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Drone Authentication via Acoustic Fingerprint
Anonymous Author(s)

ABSTRACT
As drones become widely used in different applications, drone
authentication becomes increasingly important due to various se-
curity risks, e.g., drone impersonation attacks. In this paper, we
propose an idea of drone authentication based on Mel-frequency
cepstral coefficient (MFCC) using an acoustic fingerprint that is
physically embedded in each drone. We also point out that the
uniqueness of the drone’s sound comes from the combination of
bodies (motors) and propellers. In the experiment with 8 drones,
we compare the authentication accuracy of different feature ex-
traction settings. Three kinds of different sound features are used:
MFCC, delta MFCC (DMFCC), and delta-delta MFCC (DDMFCC).
We choose the feature extraction settings and the sound features
according to the best authentication result. In the experiment with
24 drones, we compare the closed set authentication performance of
eight machine learning methods in terms of recall under the influ-
ence of additive white Gaussian noise (AWGN) with different levels
of signal-to-noise ratio (SNR). Furthermore, we conduct an open
set drone authentication experiment. Our results show that Qua-
dratic Discriminant Analysis (QDA) outperforms other methods in
terms of the highest average recall (94.19%) in the authentication
of registered drones and the third highest average recall (82.35%) in
the authentication of unregistered drones.

CCS CONCEPTS
• Security andprivacy→Authentication; •Computingmethod-
ologies →Machine learning.

KEYWORDS
Authentication, Drones, MFCC, Acoustic fingerprinting, Machine
learning

1 INTRODUCTION
In the past decade, advances in both software and hardware have
made drones smaller, cheaper, and easier to fly without special
training. As a result, drones have been widely used in different
sectors, such as agriculture [6, 29], film production [10], rescue
operations [7], etc. However, this raises new security concerns
from different aspects, e.g., a drone may approach an airport and
interfere with aviation safety; it may fly over private homes and
lead to privacy issues; it may be used for terrorist attacks and drug
smuggling [24].

Current solutions focused on drone detection and drone classifi-
cation can be divided into fourmain categories [34]: radio frequency
analyzers [12], acoustic sensors (microphones), optical sensors (cam-
eras) [22], and radar [15]. Although thesemethods are used to detect
and classify drones, they are not capable of authenticating drones,
i.e., verifying their identity to distinguish them from impersonating
drones. Authentication is crucial to prevent drones from access-
ing resources and areas they are not authorized to use/enter. For
example, when delivery drones approach customers, they should
be verified and then got permission to land or drop parcels. When

delivery drones return to the warehouse, the warehouse should also
verify that they are legitimate drones, rather than malicious drones.
By doing so, drone authentication can prevent drone impersonation
attacks [28].

In authentication, many drones have software-level digital cer-
tificates to indicate the individual identity of each drone [1]. This
is, however, vulnerable to cyber attacks, such as impersonation. On
the other hand, using physical characteristics (such as fingerprints
in the case of humans) that are deeply embedded in each drone has
the potential to improve authentication by adding an inherence
factor to authentication [9].

In this paper, we investigate drone authentication methods using
acoustic signals from flying drones. In particular, our goal is to
identify each individual drone from a group of drones of the same
model/manufacturer. Our experiments demonstrate the feasibility
of drone authentication using the noise generated by drone flight.
Specifically, audio fingerprints can be built from Mel-frequency
cepstral coefficient (MFCC), delta MFCC (DMFCC), and delta-delta
MFCC (DDMFCC).We compare eight widely usedmachine learning
methods in authentication tasks: (1) Linear Discriminant Analysis
(LDA), (2) Quadratic Discriminant Analysis (QDA), (3) Linear kernel
Support Vector Machine (LSVM), (4) Radial Basis Function kernel
Support VectorMachine (RBF-SVM), (5) K-Nearest Neighbor (KNN),
(6) Decision Tree (DT), (7) Random Forest (RF), and (8) Gaussian
Naïve Bayes (GNB).

Feature extraction is important to improve the authentication
performance of machine learning methods. We conducted a series
of experiments with different feature extraction settings, such as: (1)
the frame length of segmented audio, (2) the number of used filters,
(3) the number of used features, and (4) the use of high-level features.
Here, the high-level features refer to DMFCC and DDMFCC, which
are generated from MFCC. The results shed light on the optimal
MFCC feature extraction setting for drone authentication.

Through our experiment, we also found that the combination of
drone bodies (motors) and propellers leads to unique sound features.
For example, a nonzero offset of the rotor causes the noise generated
by the motor. Meanwhile, the manufacturing imperfections of the
different propellers lead to different wind noises. Therefore, given
the same model of drones, the sound features of each individual
drone could be determined by the combination of drone bodies
(motors) and propellers.

The main contributions of this work are summarized as follows:

• To the best of our knowledge, this is the first work that uses
acoustic fingerprints to authenticate flying drones.

• We report the results of experiments in which we used dif-
ferent parameter settings to extract MFCC, DMFCC, and
DDMFCC. Our feature extraction setting could be used as a
reference for future studies.

• We investigate the performance of eight machine learning
methods in drone authentication. Furthermore, we also ap-
plied AWGNwith different levels of SNR to explore the noise
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resistance ability of eight machine learning methods. These
results could be used as a baseline for future research.

• We verify that the acoustic fingerprint could be determined
by the combination of the drone body (motors) and the pro-
pellers.

• We verify that our proposed authentication settings and
methods could not only solve the closed set problem, but
also authenticate the drone that has never been seen by the
algorithm before (open set problem). The results show that
QDA outperforms other methods in terms of the highest
average recall (94.19%) in registered drones and the third
highest average recall (82.35%) in unregistered drones.

The rest of this paper is organized as follows. In Section 2, we
summarize related work and outline how we extend state of the art.
Section 3 describes how we collect audio data and how we combine
the drone body and propellers as a “new” drone. Section 4 presents
how to set up a series of experiments to find the appropriate fea-
ture extraction setting. Section 5 presents the result of the drone
authentication experiment and attacks on authentication systems.
In Section 6, we discuss the limitations of our research and possible
future extensions. Finally, we summarize our work in Section 7.

2 RELATEDWORK
Many existing works use microphones to detect the presence of
drones (drone detection) and classify the type of drone (drone clas-
sification). The former accounts for most of the research in this
area. The study of individual drone recognition in terms of sound
characteristics is still an under-investigated field. Our work builds
on prior work on (1) drone detection, (2) drone classification, and
(3) other studies related to drone sound features.

2.1 Drone Detection
Kim et al. [19] designed software that can detect andmonitor drones
in real-time, every 0.743 seconds of data, based on Fast Fourier
Transform (FFT). They used Plotted Image Machine Learning (PIL)
to achieve 83% accuracy in detecting the drone without a propeller
in a noisy indoor environment. In addition, KNN was applied to
achieve 61% accuracy in the detection of flying drones. Although
this work used different methods to detect the presence of drones,
the accuracy needed to be further improved. The work of Bernardini
et al. [8] used another approach to achieve outstanding detection
accuracy. They implemented short-term (20 ms) and long-term (200
ms) analyses of audio and used RBF-SVM to achieve an accuracy
of over 96.4% in distinguishing drone sound and environmental
sound. In the short-term analysis, 13 MFCC features were extracted,
which contain distinctive information for detection. However, this
work did not address detection with unseen data. The unseen data
problem was solved by Jeon et al. [18], who were the first to use
Gaussian Mixture Model (GMM), Convolutional Neural Network
(CNN), and Recurrent Neural Network (RNN) in drone detection,
considering the application in a real-time detection system. The
collected drone audio was augmented using the noise dataset. They
used 40 Mel filters to extract MFCC features and used 20 features
for GMM and 40 features for CNN and RNN. Furthermore, a 40
ms time window was applied to extract MFCC features for GMM,
while a 240 ms time window was applied for CNN and RNN. They

achieved drone detection in the unseen data type and found that
RNN has the best performance with F1-score of 0.6984.

Seo et al. [32] segmented the audio data into a 20 ms frame length
with 50% overlap and used Short-time Fourier Transform (STFT)
to extract the sound features. They corrupted the audio data with
AWGN in different SNR and applied CNN to test the influence of
noise on detection. Their results showed that lower SNR led to lower
accuracy. While this work used AWGN to explore the influence of
noise, noise in the real environment should be more complex. To
address drone detection and location in a real outdoor environ-
ment, Sedunov et al. [31] developed a Drone Acoustic Detection
System (DADS) to detect drone presence and track drone location.
The sound signals were captured in 4 seconds with 50% overlap
to generate the spectrogram. A novel algorithm was developed
to detect drones and distinguish drone sound from other similar
sounds. This algorithm was based on detecting and tracking the
number of harmonics in the spectrogram.

In the field of drone detection, researchers were trying to com-
pare different combinations of feature extraction schemes and differ-
ent classification schemes. Yang et al. [37] designed the experiments
in a real outdoor environment. They extracted audio features using
MFCC and STFT. Then, they applied Support VectorMachine (SVM)
and CNN to compare the effect of different combinations of features
and methods. The result showed that the STFT-SVM combination
had the best drone detection performance. However, in some cases,
the drone used in the experiment was pulled by a string to confront
the intense wind, which could influence the features of the drone
sound. In addition, some audio was recorded from the drone held by
a walking pilot. Anwar et al. [5] recorded drone audio in a real noise
environment and extracted the sound features using Linear Predic-
tive Cepstral Coefficients (LPCC) and MFCC. Then, they applied
SVM with different kernels to compare the performance of LPCC
and MFCC with 13 features. The results showed that the detection
performance of MFCC surpassed LPCC with different kernels. This
work reached the conclusion that machine learning is an efficient
and accurate tool in the field of drone detection. Uddin et al. [35]
unmixed the recorded signals and then extracted the sound fea-
tures through MFCC, power spectral density (PSD), and Root Mean
Square (RMS) of PSD. They applied SVM and KNN to detect the
presence of drones. The author pointed out that the combination
of RMS values of PSD and KNN outperformed other combinations
in terms of accuracy.

2.2 Drone Classification
Siriphun et al. [33] divided the audio into 4 to 5 seconds of each
sample and applied FFT to extract sound features. Then they applied
RF to detect and classify drones. The result showed that the drone
model had a great influence on the detection and classification
performance. However, to be more convincing, other classification
methods must be tested. Al-Emadi et al. [4] used CNN, RNN and,
Convolutional Recurrent Neural Network (CRNN) to detect and
classify drones based on a spectrogram extracted from 1 second
long audio. Additionally, public noise datasets were applied to drone
audio to mimic real scenes. On the basis of that, Al-Emadi et al. [3]
used Generative Adversarial Network (GAN) to generate an artifi-
cial dataset with the aim of improving the performance of drone
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detection and classification. The result suggested that the bene-
fits of using GAN to augment datasets outweighed the drawbacks
in drone detection and drone classification. Utebayeva et al. [36]
were the first group to use Long Short-Term Memory (LSTM) to
classify drone sound. They extracted the sound features by MFCC,
but the details of the configuration were ambiguous. Kolamunna et
al. [21] extracted MFCC features with a frame length of 25 ms and
an overlap of 15 ms. They stacked 20 frames as input to their LSTM
model and trained with the background class to solve the open set
classification. Based on their previous work, Kolamunna et al. [20]
developed DronePrint based on LSTM for drone detection and clas-
sification. The authors analyzed the drone sound characteristic and
discussed the influence of time-domain peak normalization and
feature vector rescaling on MFCC. They used 40 filters to extract 40
MFCC features in the audio, which was split into 200 ms segments
without overlap. Then they input 10 time steps (frames) into the
two-stacked LSTM model for drone detection and classification.
Furthermore, DronePrint showed resistance to the Doppler effect
due to the data augmentation step. The results reported in this work
suggested that DronePrint can achieve an accuracy of 95% in known
sound signals and an accuracy of 86% in unknown sound signals in
drone detection. In addition, it achieved an overall accuracy of 92%
in drone classification.

2.3 Other Drone Sound Related Studies
Ibrahim et al. [17] were the first to detect the payload of commercial
drones according to the sound features. They extracted 40 MFCC
features in audio with frame lengths of 0.25 and 1 s. Ten widely
used machine learning methods were applied. In addition, the re-
sult showed that cubic SVM outperformed other methods and can
achieve 98.4% payload detection accuracy in just 0.25 s frame length
of recorded audio. Furthermore, with a frame length of 1 s, QDA,
LSVM, and quadratic SVM outperformed other methods with an ac-
curacy of 98.9%. They found that a longer frame length was effective
in detecting drone payloads.

Ramesh et al. [28] used the noise generated by motor rotation
to identify individual drones. They showed that the motor noise
(without propellers) was unique for each drone. In addition, they
extracted the cepstral features of drone audio and applied SVM to
authenticate different drones in the same model without propellers.
Fifty-four motors and 11 drones of the same model and make were
used in their work. Furthermore, they achieved an accuracy of
99.48% in drone authentication without propellers. Their work is
inspiring, but whether this method can still be applied when a drone
flies with propeller noise is an open question.

2.4 Our Contribution Compared to Prior Work
Many studies mentioned above have yielded outstanding results in
drone detection and classification, however, none have addressed
the issue of authentication on flying drones. In this paper, we uti-
lize MFCC-related features as the acoustic fingerprint for drone
authentication. Previous work has already shown that MFCC is an
effective method for extracting features from drone audio [5, 8, 17,
18, 20, 21, 35–37]. This motivated us to use MFCC in our work. We
also use DMFCC and DDMFCC in our work, since they are popular
in speaker recognition [2]. However, the configuration details of

MFCC were not clear enough in many works mentioned above.
Most of the works did not provide specific details on the number of
used filters [5, 8, 17, 20, 21, 35–37]. Furthermore, some authors did
not mention the segmented frame length [5, 35–37] and the frame
overlap ratio of segmented frames [5, 17, 35–37]. Some works did
not mention the number of used features [36, 37]. In addition, none
of them discussed the effectiveness of DMFCC and DDMFCC [16]
in drone sound analysis. In our work, we discuss the effect of the fol-
lowing four settings on drone authentication: (1) the frame length
of segmented audio, (2) the number of used filters, (3) the number
of used features, and (4) the use of high-level features. By default,
each frame has a 50% overlap with adjacent frames. Our work not
only performs drone authentication via acoustic fingerprint, but
also can provide a reference to set feature extraction parameters
for further research.

3 DATASETS
In our experiment, 8 DJI Mini 2 [11] and two sets of spare propellers
were used. We collected audio data from 8 original drones and 16
reassembled drones. Here, reassembled drones mean using the body
of the original drones but with different spare propeller sets. Each
set includes four propellers. As shown in Table 1, we labeled the
bodies of the 8 drones from “A” to “H”. The propeller sets that come
with drones from “A” to “H” were labeled as a1-a4, b1-b4, c1-c4, etc.
Here, the letters (“a” to “h”) represent the original drone body of
the propellers. In addition, numbers (1 to 4) represent the numerical
label of the propellers.

The original 8 drones were marked as drones No. 1 - No. 8.
Next, we labeled the two sets of spare propellers as x1-x4 and y1-
y4, respectively. We used the first set of spare propellers x1-x4 to
replace the original propellers a1-a4 on drone No. 1. After that, we
labeled this reassembled drone (body “A” with the propeller set
x1-x4) as drone No.9. We repeated this for drones No. 2 - No. 8 to
obtain drones No. 10 - No. 16. Then, we used the second set of spare
propellers y1-y4 to obtain drones No. 17 - No. 24 in the same way.
Based on the above setup, we collected audio clips from 8 original
drones and 16 reassembled drones (“new” drones).

The size of the recording room is approximately 5m inwidth, 8 m
in length, and 3 m in height. As a preliminary study of drone authen-
tication, we recorded drone audio only when the drone was hov-
ering. We used two multi-pattern condenser microphones (model:
AT2050) to record the audio with a sampling rate of 44.1 kHz and a
bit depth of 16, where the microphone is 1 m and 5 m away from
the drone, respectively. Figure 1 shows the setup of the recording
room.

The audio recording was stored in WAV format as a mono chan-
nel. We recorded similar lengths of audio clips for each drone (No. 1
- No. 24) to avoid bias when training our algorithms. For each drone,
we recorded about 10 minutes (600 seconds) at 1 and 5 meters at the
same time, respectively. The entire audio data was collected over
15 days to reduce bias caused by weather or temperature. Since the
recording room is close to another office area, the recorded audio
contained some noise. Table 1 shows the details of the audio data
collected and the combinations of drone bodies and propellers.

The audio of the drones under each label (No.) was divided into
two parts: 70% for training (training set) and 30% for testing (test
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AT2050

Drone
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Figure 1: Recording room setup.

Table 1: Collected Drone Audio

Drone No. Combination 1m (s) 5m (s) Total (s)

1 “A” & a1-a4 609.94 609.94 1219.88
2 “B” & b1-b4 605.00 605.00 1210.00
3 “C” & c1-c4 612.01 612.01 1224.02
4 “D” & d1-d4 606.00 606.00 1212.01
5 “E” & e1-e4 605.93 605.93 1211.87
6 “F” & f1-f4 605.93 605.93 1211.87
7 “G” & g1-g4 606.00 606.00 1212.01
8 “H” & h1-h4 607.07 607.07 1214.14
9 “A” & x1-x4 609.94 609.94 1219.88
10 “B” & x1-x4 604.93 604.93 1209.87
11 “C” & x1-x4 615.08 615.08 1230.16
12 “D” & x1-x4 608.07 608.07 1216.14
13 “E” & x1-x4 603.93 603.93 1207.87
14 “F” & x1-x4 607.00 607.00 1214.01
15 “G” & x1-x4 610.07 610.07 1220.15
16 “H” & x1-x4 608.00 608.00 1216.01
17 “A” & y1-y4 626.02 626.02 1252.05
18 “B” & y1-y4 605.93 605.93 1211.87
19 “C” & y1-y4 607.07 607.07 1214.14
20 “D” & y1-y4 627.96 627.96 1255.92
21 “E” & y1-y4 604.93 604.93 1209.87
22 “F” & y1-y4 605.00 605.00 1210.00
23 “G” & y1-y4 605.00 605.00 1210.00
24 “H” & y1-y4 635.96 635.96 1271.93

Total - 14642.89 14642.89 29285.79

set). Furthermore, the audio recorded for each drone at 1 m and 5
m is maintained with the same timestamp after division. Based on
collected drone audio, we created four datasets.

• DS1: this dataset contained drone audio from No. 1 - No. 8.
• DS2: this dataset contained drone audio from No. 1 - No. 24.
• DS1N: we added AWGN to DS1 with 0 dB SNR to create
DS1N. The lengths of the corresponding drone audio in
DS1N and DS1 are equal to each other.

• DS2N: we added AWGN to DS2 with 93 levels of SNR rang-
ing from -8.00 dB to 15.00 dB with a step of 0.25 dB to create
DS2N. The size of DS2N is 93 times larger than the size of

DS2. In other words, each level of SNR creates a new subset
in DS2N, whose size is equal to DS2.

We tested on DS1 and DS1N to find out which configuration
for feature extraction is appropriate. Then we used DS2 and DS2N
to verify the configuration we chose. In addition to drone audio,
we also recorded about 60 minutes of real indoor noise from our
recording room. This noise audio was used with DS2 for security
studies in the drone authentication experiment.

4 AUTHENTICATION METHODS
In this section, we first discuss the method for pre-processing the
data. Then we investigate the proper setting of the MFCC param-
eters for authentication. To evaluate the performance of different
configurations in this part, we use accuracy as a performance indi-
cator:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 +𝑇𝑁

𝑇𝑃 +𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
, (1)

where TP is true positive, TN is true negative, FP is false positive,
and FN is false negative.

In our work, eight machine learning methods are based on the
code of scikit-learn [26]. In addition, we use python_speech_features
[25] to extract MFCC, DMFCC, and DDMFCC.

4.1 Data Preprocessing
Before we extract the MFCC, DMFCC, and DDMFCC features from
the audio, we must properly pre-process the original audio.

First, we notice that it is not necessary to extract features from
the whole frequency domain. This is because the energy contained
in the high-frequency domain is too small for drone sound. We
calculate the average energy distribution of all the collected audio.
The results show that almost 95% of the energy is located within
the frequency range of 0-8 kHz. Thus, we focus on extracting the
features within the range of 0-8 kHz. This range is also commonly
used by other works in drone detection and classification [3, 4, 20].

The next step is to split each audio file into small frames for fea-
ture extraction. Based on previous work, frame lengths commonly
used in previous work ranged from 20 to 1000 ms [8, 17, 18, 20, 21].
In general, the short frame length aims to capture the instant fea-
tures in the audio, while the long frame length can show the general
features.

To find the appropriate frame length, we calculate the authenti-
cation accuracy in different frame lengths ranging from 20 to 2520
ms with an increment of 50 ms. In addition, each frame has a 50%
overlap with adjacent frames by default. Here, we train and test
the eight machine learning methods on drone audio in DS1. In this
experiment, 50 filters and 49 features (from 2 to 50) of MFCC are
used.

Figure 2 shows the variation of the authentication accuracy with
respect to the frame length. The results suggest that the sound
features in a very short frame length (20 ms) are not enough to
distinguish individual drones. A longer frame length can enhance
the sound feature of each drone. However, since the total length of
drone audio is fixed, a longer frame length leads to a smaller size of
the extracted feature data, which could decrease the performance of
the machine learning algorithm. Here, we choose the frame length
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Figure 2: The influence of frame length on accuracy.

of 1000 ms to have a good balance between accuracy and the size
of the extracted feature data.

4.2 Feature Extraction
In this experiment, three factors influence authentication accuracy:
(1) the number of filters, (2) the number of used features, and (3)
the use of high-level features. The number of filters determines the
number of total generated features. In all experiments, all the first
extracted features for MFCC, DMFCC, and DDMFCC are discarded,
which contain unwanted low-frequency information generated
from the environment. In addition, since the audio may contain
some instantaneous noise, we apply the feature vector re-scaling
[20] method on the extracted feature vector to reduce its influence.
We divide the feature vector by its 𝐿2 norm. The formula is shown
below:

𝑣
′
Feature =

𝑣Feature
∥𝑣Feature∥

,

where 𝑣Feature is the feature vector and 𝑣
′
Feature is the feature vector

after re-scaling.
Previous work [5, 8, 17, 18, 20, 21, 35] suggests that the common

number of used features is between 13 and 40, while the applied
filters remain unknown for most of the work. However, according to
our experiment, adopting those numbers leads to poor accuracy. To
find the proper setup of three factors, we use eight machine learning
methods to obtain the authentication accuracy with a frame length
of 1000 ms, which is based on the result of data pre-processing. In
this part, the filter-varying experiment without AWGN is conducted
inDS1, and the filter-varying experiment with AWGN is conducted
in DS1 and DS1N.

4.2.1 Filter-varying Experiment: Using MFCC only. First, we only
use MFCC features. We increase the number of filters from 26 to 271
with an increment of 5 while keeping using one-third, two-thirds,
and all the generated features, respectively, to explore the influence
of the number of filters and the number of used features. We name
this process “filter-varying process”. When the number of used
features is not divisible, we round down that number. Figures 3
(a), (b), and (c) illustrate that using more features leads to better
authentication accuracy, with a fixed number of filters. Furthermore,

the number of features commonly used in previous work does not
perform well in drone authentication.

4.2.2 Filter-varying Experiment: Using MFCC and DMFCC. Sec-
ond, we combine MFCC and DMFCC together and repeat the filter-
varying process. The results are shown in Figures 3 (d), (e), and
(f), respectively. Compared to only using MFCC, using MFCC and
DMFCC has a similar accuracy inmost algorithms, except RBF-SVM
and KNN. Using one-third of the features, these two methods have
a dramatic decrease in accuracy. Furthermore, using two-thirds or
all the features, RBF-SVM returns to a level of accuracy similar to
before, while KNN remains at a low accuracy.

4.2.3 Filter-varying Experiment: UsingMFCC, DMFCC andDDMFCC.
Third, we combine MFCC, DMFCC and DDMFCC together and re-
peat the filter-varying process. The results are shown in Figures 3
(g), (h), and (i), which are similar to the last experiment. However,
the accuracy of RBF-SVM and KNN is further reduced.

The results of the three experiments show that LDA, QDA, and
LSVM always perform well compared to the other methods. While
KNN has relatively good accuracy only using MFCC.

These three experiments also show that adding more features
may not improve performance. Although using a smaller number
of features can lead to poorer accuracy, when the number of filters
is large enough, using a third of the features can also give good
results, but slightly lower than using all features. This means that in
the range of 0-8 kHz, the high frequency also contains valuable in-
formation for drone authentication. However, the effect of DMFCC
and DDMFCC is unclear, because six machine learning algorithms
achieve a similar accuracy using the same configurations with an
increasing number of filters. Only the accuracy of RBF-SVM and
KNN is reduced by introducing DMFCC and DDMFCC.

4.2.4 Filter-varying Experiment with AWGN. To explore the effect
of MFCC and DMFCC, we apply the same filter-varying experiment
in DS1N. We use the models trained on the training set of DS1 and
test them in the test set of DS1N. This experiment aims to explore
whether the use of DMFCC and DDMFCC has a special effect under
the influence of noise. The results are shown in Figure 4. Compared
to the filter-varying experiment without AWGN, the accuracy of
using a small number of filters and features is greatly reduced.
In this case, we can see the importance of using a large number
of filters and features. Furthermore, the addition of AWGN has a
great influence on DT, which has a significant decrease in drone
authentication accuracy. In addition, LDA shows strong resistance
to noise and remains the highest accuracy in all configurations.

These results show that as the number of filters and used fea-
tures increases, the accuracy of each algorithm almost continuously
increases. Their accuracy reaches a bottleneck of about 200 used
filters. Although DMFCC and DDMFCC are effective in speaker
recognition [2], their implementation does not have a positive effect
on drone authentication. On the contrary, DMFCC and DDMFCC
reduce the accuracy of RBF-SVM and KNN.

Based on the results of the above experiments, we segment drone
audio with a frame length of 1000 ms, and each frame has a 50%
overlap with adjacent frames. For feature extraction, 201 filters are
applied to extract MFCC features from 2 to 201 and use them for
training and testing. DMFCC and DDMFCC are unused.
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Figure 3: Number of filters versus Accuracy without AWGN on DS1 test set. (a) Increasing number of filters using one-third of
the MFCC features. (b) Increasing number of filters using two-thirds of the MFCC features. (c) Increasing number of filters
using all the MFCC features. (d) Increasing number of filters using one-third of the MFCC and DMFCC features. (e) Increasing
number of filters using two-thirds of the MFCC and DMFCC features. (f) Increasing number of filters using all the MFCC and
DMFCC features. (g) Increasing number of filters using one-third of the MFCC, DMFCC, and DDMFCC features. (h) Increasing
number of filters using two-thirds of the MFCC, DMFCC, and DDMFCC features. (i) Increasing number of filters using all the
MFCC, DMFCC, and DDMFCC features.

5 AUTHENTICATION EXPERIMENT RESULTS
We conducted 3 authentication experiments:

• Authentication of 24 drones without AWGN.
• Authentication of 24 drones with varying AWGN.
• Security study.

Since the experiment in Section 4 has already proved the feasi-
bility of drone authentication, the first experiment in this section
will confirm that the drone with replaced propellers has a unique
acoustic fingerprint, i.e., it can be regarded as a new drone. Then
we explore the influence of AWGNwith different SNR on our drone
authentication methods. Finally, we show the results of our scheme
against unregistered drones.

To evaluate the performance of the eight machine learning meth-
ods in the authentication of 24 drones, in addition to accuracy, we
also use the following three performance indicators:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
, (2)

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, (3)

𝐹1 =
1
2
× ( 1

𝑅𝑒𝑐𝑎𝑙𝑙
+ 1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

), (4)

where TP is true positive, FP is false positive and FN is false negative.

5.1 Authentication of 24 Drones without AWGN
In this authentication experiment, eight machine learning methods
are used to authenticate 24 drones without applying AWGN. This
result justifies the feasibility of using an acoustic fingerprint for
drone authentication and builds a baseline for further noise analysis.
Furthermore, this experiment shows that a new combination of
drone body and propellers can be regarded as a new drone in terms
of acoustic fingerprint. We used all drone audio in DS2 to train
and test the model for each method. We calculate the evaluation
metric that includes accuracy, precision, recall, and F1-score for all
methods. The result is shown in Table 2. The general values of
precision, recall, and F1-score in the table are calculated using the
unweighted average values of precision and recall of each drone
label.

According to Table 2, the accuracy of five methods is greater than
80%, and for QDA, it is greater than 95%. The results show that QDA
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Figure 4: Number of filters versus Accuracy with 0 dB SNR on DS1N test set. (a) Increasing number of filters using one-third of
the MFCC features. (b) Increasing number of filters using two-thirds of the MFCC features. (c) Increasing number of filters
using all the MFCC features. (d) Increasing number of filters using one-third of the MFCC and DMFCC features. (e) Increasing
number of filters using two-thirds of the MFCC and DMFCC features. (f) Increasing number of filters using all the MFCC and
DMFCC features. (g) Increasing number of filters using one-third of the MFCC, DMFCC, and DDMFCC features. (h) Increasing
number of filters using two-thirds of the MFCC, DMFCC, and DDMFCC features. (i) Increasing number of filters using all the
MFCC,DMFCC, and DDMFCC features.

Table 2: Authentication Results of 24 Drones without AWGN

Method Accuracy (%) Precision (%) Recall (%) F1 (%)

QDA 96.20 96.32 96.20 96.20
LDA 92.43 92.47 92.42 92.39
LSVM 93.68 93.71 93.67 93.64

RBF-SVM 66.05 72.67 66.06 65.31
KNN 90.49 90.74 90.49 90.49
DT 62.83 63.24 62.83 62.87
RF 83.73 83.96 83.73 83.61
GNB 67.15 67.79 67.16 66.73

significantly outperformed the other methods in all performance
metrics. All evaluation metrics for QDA are greater than 96%. On
the contrary, RBF-SVM, DT, and GNB perform poorly, with all
performance metrics below 73%, 64%, and 68%, respectively.

5.2 Authentication of 24 Drones with Varying
AWGN

To test the influence of noise, we continue to use the models trained
in DS2, but we test them on the test set of DS2N. The drone audio
in the test set of DS2N is the similar with the drone audio in DS2
but with the corruption of AWGN with different levels of SNR.

Figure 5 shows the result of this experiment. Generally, with
the increase of SNR, the accuracy of all methods increases. KNN
shows an outstanding noise resistance when SNR is significantly
low while maintaining a relatively high accuracy. QDA and LSVM
are two powerful drone authentication methods at high SNR, but
they are very sensitive to low SNR.

When SNR is less than 0 dB, as SNR decreases, the accuracy of
all methods decreases fast. Furthermore, KNN becomes the most
effective method when SNR is less than -3 dB. When SNR is around
0 dB, QDA, LDA, LSVM, and KNN outperform other methods with
the accuracy of 80.55%, 74.57%, and 76.65%, respectively. When SNR
exceeds 4 dB, the accuracy increasing rate of all methods starts to
slow down and there is almost no further growth after 10 dB. It can
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Figure 5: The influence of AWGN with different SNR.

be assumed that most of the methods perform well at 2 dB SNR or
more, where the accuracy of QDA, LDA, LSVM, and KNN is higher
than 80%.

5.3 Security Study
The previous authentication experiments show that our proposed
authentication method can perform a good closed set classification.
However, in reality, it is more about authentication among regis-
tered and unregistered drones, which is an open set problem. To
evaluate the authentication performance under possible malicious
drone attacks, we designed this drone attack study.

5.3.1 Threat Model. We assume that the attacker has access to
a drone of the same model and is able to navigate it to a target
location they are not authorized to access. The attacker tries to use
the unregistered drone to pass our authentication procedure. In a
real scenario, this authentication may occur, for example, when a
drone needs to enter a warehouse to pick up a shipment that needs
to be delivered [14, 30].

5.3.2 Design. To solve the open set authentication problem, we
decided to build a background class as the unregistered drone type.
We recorded about 60 minutes of real indoor noise from our record-
ing room and combined it with 8 types of drone audio (background
drones) chosen from DS2 to train a background class. Meanwhile,
we chose 8 drones as registered drones and 8 drones as attack drones
(unregistered drones). The labels of these three types of drones do
not overlap each other. During the training process, the audio of
the attack drones is not present in the training set. After training,
we used the drone audio of 8 registered drones and 8 attack drones,
which came from the test set of DS2, to show the authentication
performance.

5.3.3 Procedure. We conducted the experiment 10 times with dif-
ferent combinations of registered drones, background drones, and
attack drones. We manually selected drones No. 1 - No. 8 as regis-
tered drones, drones No.9 - No. 16 as background drones, and drones
No. 17 - No. 24 as attack drones in the first experiment. Then we
randomly chose 8 drones as registered drones, background drones,
and attack drones, respectively, for attack experiments No. 2 - No.
10. Table 3 shows the setups of the 10 experiments.

5.4 Security Study Results
As an authentication issue, we aremore concerned about (1) whether
registered drones can be properly authenticated as their identities
and (2) whether unregistered drones can be authenticated as un-
registered by the system. In that case, we used the average recall
value of all registered drones and all attack drones, respectively, as
a performance metric.

5.4.1 Authentication on Registered Drones. Table 4 shows the au-
thentication recall on registered drones. Although this is an open
set problem, QDA (94.19%), LDA (89.64%), LSVM (91.11%), and KNN
(92.71%) still perform better than others on average recall. On the
contrary, RBF-SVM has very poor performance and only achieves
an average recall of 13.05%, which means that most registered
drones will be classified as unregistered drones.

5.4.2 Authentication on Unregistered Drones. Table 5 shows the
authentication recall on unregistered drones. Compared to the au-
thentication result on the registered drone, the average recall for all
methods is reduced, except RBF-SVM (98.10%). However, combin-
ing the result of the previous experiment, it suggests that RBF-SVM
simply classifies almost all drone sounds as unregistered drones to
achieve this significant recall. Although RF has a relatively poor
authentication performance for registered drones (75.30%), it is the
best for unregistered drone authentication (84.68%). Meanwhile,
QDA has the best overall authentication performance, ranking first
for registered drone authentication (94.19%) and third for unregis-
tered drone authentication (82.35%).

6 DISCUSSION AND FUTUREWORK
We achieved drone authentication by applying eight machine learn-
ing methods and a fine-tuned feature extraction strategy. Based
on the investigation of 8 drones, we found the MFCC settings that
work best for drone authentication. Then we showed that the new
combination of the drone body and propellers could be regarded
as a new drone in terms of acoustic fingerprint. Adding AWGN
with varying SNR, we also showed that our proposed methods are
resistant to AWGN with SNR greater than 2 dB. Furthermore, the
security study showed that our methods could address the problem
of open set authentication and detect unregistered drones through
their acoustic fingerprints. Next, we discuss the limitations of our
research and possible improvements that could be investigated as a
direction for future research.

6.1 Complex Outdoor Environment
Our drone audio was collected in the quiet room. Although this
room is close to other offices, the noise is relatively low. To explore
the performance of drone authentication at different levels of noise,
we add AWGN with different SNR to our collected drone audio.
However, the noise pattern of AWGN is quite monotone compared
to the outdoor environment. In real outdoor scenarios, there is some
noise similar to drone sounds, such as motorcycle, helicopter, and
airplane noise. In addition, a real environment may contain more
instantaneous noise, such as bird sounds, building construction
noise, and the sound of a car horn. The influence of these real
environmental noises could be investigated in the future.
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Table 3: Attack Experiment Setup

Experiment No. Register Drone No. Background Drone No. Attack Drone No.

1 1, 2, 3, 4, 5, 6, 7, 8 9, 10, 11, 12, 13, 14, 15, 16 17, 18, 19, 20, 21, 22, 23, 24
2 1, 2, 4, 7, 10, 16, 17, 20 3, 5, 6, 14, 15, 18, 19, 21 8, 9, 11, 12, 13, 22, 23, 24
3 3, 5, 9, 14, 16, 17, 19, 24 2, 6, 8, 11, 12, 15, 18, 21 1, 4, 7, 10, 13, 20, 22, 23
4 3, 12, 13, 16, 20, 21, 22, 24 6, 7, 8, 9, 14, 15, 17, 18 1, 2, 4, 5, 10, 11, 19, 23
5 2, 5, 6, 8, 14, 17, 18, 20 1, 4, 7, 9, 10, 12, 19, 23 3, 11, 13, 15, 16, 21, 22, 24
6 1, 10, 11, 15, 17, 18, 23, 24 3, 5, 8, 9, 12, 13, 19, 20 2, 4, 6, 7, 14, 16, 21, 22
7 2, 3, 4, 5, 11, 12, 15, 24 1, 6, 7, 10, 16, 18, 21, 22 8, 9, 13, 14, 17, 19, 20, 23
8 4, 5, 7, 8, 10, 17, 18, 21 1, 3, 11, 13, 15, 19, 23, 24 2, 6, 9, 12, 14, 16, 20, 22
9 4, 5, 6, 11, 12, 13, 14, 23 1, 2, 3, 17, 19, 20, 22, 24 7, 8, 9, 10, 15, 16, 18, 21
10 5, 9, 10, 12, 17, 18, 21, 23 1, 6, 7, 13, 15, 16, 20, 22 2, 3, 4, 8, 11, 14, 19, 24

Table 4: Recall of Authentication on Registered Drones

Experiment No. QDA (%) LDA (%) LSVM (%) RBF-SVM (%) KNN (%) DT (%) RF (%) GNB (%)

1 97.16 95.24 97.28 35.41 95.53 75.24 89.30 83.80
2 95.66 91.69 92.49 9.92 93.78 70.12 77.84 83.84
3 94.23 87.78 90.76 2.68 93.05 64.50 71.89 80.60
4 94.30 90.32 91.34 10.71 91.91 65.09 74.86 85.12
5 94.56 88.21 89.19 10.94 93.67 69.93 76.02 85.16
6 92.53 86.85 88.74 6.14 90.44 57.52 67.96 72.48
7 95.56 94.54 94.85 23.84 95.99 72.64 83.30 87.67
8 92.97 86.14 88.64 7.06 90.00 58.48 69.31 69.70
9 94.29 92.24 92.42 18.53 95.52 69.98 82.34 88.72
10 90.60 83.39 85.40 5.31 87.28 54.80 60.21 66.05

Average 94.19 89.64 91.11 13.05 92.71 65.83 75.30 80.31

Table 5: Recall of Authentication on Unregistered Drones

Experiment No. QDA (%) LDA (%) LSVM (%) RBF-SVM (%) KNN (%) DT (%) RF (%) GNB (%)

1 99.78 98.51 99.69 100.00 97.96 87.45 99.88 79.21
2 77.93 60.90 57.64 99.43 46.57 56.23 73.85 20.64
3 73.85 63.79 68.06 99.71 42.60 59.74 85.33 16.52
4 90.95 84.81 84.50 100.00 73.82 73.98 94.05 44.09
5 75.89 60.10 67.33 99.95 52.77 60.60 72.40 16.23
6 87.64 67.85 72.71 96.74 65.12 74.06 90.16 60.47
7 77.86 63.19 60.98 98.76 55.03 60.11 80.46 16.72
8 84.50 58.08 56.49 95.58 55.02 56.06 91.33 41.40
9 65.93 53.98 45.34 96.94 29.71 38.56 70.34 8.64
10 89.19 53.75 51.62 93.85 50.55 57.99 88.95 35.52

Average 82.35 66.50 66.44 98.10 56.92 62.48 84.68 33.94

6.2 Repeated Disassembly and Assembly
In order to test different combinations of drone bodies and pro-
pellers, we frequently disassembled and assembled drones. During
disassembly and assembly, we notice that the wear and tear on the
propellers and screws of the drone can also slightly change the
sound features. In particular, one screw hole of the “F” drone body

slipped during the experiment. This makes it possible to confuse
the sound characteristics of drone No. 14 and drone No. 22, which
share the same body. This means that we can use this feature to
detect the wear and tear of a drone or to check if a registered drone
has been modified by someone unauthorized. Meanwhile, the same
drone may not pass authentication after a long period of work and
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wear and tear. This can be a limitation in some cases, but it can
also allow improving safety by preventing damaged drones from
entering certain areas. An interesting direction for future work is
to automatically estimate if it is safe for a drone to proceed into an
area based on its acoustic signature.

6.3 Model and Number of Drones
By using DJI Mini 2, our proposed methods achieve a good authen-
tication result. However, the feasibility of our methods for different
models of drones is uncertain. More drone models could be used in
future studies. Meanwhile, using more spare propellers to create
more “new” drones is a valid way to further prove our proposed
idea.

6.4 Further Threat Models
In our security study, we assumed that the attacker would use a
drone of the same model and try to fool the authentication system.
Although this is a natural and reasonable assumption, it can be
extended further. Feng et al. [13] noted that voice-based authenti-
cation systems are inherently under the threat of impersonation
attacks and replay attacks. In addition, Pradhan et al. [27] addressed
the importance of defending the replay attack and designed a voice-
liveness detection system, named REplay-resilient VOice Legitimacy
Tester (REVOLT), to prevent replay attacks on wearable devices.
Furthermore, Lu et al. [23] proposed a user authentication system,
called VocalLock, using acoustic features to face replay attacks on
smartphones.

Since we used drone acoustic features as the basis for drone au-
thentication, the system has the potential to be attacked by replay-
ing drone audio. The further threat model could be the combined
attack model, in which an attacker tries to use both the imperson-
ation attack and the replay attack. Additionally, this attacker can
navigate drones to a target location and place the replay device(s)
near the authentication system (microphone).

7 CONCLUSION
This was the first work to demonstrate that flying drones can be
authenticated via their acoustic fingerprint. To address the feature
extraction configuration, we compared the authentication accuracy
of different parameter settings for the extraction of MFCC, DMFCC,
and DDMFCC. QDA, LDA, and LSVM outperformed other methods
in terms of accuracy in closed set 8 drone authentication without
AWGN. Furthermore, LDA outperformed other methods under the
influence of AWGN with 0 dB SNR.

Based on that, we decided to use (1) a frame length of 1000 ms,
(2) 50% frame overlap, (3) 201 filters, and (4) only 2 to 201 MFCC
features as the feature extraction setting. Then, we conducted the
closed set experiment, authentication of 24 drones, to show that
the new combination of the drone body and propellers could be re-
garded as a new drone. QDA, LDA, LSVM, and KNN outperformed
other methods in terms of accuracy, precision, recall, and F1-score,
which are all greater than 90%, in closed set 24 drone authentica-
tion without AWGN. Meanwhile, applying AWGN, KNN became
the most effective method when SNR is less than -3 dB.

In addition, the result of the security study showed that QDA
outperformed other methods in terms of the highest average recall

(94.19%) in registered drones and the third highest average recall
(82.35%) in unregistered drones.
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