], with
the 𝑧-axis always along the axis of rotation. At 𝑡 = 0, the body-fixed
frame is aligned with the synodic frame, with the Sun in the negative
𝑥𝑏 direction. The relative orientations of the synodic and body-fixed
frames are demonstrated in Fig. 3.
Additionally, where appropriate, trajectories are presented in an
asteroid-centred inertial frame. This frame is used solely for the pre-
sentation data, as well as calculation of classical orbital elements, and
is not used in any of the various simulations.

2.3. Solar sail model

A solar sail is a large thin membrane which provides thrust by
reflecting photons radiated by the Sun. This reflection results in a
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𝑥

𝑥

Fig. 4. Solar sail attitude definition.

momentum transfer from the photon to the sail. The performance
metric of the sail used in this work is the characteristic acceleration, 𝑎𝑐 ,
defined as the acceleration experienced by the sail at 1 AU when the
unit normal vector from the surface of the sail is parallel to the Sun-sail
line. This performance metric depends on the area-to-mass ratio of the
sailcraft. As a comparison to the traditional metric in mission analysis,
𝛥𝑉 , the sail can be considered capable of providing 𝛥𝑉 = ‖𝐚‖𝑡, where
‖𝐚‖ is the magnitude of the acceleration provided by the sail and 𝑡 is the
thrusting time. At 1 AU, and with the sail unit normal vector parallel
with the Sun-sail line, the sail provides its maximum 𝛥𝑉 = 𝑎𝑐 𝑡.
The sail provides a continuous thrust from SRP. although there have
been studies of furlable sails [47], the technological challenges involved
in this are considerable. As such, the only method of ‘‘turning off’’ a sail,
is for the attitude to be side-on to the Sun (𝛼 = 90◦). To achieve this,
an on-board ADCS system capable of not only placing the sail into this
attitude, but also recovering the sail from it, would be required.

Fig. 4 shows the angles which define the sail attitude: the cone
angle, 𝛼, and the clock angle, 𝛿. The unit vector 𝐒̂ gives the radial
direction from the Sun to the sail and 𝐩̂ is the unit vector normal to the
orbit plane [48]. The sail itself is centred on the [𝐒̂, 𝐩̂× 𝐒̂, 𝐩̂] frame. The
angle between the Sun-sail line, 𝐒̂, and the sail normal, 𝐧̂, is referred
to as the cone angle. Projecting the unit vector 𝐧̂ back to the [𝐩̂, 𝐩̂ × 𝐒̂]
plane, the angle of rotation around the 𝐒̂ axis to that point, starting
from the 𝐩̂ axis, is referred to as the clock angle. With 𝛿 ∈ [0, 2𝜋] and
𝛼 ∈ [0, 𝜋∕2], the sail attitude can be fully defined by these two angles.
The control can also be defined in terms of the radial, transversal and
normal components:

𝐧̂ = cos(𝛼)𝐒̂ + sin(𝛼) sin(𝛿)𝐩̂ × 𝐒̂ + sin(𝛼) cos(𝛿)𝐩̂ (4)

As the sail in this work is considered to be perfectly reflecting and
flat, the sail normal unit vector 𝐧̂ is coincident with the sail thrust
vector. Imperfections in sail reflectivity can be accounted for in a
reduction in the magnitude of the sail acceleration. Billowing of the
sail material has also been studied for more detailed mission analysis in
Ref. [49] where the thrust vector will not align with the sail unit normal
vector, and so where the trajectory will be affected. However, for
this higher level initial study, the ideal model is considered sufficient.
Therefore, the sail control can be defined either in terms of the cone
and clock angles, or in terms of 𝐧̂, where the sail acceleration is given
by [23]:

𝐚 = 𝑎𝑐
(

𝐒̂ ⋅ 𝐧̂
)2

𝐧̂ (5)

As the orbit of the asteroid is at 1 AU, the characteristic acceleration
does not require to be scaled in this expression. At distances greater
or smaller than 1 AU, the inverse square scaling of the SRP must
be considered. Eclipses are simulated as discussed in Ref. [50], and
outlined in Fig. 5.
The angle of umbra is given by:

sin(𝜃𝑢𝑚𝑏) =
𝑟𝑠 − 𝑟𝑝 (6)
185

𝑅𝑝
where 𝑟𝑠 is the radius of the Sun, 𝑟𝑝 is the radius of the planet or
body and 𝑅𝑝 is the distance between the Sun and the planet/body. The
vertical length of the umbra region is then calculated by:

𝑢𝑚𝑏𝑣𝑒𝑟𝑡 = tan(𝜃𝑢𝑚𝑏)(𝑦 − 𝑠𝑎𝑡ℎ𝑜𝑟𝑖𝑧) (7)

where 𝑦 = 𝑟𝑝
sin(𝜃𝑢𝑚𝑏)

and 𝑠𝑎𝑡ℎ𝑜𝑟𝑖𝑧 is the component of the satellite position

in the ecliptic plane. When the spacecraft is on the half of its orbit
in which the umbra region exists, and when 𝑠𝑎𝑡𝑣𝑒𝑟𝑡 ≤ 𝑢𝑚𝑏𝑣𝑒𝑟𝑡, the
spacecraft is deemed to be in umbra. Where the sail is in umbra, the
sail acceleration is set to zero. As such, there exist ballistic arcs along
each orbit.

2.4. Outer regime

In the case of the Sun–asteroid–spacecraft system, the vanishingly
small mass ratio enables use of the Hill’s Restricted 3-Body Problem
(HR3BP) [17]. In the HR3BP dynamical model, the synodic reference
frame described in Section 2.2 is used. The HR3BP is normalised using
the Hill radius, which gives length unit:

𝐿 =
(

𝜇̄
3𝛺̄2

)
1
3

(8)

where 𝜇̄ is the asteroid gravitational parameter, 𝛺̄ is the rotational
velocity of the Sun–asteroid system and the bar notation denotes di-
mensional units. Time units are normalised by 𝑇 = 𝛺̄−1. The non-
dimensional equations of motion for the Solar Sail HR3BP (SSHR3BP)
are therefore given by [45]:

̈𝑠 = 2𝑦̇𝑠 −
𝜇
𝑟3𝑠
𝑥𝑠 + 3𝑥𝑠 + 𝑎𝑥𝑠

𝑦̈𝑠 = −2𝑥̇𝑠 −
𝜇
𝑟3𝑠
𝑦𝑠 + 𝑎𝑦𝑠

̈𝑠 = −
𝜇
𝑟3𝑠
𝑧𝑠 − 𝑧𝑠 + 𝑎𝑧𝑠

(9)

where 𝑟𝑠 =
√

𝑥2𝑠 + 𝑦2𝑠 + 𝑧2𝑠 and the sail acceleration (𝐚𝑠 = [𝑎𝑥𝑠 , 𝑎𝑦𝑠 , 𝑎𝑧𝑠 ])
is given by Eq. (5).

The continuous acceleration provided by the momentum transfer
from photon to sail has a considerable effect on the dynamics of the
3-body system, not least of which is a positional change in the system
equilibrium points. This work will leverage such artificially displaced
equilibrium points (AEPs) of the restricted 3-body problem. These
AEPs provide convenient deployment locations for probes sent towards
the surface of the asteroid. The equilibrium points of the system are
obtained from:

0 = −
𝜇
𝑟3𝑠
𝑥𝑠 + 3𝑥𝑠 + 𝑎𝑥𝑠

0 = −
𝜇
𝑟3𝑠
𝑦𝑠 + 𝑎𝑦𝑠

0 = −
𝜇
𝑟3𝑠
𝑧𝑠 − 𝑧𝑠 + 𝑎𝑧𝑠

(10)

This can also be written in vector form as:

∇𝑈𝑠 = −𝐚𝑠 (11)

where 𝑈𝑠 is the effective gravitational potential in the synodic frame of
the HR3BP. The sail orientation can then be obtained from [23,51]:

𝐧̂𝑠 = −
∇𝑈𝑠
|∇𝑈𝑠|

(12)

With this, it is possible to calculate the required sail characteristic
acceleration to maintain an AEP for a particular sail attitude from:

𝑎𝑐 = −
∇𝑈𝑠 ⋅ 𝐧̂𝑠
(𝐒̂𝑠 ⋅ 𝐧̂𝑠)2

(13)

Now, the contours of 𝑎𝑐 for asteroid Vesta can be established [23,45].
These contours contain the AEPs for each value of 𝑎 at different sail
𝑐
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Fig. 5. Eclipse model, as given in Ref. [50].
𝑥

Fig. 6. Contours of AEPs for varying characteristic acceleration.

orientations, and are shown in Fig. 6. It should be noted that those AEPs
which exist in the eclipse region are still shown here.

The natural equilibrium points, Lagrangian points L1 and L2, are
indicated in Fig. 6. It can be seen that the inability of the sail to produce
thrust in the direction of the Sun limits the range of AEPs to lie on
the Sun-side of the natural equilibrium points. The L2 AEPs are all
contained in the enclosed region shown between the natural L2 point
and the asteroid, and the L1 AEPs are all contained on the solar side of
the asteroid.
186
Fig. 7. Ellipsoid dimensions in the body-fixed frame.

2.5. Inner regime

For operations in the inner regime, where the particle (either sail-
craft or lander/probe) is not approaching the asteroid surface, an
ellipsoidal model will be implemented in the Restricted Full 2-Body
Problem (RF2BP) [52]. In this problem, the mass ratio of the small body
to the large tends to zero, the case for a massless particle orbiting the
large primary. The potential function for the RF2BP is given by:

𝑉𝑏 = − 1
√

𝑥2𝑏 + 𝑦2𝑏 + 𝑧2𝑏

− 1
2
(

𝑥2𝑏 + 𝑦2𝑏 + 𝑧2𝑏
)

+ 𝑈𝑏 (14)

where 𝑈𝑏 is the potential due to the non-spherical shape of the asteroid
in the body-fixed frame. The non-dimensional equations of motion for
the RF2BP in the body-fixed frame are given by:

̈𝑏 − 2𝑦̇𝑏 = −
𝜕𝑉𝑏
𝜕𝑥𝑏

𝑦̈𝑏 − 2𝑥̇𝑏 = −
𝜕𝑉𝑏
𝜕𝑦𝑏

𝑧̈𝑏 = −
𝜕𝑉𝑏
𝜕𝑧𝑏

(15)

To consider a simple ellipsoidal potential, the sectoral harmonic
[50] 𝐶22 gravity coefficient can be used [33,52]. It is possible to define
the 𝐶22 gravity coefficient from the dimensions of the ellipsoidal body.
The ellipsoid dimensions are shown in Fig. 7. Using these dimensions,
the gravity coefficient is given by [53]:

𝐶̄22 =
1

20𝑟̄20

(

𝑎̄2 − 𝑏̄2
)

(16)

where 𝑟0 is the ellipsoid mean radius. The normalised gravity coeffi-
cient is then given by:

𝐶22 =
(

𝜇̄
𝜔̄2

)− 2
3
𝑟̄20𝐶̄22 (17)

The non-dimensional ellipsoidal potential is then given by [33,52]:

𝑈𝑏𝑒 = −
3 𝐶22

(

𝑥2𝑏 − 𝑦2𝑏
)

( 2 2)5∕2
(18)
𝑥𝑏 + 𝑦𝑏
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which can be included in the potential function:

𝑉𝑏 = − 1
√

𝑥2𝑏 + 𝑦2𝑏 + 𝑧2𝑏

− 1
2
(

𝑥2𝑏 + 𝑦2𝑏 + 𝑧2𝑏
)

+ 𝑈𝑏𝑒 (19)

A system of normalisation [32] then sets the reference length as the
orbital radius of a 1:1 synchronous orbit around a spherical body of
the same mass as the asteroid in question:

𝐿 =
(

𝜇̄
𝜔̄2

)
1
3

(20)

Time is then normalised by 𝑇 = 𝜔̄−1. It is clear that, for very slow
rotators, the unit of length may have a very large value. In order for
the length units of this normalisation to reach the radius of the Hill
sphere (Eq. (8)), the rotational velocity would need to take a value of
𝜔̄ =

√

3𝛺̄. In fact, the slowest known rotator, asteroid 288 Glauke,
has a rotational velocity of 𝜔̄ = 1.4917 × 10−6 rad/s and an orbital
angular velocity of 𝛺̄ = 4.3422 × 10−8 rad/s. As such, this gives a
rotation to orbit angular velocity ratio of 𝜔̄

𝛺̄ = 34.3536, much larger
than the value of

√

3 at which the length unit would equal the Hill
radius. If the situation were to arise, it would most likely do so for
a very slow rotating asteroid in the inner solar system where the Hill
radius is reduced.

Although the asteroid considered here is a simple rotator with con-
stant rotational velocity around the 𝑧-axis only, there are also complex
rotators which rotate around all axes. It has been shown that these
complex rotations can be averaged using a set of secular equations of
motion which, over short time-spans, have good agreement with the
full dynamics of the complex rotation [54].

When considering the landing trajectories of the probes/lander,
the shape model obtained in Ref. [55] is applied. The gravitational
potential for a polyhedron in the body-fixed frame is given by [53]:

𝑈𝑏𝑝 = 1
2
𝐺𝜌

(

∑

𝑒∈edges

(

𝐫𝑒 ⋅ 𝐄𝑒 ⋅ 𝐫𝑒
)

𝐿𝑒 −
∑

𝑓∈faces

(

𝐫𝑓 ⋅ 𝐅𝑓 ⋅ 𝐫𝑓
)

𝛾𝑓

)

(21)

where 𝜌 is the body mean density, 𝐄𝑒 is a dyad defined in terms of
he face and edge normal vectors associated with each edge, 𝐿𝑒 is a

logarithmic term expressing the potential of a 1-D straight wire, 𝐅𝑓 is
a dyad defined for each face as the outer product of the face unit normal
with itself and 𝛾𝑓 is the signed solid angle subtended by a face when
viewed from the field point [56].

The effective potential takes into account both the gravitational
potential as well as the rotation of the asteroid, and is given by [57]:

𝑉𝑏 =
1
2
(𝝎 × 𝐫) ⋅ (𝝎 × 𝐫) + 𝑈𝑏𝑝 (22)

where 𝝎 is the vector of the rotational velocity of the asteroid and
rotation is around the 𝑧-axis of the body fixed frame only. The Cartesian
position of the particle relative to the body-fixed reference frame is
given by 𝐫. This shape model can then be included in the dynamical
model for the spacecraft motion using Eq. (15)

3. Control methods

To affect appropriate control of the sail during the two stated mis-
sion scenarios, three methods of control will be used: Linear Quadratic
Regulator (LQR), Genetic algorithm (GA) and Time-Delay Feedback
control (TDFC).

For the multiple-ChipSat deployment, the LQR is compared with
the performance of a fixed attitude sail during deployments, providing
insight into the efficiency and efficacy of a simple fixed attitude and an
optimal feedback controller.

In the MASCOT-type lander scenario, the GA is used to establish the
necessary control law for a periodic orbit close to the asteroid. This is
taken as the pre-deployment orbit. After the deployment of the lander,
the pre-deployment orbit no longer exists in the new post-deployment
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a

dynamics. As such, there is no reference orbit along which to apply the
LQR control, as desired. For this reason, the TDFC is applied as it uses
the same optimal control framework as the LQR, but uses the state one
period in the past as the reference. This allows the TDFC to find a bound
orbit around the asteroid after lander deployment without depending
on a reference trajectory to do so, ideal for the case where the change
in dynamics would render any previous trajectory obsolete in the new
dynamics.

3.1. Linear Quadratic Regulator (LQR)

The LQR is applied to the first mission scenario to maintain a
hover position during ChipSat deployment. As the LQR requires that
the equations of motion, outlined for the different dynamical models in
Section 2, are re-written as a first-order differential system, 𝐬̇ = 𝐟 (𝑡, 𝐬).
The linear dynamics are given by [44]:

𝛿𝐬̇(𝑡) = 𝐀(𝑡)𝛿𝐬(𝑡) + 𝐁𝐮(𝑡) (23)

here 𝛿𝐬(𝑡) is the error between the current state and the reference state
t time, 𝑡, and:

(𝑡) =
[

𝟎 𝐈
𝐕′′ −Ω

]

(24)

nd 𝟎 is a 3 × 3 matrix of zeros, 𝐈 is a 3 × 3 identity matrix, and:

=
⎡

⎢

⎢

⎣

0 −2 0
2 0 0
0 0 0

⎤

⎥

⎥

⎦

𝐕′′ =

⎡

⎢

⎢

⎢

⎢

⎣

𝜕2𝑉
𝜕𝑥2

𝜕2𝑉
𝜕𝑥𝑦

𝜕2𝑉
𝜕𝑥𝑧

𝜕2𝑉
𝜕𝑦𝑥

𝜕2𝑉
𝜕𝑦2

𝜕2𝑉
𝜕𝑦𝑧

𝜕2𝑉
𝜕𝑧𝑥

𝜕2𝑉
𝜕𝑧𝑦

𝜕2𝑉
𝜕𝑧2

⎤

⎥

⎥

⎥

⎥

⎦

(25)

𝐁 =
⎡

⎢

⎢

⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥

⎥

⎦

𝑇

(26)

This system approximates the real system at a given time and close
to the reference trajectory. In order to establish an optimal feedback
control law, the following objective function is used:

𝐽 (𝐮, 𝑡) = ∫

∞

0

(

𝛿𝐬(𝑡)𝑇𝐐𝛿𝐬(𝑡) + 𝐮(𝑡)𝑇𝐑𝐮(𝑡)
)

𝑑𝑡 (27)

here 𝐐 and 𝐑 are weighting matrices which account for the cost
f each state and control. The required control is then obtained from
ef. [44]:

(𝑡) = −𝐊𝛿𝐬 (28)

inimisation of Eq. (27) leads to the algebraic Riccati equation (shown
n Eq. (32)) [58] which is solved to give the gain matrix 𝐊.

.2. Genetic algorithm

The purpose of using the GA in this work is to provide a means of
inding an optimal control law where an initial guess close enough to
he optimal solution is difficult to obtain. In this work, the GA is used to
ind a control law which facilitates a periodic orbit close to the asteroid
or the deployment for a large MASCOT-type lander.

The GA provides a method for both constrained and unconstrained
ptimisation based on the principles of evolution. Having defined

‘individuals’’ that encode the solution vector, the algorithm combines
airs of ‘‘parents’’ to produce the next generation of ‘‘children’’. Over
uccessive generations, the ‘‘population’’ will converge to the optimal
olution [16].

The benefit of this algorithm, for the purposes of this work, is
hat it requires no initial guess from the user. The algorithm can be
nitialised with an initial population randomly spread in the search
pace. However, it is important to note that the algorithm is stochastic,
nd the convergence to the global optimum is not guaranteed; in fact,

solution provided from one initial population can be different from
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the optimal solution for another initial population. As such, it is often
necessary to run multiple instances, or ‘‘seeds’’, in order to obtain a true
optimal solution.

In the search for a periodic pre-deployment orbit for the MASCOT-
type lander deployment, 10 seeds are initiated with that which pro-
duces the minimum objective value selected as the optimal solution.
The objective function is given by:

𝐽 = ‖𝐬𝑓 − 𝐬0‖ (29)

with constraints placed on the sail attitude such that the sail normal
points away from the Sun. The solution vector is encoded with the sail
unit normal vector, orbital period and the initial Cartesian state for
the orbit. The continuous time problem is discretised by twenty nodes
with spline interpolation employed in the control. The objective is to
obtain a periodic orbit. As such, the initial state is free within bounds
to facilitate this search in the phase space.

3.3. Time-Delay Feedback Control (TDFC)

Time-delayed Feedback Control (TDFC) is a method for stabilising
unstable periodic orbits [33,59]. This method of control lends itself well
to the second mission scenario where a periodic orbit will be perturbed
by the instantaneous increase in 𝑎𝑐 . The required control is obtained by.

𝐮(𝑡) = −𝐊 (𝐬(𝑡) − 𝐬(𝑡 − 𝜏)) (30)

where 𝜏 is the period of the orbit and K is the gain matrix. A such, the
only orbital parameter which is required to be defined a priori is the
orbital period.

In order for the TDFC to drive the trajectory onto a periodic orbit, a
suitable matrix K is required. This can be calculated in the same process
as that outlined in Section 3.1 and detailed here:

𝐊 = 𝐑−1𝐁𝑇𝐏(𝑡) (31)

where R is a real symmetric positive definite matrix, B is a constant
𝑛 ×𝑚 matrix where 𝑚 is the number of controls and 𝑛 is the dimension
of 𝐬(𝑡), and 𝐏(𝑡) is the solution of [58]:

𝐏̇(𝑡) = 𝐏(𝑡)𝐁𝐑−1𝐁𝑇𝐏(𝑡) − 𝐀(𝑡)𝑇𝐏(𝑡) − 𝐏(𝑡)𝐀(𝑡) −𝐐 (32)

Q is a real symmetric positive definite matrix. Eq. (32) must then be
integrated simultaneously with the equations of motion with 𝐏̇(0) = 0,
𝐐 = 𝐈𝑛×𝑛 and 𝐑 = 𝛽𝐈𝑚×𝑛. The free parameter, 𝛽, is the weighting
parameter which allows the optimal preference to be shifted between
minimising the effort required to force the periodic orbit, and the best
periodic solution.

4. ChipSat deployment

The first mission scenario is that of deploying a series of small
ChipSat probes. The deployment of the ChipSats will be performed at a
distance from the asteroid where each ChipSat probe is sent towards the
asteroid surface. As the sailcraft remains in the outer regime, the point
mass SSHR3BP model is used for analysis of the sail control strategy,
where impact trajectories will be analysed in the inner regime using the
high resolution polyhedron shape model for accurate dynamics down
to the surface.

4.1. Effect of ChipSat deployment on system dynamics

Assuming a 12U CubeSat bus, with 3U dedicated to carrying a pay-
load of ChipSats, it is estimated that 20 ChipSats can be accommodated.
The bus and sail parameters are detailed in Table 2 with those for the
bus taken from Ref. [60].

The value of characteristic acceleration shown in Table 2 was
chosen so as to link with other works related to the interplanetary
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Table 2
Sailcraft physical parameters.

Parameter Value

Bus mass 24.0 kg
ChipSat mass 10.0 g
No. of ChipSats 20
Bus and Payload mass 24.2 kg
𝑎𝑐 0.2 mm/s2

Sail area 679.8 m2

Sail areal density 10 g/m2

Sail mass 6.8 kg
Total sailcraft mass 31.0 kg

Fig. 8. Changing sail performance and AEP position with deployment of ChipSats.

phase of a multi-asteroid rendezvous mission [6,8]. By maintaining
the same value as shown by those authors, the current work can be
proposed as a direct connection to that phase of the mission. The same
value was also proposed in Ref. [61] for a multi-asteroid rendezvous.
Indeed, many authors have proposed solar sail missions with higher
performance sails [62–65]. The value of sail areal density is considered
possible for sails in the near-future [66].

As the acceleration of the sail is dependent on the sailcraft area-to-
mass ratio, each time a ChipSat is released, there is a corresponding
increase in sail acceleration. Fig. 8 shows the changing characteristic
acceleration as the ChipSats are released. Due to the small mass of each
ChipSat released, the change in 𝑎𝑐 is also small. In fact, such changes
could also be caused by degradation of the sail material over time. As
such, it could be possible for the control methods used here to also be
used to account for these effects. With this change in sail acceleration,
there is a corresponding change to the dynamics and a unique set
of AEPs is available for each value of the characteristic acceleration,
which is also shown in Fig. 8.

4.2. ChipSat descent trajectory analysis

This section presents the trajectories and landing conditions of those
ChipSats which reach the surface of the asteroid. To do this, five
deployment locations are chosen and are listed in Table 3. The locations
are dictated by the attitude of the sail and symmetrical locations in the
𝑦 and 𝑧 directions are chosen. These locations can be maintained by
rotating the sail by 𝛼 = ±45◦ with 𝛿 = 90◦ for locations 2 and 3, and
𝛿 = [0, 180]◦ with 𝛼 = 0◦ for locations 4 and 5. This range of selected
deployment locations offer the sailcraft different viewing angles of the
surface of the asteroid.
In fact, it was found that location 1 exists in the eclipse region. As
such, this would not be a feasible deployment location given that the
sail would be incapable of providing thrust. However, the data for this
deployment point are maintained here. As the trajectories will take the
probes to the asteroid surface, the polyhedron shape model is applied
when the ChipSats enter the inner regime.
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Fig. 9. ChipSat trajectories in the outer and inner regions.
Table 3
Hovering locations in the synodic frame and sail attitude for ChipSat deployment.

Location 𝑥𝑠 (km) 𝑦𝑠 (km) 𝑧𝑠 (km) 𝑛̂𝑠𝑥 𝑛̂𝑠𝑦 𝑛̂𝑠𝑧
1 15,879 0 0 1 0 0
2 16,387 15,135 0 0.7071 0.7071 0
3 16,387 −15,135 0 0.7071 −0.7071 0
4 16,678 0 14,996 0.7071 0 0.7071
5 16,678 0 −14,996 0.7071 0 −0.7071

Fig. 9a shows the descent trajectories of the ChipSats in the outer
regime, where the trajectories appear as direct descents towards the
surface. At the point which the ChipSat crosses into the inner regime,
the trajectories are affected by the rotation and the shape of the
asteroid.

It is found that deployment locations 1, 2, 4 and 5 successfully
deploy all 20 of the ChipSats to the surface of the asteroid. However,
location 3, as it trails the asteroid direction of rotation, does not
successfully deploy any of its compliment of ChipSats to the surface.
As such, those trajectories shown in Fig. 9b and c are only those which
successfully reach the surface. Fig. 9b also contains the deployment
location number for a selection of the trajectories. Those which do not
impact the surface are shown in Fig. 10. These trajectories approach
close to the surface but then begin a spiralling escape trajectory,
demonstrated by the crosses which denote the trajectory final points.

Although not considered in this work, the ChipSats themselves, if
of a sufficiently high area-to-mass ratio or operating in a very weak
gravity field, could experience significant effects from SRP.

The velocity upon impact is also provided here. The main work of
the ChipSats is envisaged to be done during their descent, but their
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probability of survival on the surface will depend on the impact condi-
tions, which is dependent on the size of the asteroid. Fig. 9c gives the
impact locations and velocities, and shows that in-plane deployments
provide both some of the highest and lowest velocity impacts. On closer
inspection of the results, the deployments from the AEP which lies
on the 𝑥-axis give the highest velocity impacts. The lowest velocity
impacts come from the in-plane deployment at the position which leads
the asteroid rotation. These trajectories benefit from a lower velocity
relative to the asteroid at the point of entry to the inner regime than
those which lie along the 𝑥-axis of the outer regime. Given the high
velocities, it is not expected that the ChipSats will survive impact.
Assuming a ChipSat could survive similar impact velocities of a cellular
telephone on Earth (≤4.427 m∕s [67]), then an asteroid with a ratio of
𝜇
𝑟0

≤ 9.7992 m2/s2 would be the largest body from which deployment
could be made from the locations described here and the ChipSats
survive impact.

4.3. Sail control during deployment

The sail control law will now be established for the deployment
of 20 ChipSats with a separation of one hour between each, from the
five different deployment locations of Table 3. Although this separation
is chosen arbitrarily here, it may be that mission designers choose to
separate the probes for a specific mission objective, or perhaps even
to be in resonance with the sail membrane. Given the relatively small
mass of each ChipSat to the overall mass of the sailcraft, the reaction
of each ChipSat release on the sailcraft is not considered here.

4.3.1. Fixed attitude
In the first instance, the sail attitude remains fixed in the synodic

frame as set out in Table 3. The drift of the sail from the initial hover
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Fig. 10. ChipSat trajectories which do not impact the surface of the asteroid.
Fig. 11. Position error vs. control effort for each deployment simulation using LQR.
point is presented in Table 4. With the increasing sail acceleration after
each ChipSat is released, the fixed attitude sail moves slowly away
from the initial deployment point. Although there is some movement
of the sail away from the initial point, the distance moved over the full
deployment of all ChipSats is still relatively small.

4.3.2. Linear quadratic regulator
Following the fixed attitude simulation, the use of LQR control to

maintain the initial hover location is analysed. For each deployment
point of Table 3, there will be three associated simulations (a, b and c),
each related to a different weighting on the Q and R matrices. In all
simulations, 𝐐 = 𝐈6×6 and 𝐑 = 𝛽𝐈3×3. Here, 𝛽𝑎 = 1 × 10−6, 𝛽𝑏 = 1 and
𝛽𝑐 = 1×106 for simulations a, b and c respectively. The three simulations
give examples where the states are given greater weighting than the
control effort in the LQR controller (simulation a), where the states and
effort are given equal weighting (simulation b) and where the control
effort is given greater weighting (simulation c). The mean position error
is calculated by taking the mean of the scalar error between the final
position at the end of each 1-h deployment phase and the reference
point. The control effort is a scalar value obtained by performing a
trapezoidal integration of the angular accelerations of the control law
resulting from each simulation. The integral gives the total changes in
slew rate of the sail during deployment, and is measured in radians
per second. The results in terms of the mean position error and control
effort are given in Fig. 11.

It is clear from Fig. 11 that the control effort required does not
necessarily reduce for simulation b when compared to simulation a.
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A reduction in control effort requires that the weighting is far more
biased towards the R matrix, such as in simulation c. Where this is the
case, it is possible to achieve very low values of control effort, as in
simulations 2𝑏 and 2𝑐.

Fig. 11 shows that it is possible to achieve a very small positional
error with respect to the initial hover point, at a cost of higher effort
required by the sail control system. By reducing the sail control effort,
there is an increase in the positional error. For very small values
of control effort, there can be considerable positional error values.
These errors are far greater than those where the sail remains with a
fixed attitude during deployment, as seen in Table 4. As an example
of the LQR performance, the results from simulation a are used for
comparison with the fixed attitude in Table 4, which give the most
weight to maintaining the hover position for a higher control effort.
The control laws from this simulation are given in Fig. 12. We note
that viewing angle changes, due to the displacement from the original
hover location, are small enough that they would not be a problem for
scientific remote observation.

4.3.3. Comparison of methods
The results of Table 4 show that the LQR control is the most capable

of maintaining the sail close to the original hover location.
However, the considerable extra effort required by the sail to fol-

low the LQR control does not bring about such an improvement in
performance to warrant its inclusion on a real mission. As such, for
a real scenario, the recommendation would be to use a fixed sail
attitude during ChipSat release. Where the sail acceleration becomes
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Fig. 12. LQR control during hover for ChipSat deployment from all locations of Table 3.
more powerful relative to the asteroid gravitational acceleration, the
fixed attitude would result in greater divergence from the desired
deployment location. This may also be the case where the ChipSats
may have a considerably larger mass than those of 10 g which are
considered here. In these situations, it may be worth revisiting a control
provided by the LQR.
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5. MASCOT-type lander deployment

A MASCOT-type lander carries a much greater mass than the Chip-
Sats deployed in Section 4, and its release will result in a far more
considerable change in 𝑎𝑐 and consequently in the dynamics of the
inner regime. As this is a single deployment, the change in dynamics
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Fig. 13. Deployment orbit 1.
Fig. 14. Deployment orbit 2.
is large and instantaneous. In the first instance, the pre-deployment
orbit and control are established. After deployment, the orbit of the
sail is maintained in the region of the nominal orbit, converging to a
near-equatorial quasi-periodic orbit, by application of TDFC.
192
5.1. Pre-deployment orbit control

Calculation of the nominal, pre-deployment, orbit of the solar sail is
achieved using a GA as described in Section 3. Two deployment orbits
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Fig. 15. Landing trajectories for deployment from orbit 1.
Fig. 16. Landing trajectories for deployment from orbit 2.
Table 4
Comparison of sailcraft drift from initial hover point for fixed attitude and LQR.

Location Fixed attitude (km) LQR a (km)

1 0.3416 0.0072
2 0.1728 0.0082
3 0.1728 0.0071
4 0.1728 0.0080
5 0.1728 0.0079

are established using this method: a lower inclination solution (orbit
1) sought by restricting the search for initial state to a small region
of the phase space near the equatorial region, and a higher inclination
solution (orbit 2) is facilitated by relaxing the constraint on this phase
193
Table 5
Semi-major axis (SMA) and inclination (INC) of periodic solutions found by GA.

Orbit SMA (km) INC (deg)

1 390.81 1.82
2 390.31 14.34

space search. These orbits give a range of potential landing sites for
the MASCOT-type lander. Table 5 gives the semi-major axis (SMA) and
inclination (INC) of the solutions.

Allowing the GA to select the initial conditions in this way allowed
for a solution with the smallest possible objective function value,
rather than targeting a specific orbit which resulted in larger objective
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Fig. 17. Post-deployment trajectory and control of the sail using TDFC method after deployment from orbit 1.
function values. If these large errors remained then the sail control
would not only have to deal with the instantaneous change in sail
acceleration due to lander deployment, but also a large error in the
state. Figs. 13 and 14 show orbits 1 and 2 and their control laws.

5.2. Impact conditions for the MASCOT-type lander

Using the deployment orbits obtained in Section 5.1, the landing
conditions are now obtained for the MASCOT-type lander and their
trajectories are shown in Figs. 15 and 16 for deployment orbits 1 and
2 respectively. As with Section 4.2, the polyhedron shape model is
applied to ensure accurate dynamics very close to, and on, the surface.
The numerical values for the landing conditions are given in Table 6.
It should be emphasised here that the impact conditions were not an
objective of this work and are simply presented here for completeness.

From deployment orbit 1, the lander makes a number of close ap-
proaches to the surface before the final impact. In the inertial frame, the
trajectory describes an orbit under perturbation from a non-spherical
body, with rotation of the apse line, until the approach to periapsis
bring the lander into contact with the surface. The lander trajectory
from deployment orbit 2 shows the same behaviour but the time to
impact is extended given the higher inclination initial condition.

5.3. Post-deployment orbit control

When the sailcraft completes one full revolution of the nominal
orbit, the lander is released, resulting in an instantaneous increase in
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Table 6
Impact conditions for MASCOT-type lander.

Orbit 1 Orbit 2

Deployment 𝛥𝑣 [0, −5, 0] m/s [0, −5, 0] m/s
Impact velocity 190.03 m/s 190.86 m/s
Impact latitude −0.25◦ −1.22◦

Impact longitude −14.37◦ 179.46◦

Time to impact 9.53 h 12.63 h

𝑎𝑐 . In order to control the sail such that it converges to a periodic
orbit, TDFC is applied. This method is chosen as a proven method of
stabilising an unstable periodic orbit [33].

For the TDFC, the matrices Q and R will be weighted such that
the solution favours periodicity over control effort. In order to analyse
the convergence of the method, a section of the phase space in the
𝑥−𝑧 plane will be taken which shows the location where the trajectory
intersects that plane on each orbit. For an orbit to be periodic, the final
state must converge to the same point in the state space as the initial
state [68]. However, for the purposes of illustration, only the positional
convergence is shown in the 𝑥 − 𝑧 plane in subsequent figures.

Fig. 17 shows the results for correction after deployment from pre-
deployment orbit 1. The Poincaré sections in Fig. 17 show that the orbit
converges in the inertial frame to a near-equatorial orbit.

Deployment orbit 2 is shown in Fig. 18. Here, the results simi-
larly appear to converge to a planar orbit, though the method takes
considerably longer to do so, given the higher starting inclination.
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Fig. 18. Post-deployment trajectory and control of the sail using TDFC method after deployment from orbit 2.
6. Conclusion

In this paper, the problem of controlling a solar sail on a stable
hover/orbit after the deployment of a series of small probes, or a single
large lander, has been addressed. The problem is characterised by an
instantaneous change in the sail acceleration and system dynamics at
the point of separation of each probe/lander.

In the deployment of a series of small ChipSat probes, the sail was
able to successfully hold a position close to the original deployment
point. However, the far higher effort required by the sail to main-
tain the LQR control did not produce results which were of such an
improvement over maintaining a fixed sail attitude to warrant their
recommendation for a real-world scenario. Five distinct deployment
locations were tested and the method was successful in each case. It was
found that the deployment location which trailed the asteroid rotation
was not able to deploy any of its probes to the asteroid surface, but
these probes could support science cases while orbiting.

In the deployment of the larger MASCOT-type lander, two nominal
pre-deployment orbits were first established by a GA. Following the
completion of the nominal orbit, the lander was deployed and the sail
maintained its orbit in the region of the nominal orbit before con-
verging to a near-equatorial orbit using Time-Delay Feedback Control
(TDFC). This method was successful for both deployment orbits, though
deployment from orbit 2 required far longer to converge to the final
planar orbit.

This paper has shown that it is possible for a sail to successfully be
controlled after the deployment of small probes and larger landers. This
195
fills an important gap in the available literature on solar sail missions
to asteroids.
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