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Abstract 

Congestion is a cardinal sign of heart failure (HF). In the past, it was seen as a 

homogeneous epiphenomenon that identified patients with advanced HF. However, 

current evidence shows that congestion in HF varies in quantity and distribution. This 

updated view advocates for a congestive-driven classification of HF according to onset 

(acute vs. chronic), regional distribution (systemic vs. pulmonary), compartment of 

distribution (intravascular vs. extravascular), and clinical vs. subclinical. Thus, this 

review will focus on the utility of circulating biomarkers for assessing and managing the 

different fluid overload phenotypes. This discussion focused on the clinical utility of the 

natriuretic peptides, carbohydrate antigen 125 (CA125, also called mucin 16 [MUC16]), 

bio-adrenomedullin and mid-regional pro-adrenomedullin, ST2 (also known as 

interleukin-1 receptor-like 1), cluster of differentiation 146 (CD146), troponin, C-

terminal pro-endothelin-1, and parameters of hemoconcentration. The utility of 

circulation biomarkers on top of clinical evaluation, hemodynamics, and imaging—needs 

to be better determined by dedicated studies. Some multiparametric frameworks in which 

these tools contribute to management are proposed.  

 

  



 
 

Congestion in heart failure (HF) is defined as signs and symptoms of extracellular fluid 

accumulation that result from increased cardiac filling pressures.1 It is induced and 

perpetuated by an imbalance between neurohormonal axes with opposite actions: sodium-

water retention and vasoconstriction (mainly adrenergic, renin-angiotensin-aldosterone, 

and vasopressin systems) vs. natriuretic and vasodilation (mainly cardiac endocrine 

function).1-4 Congestion is also a central component in the definition of HF5, and most 

HF hospitalizations are due to congestion either as predominantly fluid overload, 

compartmental fluid redistribution, or a mix of both mechanisms.1,3,4 Beyond the 

traditional view as a surrogate for HF severity, the current perspective considers fluid 

accumulation/redistribution are causally involved in HF and organ damage progression. 

Thus, congestion contributes to the HF-associated impairment of functional and structural 

changes in multiple organs and systems (Figure 1). 

Despite most patients with worsening heart failure (WHF) experience a substantial 

clinical improvement when treated with diuretics, there are several gaps in knowledge. 

First, the severity of congestion is not linearly associated with the severity of HF (left or 

right ventricular dysfunction). In other words, some patients with severe left ventricular 

(LV) dysfunction remain euvolemic and show no sign of congestion. In contrast, other 

patients have severe congestion with relatively mild objective structural or functional 

abnormalities1,6. For instance, high-output HF does not necessarily require significant 

structural cardiac abnormalities and should also be considered in differential diagnoses 

of patients with clinical congestion. Among them, high-output HF includes a wide variety 

of underlying conditions (i.e., obesity, severe anemia, cirrhosis, arteriovenous shunts, 

chronic hypercapnia, among others.) associated with reduced arterial vascular resistance 

and high output. The common factor in all these conditions seems to be a reflex increase 

in sympathetic activity through baroreceptors that leads to decreased renal blood flow, 



 
 

activation of the renin-angiotensin-aldosterone system, and sodium and water retention.3,4 

Second, the optimal decongestion strategy remains elusive in most HF patients regardless 

of left ventricular ejection fraction (LVEF),3,4 mostly reflecting the heterogeneous 

severity and organ distribution of fluid overload and the low accuracy of classic 

symptoms and signs in grading congestion1. Thus, searching for new clinical tools, 

especially those widely available in clinical practice, should be a research priority in the 

HF field.  

Historically, fluid overload in HF was considered a homogeneous and uni-

compartmental epiphenomenon that identified patients with more advanced disease. In 

contrast, current evidence shows that fluid and sodium accumulation in HF are 

heterogeneous in quantity and distribution. An updated view of congestion advocates for 

the classification of HF-related fluid overload according to onset (acute vs. chronic),  

regional distribution (systemic vs. pulmonary), compartment of distribution 

(intravascular vs. interstitial vs. third spaces), and clinical vs. subclinical. A better 

understanding and identification of the different congestion "phenotypes" could probably 

translate into improving HF management.  

Therefore, this review will focus on the utility of circulating biomarkers in 

identifying and managing different congestion phenotypes.  

 

Pressure-volume disconnection: fluid overload vs. fluid redistribution 

The pathophysiology of congestion in HF is highly complex and multifactorial. Although 

too simplistic, it can be viewed as a dynamic interplay between cardiac function, the roles 

of interstitial and intravascular fluid compartments, the integrity of the endothelium, and 

how the kidney manages the sodium/liquid homeostasis at the tubular level.7 This 

multifactorial and complex pathogenesis may be conditioning the disconnection between 



 
 

congestion-driven pressures and congestion-driven volume expansion,, resulting in 

patterns that varied widely between patients on severity and organ distribution. 6-9 For 

instance, some patients presenting with worsening HF and elevated cardiac filling 

pressures may have a predominant fluid redistribution (from splanchnic to pulmonary 

vascular territory) (Figure 2). In contrast, others may show a long-standing and gradual 

interstitial volume expansion (tissue congestion)9 (Figure 2).  

 

Congestion phenotypes 

Congestion in HF can be characterized based on the compartment and regional 

distribution (Figure 3). 

 

Regional distribution: pulmonary vs. systemic 

As stated before, regional/organ distribution of congestion is not a homogeneous process 

in HF.6-9 In patients with predominant left-sided HF, pulmonary congestion dominates; 

however, with the involvement of right-sided chambers and/or pulmonary arterial 

hypertension,systemic congestion becomes a dominant presentation. 3,6-9 These 

differences in the distribution of fluid overload are also the basis of the re-classification 

of acute HF (AHF) recently proposed in the 2021 ESC guidelines on 1) HF with 

predominant peripheral fluid accumulation, 2) ADHF as patients with acutely 

decompensated HF where lung congestion – favored by splanchnic district 

venoconstriction – led to acute pulmonary oedema3. 

 

Compartment distribution: intravascular vs. extravascular 

Patients with decompensated HF showed marked elevation of cardiac filling pressures. 

In normal hearts and afterload held constant, LV torsion is a preload-dependent 



 
 

phenomenon in which volume loading results in a net increase in peak systolic LV 

twisting and subsequent early diastolic untwisting rate.10 This interdependence between 

systolic twisting and diastolic untwisting (viscoelastic suction) explains why healthy 

hearts can accommodate a larger preload volume without significantly increasing 

pulmonary capillary wedge pressures. In HF, however, there are diverse left ventricle 

twisting alterations and reduced and delayed untwisting. Consequently, the failing heart 

cannot adequately accommodate preload volume increase at rest or during exercise, 

leading to elevated pulmonary capillary wedge pressures.11 Moreover, pulmonary 

pressures may also be high due to enhanced ventricular interdependence in the context of 

right ventricular-pulmonary arterial uncoupling at rest (i.e., isolated right-sided HF) or 

during exercise.11 Although this elevation in filling pressures is commonly related to the 

inability of the heart to accommodate and distribute central blood volume, changes in 

systemic venous function also play a crucial (and under-appreciated) role in regulating 

central hemodynamics.12  

Most blood volume resides within the venous circulation, and its distribution can 

be divided into stressed and unstressed volumes.11,12 The unstressed volume 

(approximately 70% of venous blood volume) refers to the amount of blood necessary to 

fill the vascular space at a transmural pressure equal to zero. It represents a blood reservoir 

pooled in venous capacitance veins that can be mobilized into the central circulation when 

needed11,12 (Figure 4). In contrast, the stressed volume (approximately 30% of venous 

blood volume) describes the additional volume of blood that increases wall tension, 

determining venous return and cardiac preload11 (Figure 2). Importantly, the autonomic 

nervous system tightly regulates the distribution of stressed and unstressed blood 

volume.13 Accordingly, increased sympathetic activation – common in patients with 

decompensated HF - may lead to a functional shift of blood from the unstressed volume 



 
 

(mainly from splanchnic veins) into the central circulation, resulting in a striking and 

acute increase in central venous pressures and the development of congestion-related 

symptoms.13 Therefore, a substantial proportion of patients present with a predominantly 

vascular type of congestion.3,13,14 In these patients, acute venous tone dysregulation rather 

than total blood volume expansion seems to be the principal underlying mechanism.  

Another compartment phenotype is characterized by impaired sodium and water 

excretion due to increased neurohormonal activation and cardiorenal dysfunction.1 As a 

result, there is a relatively gradual development of vascular congestion reflecting and an 

absolute increase in extracellular fluid and sodium content (tissue congestion), as is 

illustrated in figure 2. The above will lead to a progressive and sustained increase in 

venous pressures that finally shift the Starling forces between the plasma and interstitium 

towards net capillary filtration. However, due to the limited compliance of the interstitial 

glycosaminoglycan (GAG) network and increased lymphatic function, interstitial fluid is 

initially efficiently drained, and there is no interstitial fluid accumulation.15 However, 

once lymph flow is maximized, the rate of transudation from capillaries into the 

interstitium may then exceed lymphatic capacity, and fluid accumulates in the interstitial 

space.15 Moreover, the long-term positive sodium balance may compromise the 

interstitial GAG network's integrity and buffering capacity, lowering its tensile force.15 

Consequently, the interstitial matrix becomes highly compliant, and slight increases in 

hydrostatic capillary pressure are sufficient to drive interstitial fluid expansion.15,16. Other 

factors such as lower plasma osmolarity, inflammation, and increased vascular 

permeability.3,17 may also be playing a role in the pathogenesis of tissue congestion. 

Additionally, third-space fluid accumulation in serosal cavities is not uncommon2,3. 

However, the mechanisms behind the shift to a third-space fluid accumulation are not 

fully understood, requiring more evaluation. 



 
 

 

Clinical implications 

An integrative assessment of symptoms and signs, imaging, and circulating biomarkers 

seems necessary for identifying the predominant congestion phenotype (Figure 3). 

Additionally, some clinical characteristics may help to reveal the predominant phenotype. 

For instance, those with an acute presentation more frequently present intravascular 

pulmonary congestion due to fluid redistribution. On the other extreme, patients with 

predominant tissue congestion will also show long-term evolution, gradual onset, and 

greater severity of systemic congestion (Figure 3). Not infrequently, these distinct 

phenotypes overlapped, resulting in mixed clinical patterns. Moreover, these phenotypes 

may change over time – patients may transition from one predominantly to another along 

the course of the disease.  

Beyond the pathophysiological considerations, this classification may also have 

important therapeutic implications. For instance, and contrary to those with dominant 

fluid overload – requiring more aggressive diuretic therapy - patients with predominant 

fluid redistribution may benefit from the use of vasodilators and not as much of an 

aggressive depletive strategy. In patients with predominant tissue congestion, strategies 

aiming to reduce vascular permeability and increase vascular refill, such as using 

hypertonic solutions with high doses of loop diuretics and sodium-glucose cotransport 

inhibitors 2 (SGLT2i), or vaptans, may be more beneficial than other traditional diuretic 

approaches (Figure 3).17  Also, congestion phenotyping may influence the pertinence and 

timing of other guideline-driven medical therapy. For instance, early initiation of SGLT2i 

and sacubitril-valsartan has been associated with a greater decongestive effect.18,19 

Conversely, early initiation of β-blockers in patients with overt congestion status should 

be avoided.3,4 



 
 

 

Role of circulating biomarkers for assessing the severity and distribution of 

congestion 

A growing body of evidence supports an integrated and multiparametric evaluation of 

congestion by means of validated clinical scores, circulating biomarkers, and technical 

assessments (imaging, hemodynamics, and impedance-based tools).1,20  

The current article provides an overview of the novel and established circulating 

biomarkers for identifying different modalities of congestion (Graphical abstract). The 

biomarkers included in this review are those identified by the Biomarkers Working Group 

of the Heart Failure Associations as the more relevant contemporary biomarkers in HF.  

 

Ideal characteristics of a congestion biomarker 

An ideal biomarker should be expressed and produced in different organs and systems 

affected by fluid accumulation. Indeed, several HF biomarkers predominantly reflect 

stress in other affected tissues and provide information beyond the heart.21 An ideal 

biomarker in HF should include the following characteristics: a) non-invasive, low-cost, 

easy, and standardized assessment, b) high sensitivity, allowing early detection and no 

overlap in values between wet and dry patients, c) provide specific information about the 

congestion phenotype,  d) be unaffected, or minimally affected by comorbid conditions, 

and e) their levels should be modified in response to treatment. 

 

 Natriuretic peptides 

Several studies have correlated B-type natriuretic peptide (BNP) and its co-secreted 

amino-terminal propeptide congener (NT-proBNP) with increased left intra-cardiac 

filling pressures and pulmonary capillary wedge pressures in patients with HF.22–25 A 



 
 

summary of the evidence endorsing the association between natriuretic peptides (NPs) 

and hemodynamic parameters is presented in supplementary file 1. The reason why these 

peptides correlate with left cardiac pressures lies in their origin. The biomechanical wall 

stress induced by plasma volume expansion and/or pressure overload triggers the release 

of pre-synthesized proBNP and transcription of the natriuretic peptide precursor B 

(NPPB) gene, leading to the production of the 134-amino acid pro-B-type natriuretic 

peptide hormone precursor (pre-proBNP).26,27 Following its production, pre-proBNP is 

rapidly processed to yield proBNP1–108, which is further cleaved into the bioactive BNP 

and its biologically inactive equivalent NT-proBNP by the action of proteases such as 

corin or furin.28,29 After this initial processing, within minutes of their synthesis, both 

BNP and NT-proBNP are liberated into the plasma, providing a valuable reflection of the 

overall cardiac load.2,3,22-25 The biologic actions of elevated BNP hormone (natriuretic 

and vasodilator effects) are counteracted by the peripheral resistance, which is established 

at receptorial and postreceptorial level30, making HF a condition characterized by second 

messenger cyclic guanosine-monophosphate (cGMP) insufficiency, hence a target for 

several treatments.31 

Despite the proven value of BNP and NT-proBNP for diagnosis and prognosis across the 

spectrum of HF syndromes3,4,32, several properties may limit their usefulness for assessing 

and grading congestion. First, natriuretic peptides (NPs) are mainly expressed by the 

heart, while fluid overload is systemically extended.1,32,33 Thus, NPs are indirect 

congestion measures making them not the ideal markers for congestion. Second, a broad 

range of structural and functional cardiac and noncardiac abnormalities are associated 

with increased ventricular wall tension leading to substantive elevation of levels of 

plasma NPs without being necessarily linked to fluid retention, such as ischemia and atrial 

fibrillation.32,33 Third, left ventricular wall stress is the most potent trigger for NP 



 
 

synthesis and release.27 Accordingly, NPs may fail to capture the contribution of right-

sided HF and its consequences (systemic and extravascular congestion).9,34 For instance, 

in-hospital single-measurements of NPs in AHF did not predict the severity of clinical 

congestion35, and it lacked prognostic effect in those with predominant right-sided HF, 

such as in patients with severe tricuspid regurgitation.36 Fourth, in addition to primary 

generation via increased intra-cardiac pressures, plasma concentrations of both NT-

proBNP and BNP levels are also influenced by common conditions in HF such as older 

age, atrial fibrillation, and renal dysfunction. Conversely, NPs are inversely related to 

body mass index.33 Fifth, NPs are not perfect surrogates for filling pressures and are less 

accurate in ruling out HF with preserved ejection fraction (HFpEF), especially in the 

outpatient setting.37 Furthermore, some specific conditions are associated with NPs 

deficiency, such as polymorphisms in the NPPB gene, African ancestry, increased 

androgenicity in women, insulin resistance, hypercortisolism, and certain medications 

(e.g., spironolactone).38 Thus, it is important to account for these factors when 

interpreting NP levels in the clinical setting.33 

The role of repeated measurement for monitoring changes in fluid status is also a property 

that needs to be commented. In general, patients with a greater relative reduction in NPs 

after treatment exhibit a lower risk of adverse events.33,39-41 For instance, in chronic HF 

with reduced ejection fraction (HFrEF), short-term changes in NP levels predicted the 

risk of hospitalization for worsening HF.39  Likewise, recent observational data showed, 

in at least two consecutive outpatient visits in an ambulatory setting, that a decrease in 

NT-proBNP was associated with improved mortality and morbidity also in patients with 

HF and mildly reduced and preserved ejection fraction during routine care.40 Following 

an episode of AHF, long-term repeated measurements of high NPs have also been shown 

to be independently associated with the risk of death.41 A descending kinetic pattern 



 
 

identified those at lower risk of death. Although, the ability of serial measurements to 

predict survival was blunted at longer follow-up.41  However, despite a clear relationship 

to cardiac filling pressures and prognosis, changes in NPs may show either absent or weak 

to moderate relationship with indicators of decongestion in AHF.17  

The evidence endorsing the utility of NPs for guiding therapy is mixed. The largest trial 

and the more recent metanalysis showed no prognostic benefit compared to usual care.42,43  

The GUIDE-IT included 894 patients with stable left ventricular ejection fraction ≤40% 

and elevated NT-proBNP in the previous month.43 The authors recommended therapy 

intensification in this study to achieve a target NT-proBNP of <1000 pg/mL.43 The NT-

proBNP guided therapy included, among others, up titrate diuretic therapy if NT-

proBNP>5000 pg/ml.44  No differences were found in the mean loop diuretic dose over 

time between both treatment arms.43 Thus, a single value of NPs may not provide relevant 

additional information about the overall congestion status. 

From a practical point of view, changes in NPs should be interpreted together with cardiac 

structural and functional characteristics and clinical evaluation. Evaluating the relative 

modifications (%) based on each patient's plasma levels when stable ("dry levels") may 

be more informative about the severity of intracardiac pressure/volume overload than 

using a single measurement. In this context, a practical approach would consider changes 

>30% as clinically relevant.32,45 For example, in stable ambulatory patients, a change of 

50% seems to indicate a shift in filling pressures.32,33  Despite the current evidence not 

supporting NPs as guiding therapy in HF, its short-term changes are useful for monitoring 

and guiding initial decongestive therapy in worsening HF with high levels at presentation 

(those with predominant pulmonary congestion).  

Pitfalls in interpreting serial changes of natriuretic peptides in HF. First, NPs show a high 

intraindividual biological variation, hampering the clinical interpretation of serial 



 
 

measurements.46 Second, the utility of kinetic of NPs in patients with intrinsically higher 

levels, such as the elderly, atrial fibrillation, and those with severe kidney dysfunction, 

needs to be more carefully evaluated.33-36 Third, their utility in monitoring decongestion 

is even less clear in patients with overt systemic intravascular and tissue congestion, such 

as those with predominant right-sided HF.33,36  

The clinical utility of mid regional sequence of pro-A-type natriuretic peptide (MR-

proANP) as a biomarker of congestion is less well documented despite its promising 

utility for long-term risk stratification.33,47  

 

Carbohydrate antigen 125 

Carbohydrate antigen 125 (CA125, also called mucin 16 [MUC16]), is a high molecular 

weight (220 kDa) glycoprotein encoded by the MUC16 gene in humans.48,49 It is 

expressed on the surface of cells derived from the coelomic epithelium (i.e., pleura, 

peritoneum, and pericardium) as a membrane-bound protein, or released in a soluble form 

via proteolytic cleavage, making it available as a circulating biomarker.50,51 Although 

primarily used in monitoring ovarian cancers,48 CA125 has also been shown to be 

elevated in a wide range of other conditions related to volume expansion, including 

cirrhosis, renal failure, and AHF.51 It has been postulated that elevated hydrostatic 

pressure, mechanical stress, and inflammatory stimuli in the setting of congestion may 

activate mesothelial cells in serosal surfaces, leading to CA125 overproduction and 

release.50,51 Indeed, cumulative evidence supports the positive association between 

plasma levels of CA125 with tissue congestion/serosal effusions, increased cardiac filling 

pressures, and other proxies of right-sided heart failure.34,51 CA125 levels have been 

shown to be substantially higher in patients with large serosal effusions and peripheral 

edema than in those without these particular clinical surrogates of volume overload.51 In 



 
 

a recent study including 2949 patients hospitalized for AHF, the severity of tricuspid 

regurgitation, presence of pleural effusion, and peripheral edema were factors closely 

associated with the magnitude of circulating CA125.34 Likewise, in a substudy of 

BIOSTAT-CHF, CA125 was positive and significantly associated with a clinical 

congestion score in patients with WHF.52 More recently, CA125 has also been associated 

with intrarenal venous congestion and high intraabdominal pressure in patients with 

AHF53,54, adding to the growing body of evidence supporting the role of this biomarker 

in identifying a phenotype of predominant systemic and extravascular congestion.51 

Evidence summarizing the association between CA125 and hemodynamic parameters is 

presented in supplementary file 1. 

The close correlation between plasma changes in this biomarker with disease severity and 

clinical outcomes was described more than 20 years ago. Nagele et al. found, in 71 

candidate patients for heart transplantation, a significant decrease in this biomarker after 

heart transplantation (401 ± 259 U/mL vs. 33 ± 22 U/mL), and this trajectory was 

significantly associated with prognosis.55 Similarly, D'Aloia et al. showed in 286 patients 

with predominant systolic dysfunction that mid-term fluctuations of plasma CA125 were 

correlated with clinical evolution and prognosis.56 More recent studies have confirmed 

the incremental predictive utility of CA125 changes, especially during the first months 

after a decompensated HF event, for predicting mortality and readmission.40,51 For 

instance, a longitudinal study of 946 consecutive patients discharged for AHF showed 

that the long-term trajectory delineated by repeated measures of CA125 (3,402 

observations) predicted the risk of long-term mortality.40 Most of the substantial decrease 

occurred within the first month after discharge, and this trajectory identified the subgroup 

of lower risk. In contrast, there was a higher risk in patients in whom CA125 levels 

remained high or increased along the course of follow-up.40  



 
 

Regarding therapeutical implications, two small randomized clinical trials endorse the 

role of CA125 in guiding diuretic therapy.57,58 In CHANCE-HF, 380 patients with a recent 

AHF decompensation and CA125≥35 U/ml were randomized to standard of care vs. 

CA125-guided therapy. In the active arm, up/down titration of diuretics was more 

frequent, and it translates to a significant reduction of the composite outcome of 1-year 

death/HF admissions, mainly by reducing HF-hospitalizations.57 The IMPROVE-HF trial 

tested the utility of CA125 for guiding diuretic therapy at presentation in patients with 

WHF and renal dysfunction.58 In this last study, the CA125-guided diuretic therapy 

translated into a better short-term renal function performance.58  

To correctly interpret CA125 as a surrogate marker of congestion and its 

evolution, it is important to highlight some fundamental aspects of its biology. First, there 

is a time gap between congestion onset and CA125 upregulation and release (lagged effect 

intrinsically related to long half-life that ranges from 5 to 12 days).51,59 Accordingly, the 

subset of patients with progressive and long-standing fluid retention (days to weeks) are 

more likely to have elevated CA125 plasma levels than those presenting with a more 

acute-onset (minute to hours) presentation.51 Therefore, besides being valuable for 

assessing and grading the severity of tissue/third space fluid accumulation, CA125 could 

also help estimate the chronicity of the congestion process.51 Likewise, serial changes in 

CA125 following therapeutic intensification may not capture information about short-

term decongestion (hours-days).51,60 Conversely, weeks after depletive intensification, 

most patients reached CA125<35 U/ml regardless of the wet peak value, and this 

trajectory was closely related to prognosis.51 Along this same line, in a recent study in 

patients with AHF, variations in CA125>10 days from admission, but not before, were 

associated with the risk of 1-year mortality.60 Second, and in contrast to NPs, circulating 

CA125 levels are not meaningfully modified by age, left ventricular status, and kidney 



 
 

function.51 These properties may be advantageous for its assessment in the elderly, HF 

with preserved ejection fraction, and those with cardiorenal syndrome. The clinical utility 

of this biomarking for tailoring decongestive therapy, despite initial encouraging results, 

requires larger confirmatory trials. Lastly, the low cost and wide availability of this 

biomarker make it easy to implant into daily clinical practice.51  

 

Bio-adrenomedullin and mid-regional pro-adrenomedullin 

Adrenomedullin (ADM.) is a 52-amino acid peptide encoded by the ADM gene located 

on chromosome 11.61 Upon its translation, the ADM precursor (a preprohormone 

composed of 185 amino acids) is cleaved to yield first proADM and then glycine-

extended, inactive ADM.62 The latter is subsequently converted to biologically active 

ADM (bio-ADM) by enzymatic amidation.63,64 Although ADM is involved in a wide 

range of biological processes,65 its dominant role is thought to be maintaining vascular 

integrity and permeability barrier function and regulating vascular tone.66 ADM diffuses 

freely across the vascular barrier and exerts a differential effect on vascular endothelial 

cells (predominantly barrier stabilization) and vascular smooth muscle cells 

(vasodilatation).67 Thus, in situations like HF and sepsis characterized by endothelial 

dysfunction, increased plasma bio-ADM levels may be interpreted as a compensatory 

attempt to limit vascular leakage by stabilizing the endothelial barrier function.66,67 A 

growing body of literature suggests the utility of this peptide as a surrogate marker of 

congestion in HF.66,68-72 In patients hospitalized for AHF, bio-ADM was associated with 

the severity of clinical congestion score (CCS) at admission in a stepwise fashion, and its 

baseline values were significant predictors of the presence of residual congestion assessed 

by CCS by day 7.70 In recent large cohorts, bio-ADM was associated with the presence 

of edema, orthopnoea, hepatomegaly, and elevated jugular venous pressure.71,72 



 
 

Interestingly, and even though CA125 and bio-ADM correlated positively in patients with 

WHF (either in-hospital or in the outpatient setting), the magnitude of the association was 

moderate (r = 0.35).52 In a recent cohort of patients with stable advanced HFrEF 

undergoing right heart catheterization, bio-ADM correlates positively with both 

pulmonary capillary wedge pressure (r=0.37, p=0.003), mean right atrial pressure 

(r=0.46, p<0.001), and  NT-proBNP (r=0.43, p<0.001).73. Thus, bio-ADM may reflect 

the integrated assessment of both vascular and tissue types of congestion.  

The activity of the adrenomedullin system may even help to personalize post-discharge 

diuretic treatment. Among 1886 patients with AHF, patients with above-median bio-

ADM concentrations derived disproportional long-term benefits if treated with 

diuretics.74 In the same study, mid-regional pro-adrenomedullin (MR-proADM), a stable 

precursor of ADM, had even higher accuracy for predicting 1-year all-cause mortality 

versus bio-ADM.74 This last biomarker has shown to be strongly correlated with mean 

pulmonary artery pressure and pulmonary capillary wedge pressure and inversely 

correlated with pulmonary artery compliance in subjects with HFpEF.75 A recent study 

suggests that the association between levels of bio-ADM and pulmonary capillary 

pressures decreased in patients with body mass index≥35. Interestingly, in this work, MR-

proADM showed a robust correlation with pulmonary capillary pressures (r = 0.62, p < 

0.001), with no differential relationship based on the presence of obesity.76   

 The information regarding the clinical value of changes over time of these biomarkers 

for monitoring is more limited. In patients with clinical signs of residual congestion 7 

days after hospital admission, bio-ADM levels were high at baseline and remained high 

throughout the first week of hospitalization.70 Serial short and long-term increases in bio-

ADM and mid-regional pro-adrenomedullin concentrations have been reported in patients 

with HF following sacubitril/valsartan initiation due to inhibition of neprilysin.77 



 
 

However, no studies are available exploring the long-term kinetics of bio-ADM or mid-

regional pro-adrenomedullin across congestion status and clinical outcomes. Therefore, 

the role of bio-ADM and MR-proADM in monitoring congestion and guiding therapy 

remains to be defined. Additionally, further research is required to clarify whether its 

plasma levels are influenced by age, body mass index, left ventricular systolic function, 

HF etiology, and liver and renal function require further clarification.  

Supplementary file 1 summarizes the evidence endorsing the association between both 

biomarkers and hemodynamic congestion. 

 

Soluble ST2 

ST2 (also known as interleukin-1 receptor-like 1 [IL1RL1]) is a member of the Toll-

like/interleukin-1 receptor superfamily and is encoded by the gene IL1RL1 located on 

chromosome 2.78 Alternative splicing generates multiple ST2 isoforms, including a 

transmembrane form (ST2 ligand or ST2L) and a soluble circulating form (sST2),79,80 

which is a valuable prognostic biomarker in acute or chronic HF81,82 The biological action 

of the ST2 protein is mediated by the extracellular engagement of ST2L with its ligand, 

interleukin-33 (IL-33).80 IL-33/ST2L signaling has anti-hypertrophic and anti-fibrotic 

effects via its activation of diverse intracellular pathways.83 However, sST2 also avidly 

binds to IL-33 and is viewed as a decoy receptor, diminishing net transduction of the 

favorable effects of IL-33 through ST2L.80  

Although sST2 levels are usually low in patients with stable HF,  striking increases 

in plasma levels are common in AHF and provide valuable prognostic information.84,85 

The mechanisms behind sST2 upregulation in AHF seem to be related to the peripheral 

release of pro-inflammatory cytokines by activated vascular endothelial cells and lung 

tissue in response to hemodynamic congestion and inflammation.86-88 Indeed, sST2 



 
 

positively correlates with echocardiographic indicators of right-sided HF89, and 

invasively measured CVP in AHF.90 It has been recently identified as a surrogate marker 

of diuretic resistance in patients with AHF and renal dysfunction at presentation.91 

Accordingly, sST2 may be a surrogate marker of pulmonary and vascular congestion in 

HF.92 Furthermore, the interaction between congestion/inflammation and sST2 

upregulation results in dysfunctional IL-33/ST2L signaling that blocks its 

cardioprotective and vascular benefits.83 Thus, this pathophysiological link could be one 

of the mechanisms by which congestion drives further progression of HF.  

A single determination of ST2 is associated with additive prognostic information to those 

provided by clinical variables and cardiac biomarkers in chronic and AHF.85,93,94 

 Interestingly, the prognostic value of sST2 appears not to be influenced by renal 

function.95 However, longitudinal studies are scarce. In a population of 150 patients with 

decompensated HF undergoing daily blood sampling for sST2, percent change in ST2 

was strongly predictive of 90-day mortality: patients whose ST2 values decreased by 

15.5% or more during the study period had a 7% chance of death, whereas patients whose 

ST2 levels failed to decrease by 15.5% in this time interval had a 33% chance of death.96 

In this study, the prognostic value of sST2 changes was independent of variations in NT-

proBNP.96 In a recent subanalysis of the PIONEER-HF (comparison of the effect of 

sacubitril/valsartan vs. enalapril on NT-proBNP in patients stabilized from an acute HF 

episode) trial, baseline sST2 concentrations yielded prognostic significance for the 

composite outcome of cardiovascular death or HF rehospitalization.97 Notably, patients 

in the sacubitril/valsartan arm displayed a greater reduction in circulating sST2 than those 

receiving enalapril by as early as 1 week, as well as a potentially better outcome.97  

The exact mechanisms explaining the kinetic of sST2 and the relationship between 

changes in this biomarker with clinical outcomes warrants a more profound evaluation. 



 
 

Additionally, further studies evaluating potential interactions with common confounders 

in HF and the ability of this biomarker for monitoring congestion status or guiding 

depletive therapy are warranted. A summary of the data linking the association between 

sST2 and vascular congestion is presented in supplementary file 1. 

 

CD146 

Cluster of differentiation 146 (CD146) is a 113-kDa glycoprotein encoded by the CD146 

gene located on chromosome 11.98 It contains a signal sequence of 28 amino acids, an 

extracellular portion composed of 5 immunoglobulin-like domains, a hydrophobic 

transmembrane region of 24 amino acids, and a short intracytoplasmic domain.99 Three 

isoforms of CD146 have been described: two membrane-bound isoforms (lgCD146 and 

shCD146), and a soluble form (sCD146) which results from the shedding of the 

extracellular portion of CD146 through cleavage by matrix metalloproteinases.99 CD146 

is expressed on endothelial cells (mainly at the endothelial junction), smooth muscle cells, 

and pericytes within the whole vascular tree regardless of vessel size and location.100,101 

This glycoprotein interacts with various ligands and mediates pleiotropic functions in 

vessel homeostases, such as permeability, angiogenesis, vessel architecture, stabilization, 

and healing.99 Not surprisingly, sCD146 is overexpressed in conditions associated with 

inflammation, vascular injury, and endothelial dysfunction (all usually present in AHF 

syndromes). 102-105  

Current data points to sCD146 as an emerging surrogate of congestion in HF.106,107 

Higher sCD146 levels have been reported in patients with peripheral edema and/or dilated 

vena cava than in those without signs of congestion.107 Moreover, sCD146 accurately 

identified overhydrated hemodialysis patients irrespective of their BNP values.108 

Similarly, a peripheral venous stress study performed by inflating a pressure cuff over 



 
 

forearm veins induced a rapid and pronounced increase in circulating sCD146 but not of 

NT-proBNP in the congested arm.109 Taken together, these preliminary data further 

indicate that sCD146 is a specific biomarker of venous congestion and, accordingly, could 

be of value in differentiating between central and peripheral congestion. However, to date, 

the evidence endorsing the association of this biomarker with hemodynamics and its 

clinical utility over symptoms/signs and other proxies of congestion is weak or even 

missing. Additionally, how this biomarker is influenced by common comorbidities and 

different clinical scenarios in HF requires further clarification. 

 

Troponin 

There is a paucity of data linking high levels of troponin with clinical congestion. In 

patients with advanced HF, after optimization of medical therapy, patients with detectable 

cTnI showed higher pulmonary artery and pulmonary capillary wedge pressures.110 In 

another study, including 133 subjects hospitalized for decompensated HF, the authors 

showed that peripheral edema and pulmonary rales on admission were associated with 

troponin levels on discharge.111More recently, an elevated troponin was associated with 

clinical congestion score in multivariable models after controlling for ventricular filling 

pressures and natriuretic peptide levels, suggesting that subclinical myocardial injury may 

be an important contributor to the pathophysiology of congestion.112 However, the 

greatest elevation of this biomarker occurs in situations outside acute and chronic HF.4 

This fact and the lack of studies correlating the changes over time of this biomarker and 

clinical congestion limits the clinical applicability of using troponin as a surrogate of 

congestion. Supplementary file 1 summarizes the evidence endorsing troponin and 

hemodynamic congestion.  

 



 
 

C-terminal pro-endothelin-1  

Endothelin 1 (ET-1) is a strong vasoconstrictor, which is involved in inflammation and 

neurohormonal activation. 113  C-terminal proendothelin-1 (CT-proET-1) is the stable 

circulating precursor protein of ET-1. 113Circulating levels of CT-proET-1 are higher in 

patients with HFpEF compared to controls at rest and during exercise.75 In this same 

study, C-terminal pro-endothelin-1 was strongly correlated with mean pulmonary artery 

(PA) pressure (r = 0.73) and pulmonary capillary wedge pressure (r = 0.67).75 In a more 

recent study of subjects with unexplained dyspnoea, CT-proET-1 was highly correlated 

with pulmonary capillary wedge pressures and mean pulmonary artery pressures and did 

not display any differential relationship with body mass index.76 Future studies are 

warranted to confirm prior findings and expand the evidence about the utility of this 

parameter as a surrogate of congestion.  

 

Haemoconcentration 

Haemoconcentration, as indicated by increases in hemoglobin or hematocrit following 

intensive depletive treatment, has also been proposed as a parameter of decongestion.17  

Large studies have shown that haemoconcentration is associated with greater weight and 

fluid loss, greater reductions in filling pressures, and greater decongestion.114-116 

Interestingly, decongestion with stable hematocrit during treatment has been suggested 

as a marker of adequate intravascular plasma refill rate.117 

Likewise, widely accessible indices for estimating changes in plasma volume 

(ePVS), which incorporates hemoglobin and/or hematocrit and/or weight, have been 

shown to correlate with plasma volume assessed by isotopic techniques in healthy 

volunteers patients with HF.118,119 Although other studies have questioned their reliability 



 
 

for volume estimation,120 ePVS has been related to adverse outcomes in different HF 

studies.118,119,121 

Based on the latest published data with the Duarte's Strauss-derived instantaneous 

assessment of ePVS (Strauss-Duarte) in acutely decompensated or chronic HF, an 

actionable threshold of >5.5 mL/g was proposed to define an excessive congestive status 

associated with poor outcomes, which may allow a prospective evaluation to be used as 

a trigger for therapeutic action.122 

Changes in kidney function parameters (serum creatinine and estimated 

glomerular filtration rate) have also been proposed to play a role as markers of haemo-

concentration in HF. In patients with successful decongestion, an increase in creatinine 

may reflect haemo-concentration rather than worsening renal function.123-127 In contrast, 

a decrease in renal function together with clinical data showing persistent congestion is 

more likely to indicate true "worsening renal function".122-127 Along this line, a recent 

analysis of two large cohorts of patients with AHF (PROTECT, n = 1698 and RELAX-

AHF-2, n = 5586), showed that WRF, defined as a creatinine increase ≥0.3 mg/dl, in the 

first 4 days was not associated with worse outcomes when patients had an adequate 

diuretic response.128 However, it is fair to recognize that hemoconcentration parameters 

lacked specificity, and their utility in a single patient required a careful and 

comprehensive evaluation.  

 

Putting the circulatory biomarkers in the clinical context and future roadmap 

 

A summary of the congestion-related clinical information provided by circulating 

biomarkers is presented in Figure 4, together with tips and caveats for their use and 

interpretation.  



 
 

Evaluating congestion in HF is a difficult task as it is crucial to tailor diuretic treatment 

to the patient's needs,129 and strongly recommended as class I by the ESC guidelines.4 

The various available tools need to be applied coherently and effectively within each stage 

of the patient management cycle (i.e., pre-hospital, at the emergency room, during 

hospitalization, and post-discharge). Whether all patients or a subset could benefit from 

a multiparametric approach – including clinical evaluation, biological biomarkers, 

hemodynamics, and imaging (either sequentially or combined) - to detect signs of 

congestion, help optimize treatment, and improve outcomes has yet to be determined in 

dedicated studies. Some frameworks in which these tools could (co)-operate have already 

been proposed in the current document.1,20 The optimal set of tools required to identify 

the predominant congestion phenotype in each patient is still to be determined. Therefore, 

we postulate that further evaluation of different multiparametric approaches requires the 

inclusion of NPs and additional circulating biomarkers, especially those related to tissue 

congestion. A proposal for an integrative assessment is provided in figure 3.  

Other less specific circulating biomarkers related to congestion status, such as blood urea 

nitrogen to creatinine ratio, cholestatic parameters, and serum sodium, may also have a 

useful clinical role in a proper clinical context.4,20,130  

Another issue that deserves to be evaluated is the interactions between circulating 

biomarkers and common associated conditions in patients with HF, such as renal 

dysfunction.131 As already emphasized,  the interplay between the heart and the kidney is 

crucial in HF while also contributing to cardiorenal syndromes.123-128,,131 Importantly, 

such mutual engagement may jeopardize the interpretation of variations in the estimated 

glomerular filtration rate. Indeed, "true" worsening renal function may be associated with 

worse clinical outcomes, while "pseudo" worsening renal function – when initiating 

depletive therapies - would not.127 The magnitude of changes in traditional renal function 



 
 

markers for defining true worsening renal function remains to be better defined. Prior 

studies suggest traditional cutpoints for determining WRF (a drop of higher≥20%) in 

patients with AHF treated with intensive intravenous are not associated with increased 

markers of kidney tubular injury.132 The value of acute kidney injury biomarkers in 

helping to discriminate between true vs. pseudo worsening renal function is yet 

uncertain.127,132-134 For instance, serum neutrophil gelatinase-associated, a biomarker that 

predicts acute kidney injury in multiple conditions, has shown inconsistent findings in 

AHF.134 The Acute Kidney Injury N-GAL Evaluation of Symptomatic heart faIlure Study 

(AKINESIS) showed that sNGAL proved not to be superior to creatinine for predicting 

WRF or in-hospital adverse events in a large cohort of patients with AHF.134 However, 

more recent substudies suggest an interaction with parameters of decongestion.135 The 

value of serum and urinary novel tubular markers in HF requires more evaluation.  

Moreover, the interpretation of congestion biomarkers might also be challenging 

in the setting of acute or chronic variations in kidney function. Indeed, there is no 

consensus on cut-off values used to define HF in patients with acute kidney injury. In 

patients with chronic kidney disease, independent of HF status, elevated plasma levels of 

natriuretic  peptides are often found as a result of reduced renal clearance.32,33  

Similar uncertainties about the clinical interpretation of circulating biomarkers in 

the setting of elderly patients with HF and those with concomitant atrial fibrillation, liver 

dysfunction, and obesity deserve to be clarified. 

Additionally, we must be extremely rigorous in analyzing and implementing novel 

biomarkers to adopt only those that provide an extra added value to the physician in terms 

of understanding and handling the disease. Antoniou et al. have recently undertaken a 

comprehensive review of biomarker-guided adaptive trial designs.136 Their in-depth 

overview provided clarity in definition, methodology, and terminology for biomarker-



 
 

guided adaptive trial designs.136 Eventually, this should help in designing future trials in 

a more homogeneous and reproducible way. Finally, a cost-effectiveness evaluation of 

implementing these biomarkers into clinical practice requires profound consideration.  

  

Conclusions. 

Together with NPs, some circulating biomarkers may help clinicians identify the 

predominant congestion phenotype of each patient with HF. Ideally, some circulating 

biomarkers may also be useful for monitoring and guiding decongestive therapies. 

However, further studies are required to determine which subset of circulating biomarkers 

should be included in a multiparametric approach for assessing congestion. 
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Figure legends 

 

Figure 1. Clinical implications of organ congestion in HF.  

Congestion can lead to organ injury, dysfunction, and, ultimately, the failure of target 

organs (i.e., heart, lungs, kidneys, liver, intestine, vessels, and brain). Pulmonary 

congestion is the net result of increased left-sided filling pressures, which may lead to 

cardiopulmonary remodeling (i.e., endothelial dysfunction, fibrosis, and thickening of the 

extracellular matrix), pulmonary vasoconstriction, and, finally, pulmonary hypertension. 

Congestion of organs in the abdominal cavity is the net result of right-sided dysfunction 

and venous congestion. Passive congestive hepatopathy due to increased CVP may 

initially lead to cholestasis. However, chronic hepatic congestion may result in hepatic 

fibrosis and cirrhosis. Congestive nephropathy due to increased CVP and extrarenal 

compression (i.e., intra-abdominal hypertension) may lead to a pressure-induced 

reduction in renal blood flow, renal hypoxia, increased interstitial pressure, and finally, 

interstitial fibrosis. Intestinal congestion leads to increased gut permeability and 

translocation of endotoxins (pro-inflammatory state), gastrointestinal hypoperfusion, 

protein-losing enteropathy, and cardiac cachexia. Furthermore, gut involvement 

complicates CHF treatment by decreasing intestinal absorption. For instance, edematous 

changes in the intestinal wall may alter the absorption rate of certain drugs such as 

furosemide. Additionally, the proinflammatory cytokine milieu resulting from bacterial 

and lipopolysaccharide translocation to the systemic circulation can also alter the 

expression of various drug-metabolizing enzymes and transporters. 

CHF: congestive heart failure; CVP: central venous pressure; HF: heart failure. 

 

 



 
 

Figure 2.  Fluid redistribution (A) vs. Volume Overload (B). (A) The relationship 

between circulatory filling pressures (pulmonary and systemic) and total blood volume 

(TBV= UBV + SBV) is nonlinear, such that a significant amount of volume is required 

before any significant rise in circulatory filling pressures occurs. However, the venous 

tone is a crucial modifier of SBV in the setting of constant TBV. For instance, increased 

sympathetic activation—common in patients with decompensated HF—may lead to a 

functional shift of blood from the unstressed volume (systemic and pulmonary 

capacitance vessels), increasing circulatory filling pressures despite constant TBV. (B) 

TBV progressively increases as fluid start to accumulate due to sodium and water 

retention since the early stages of an exacerbation. Because UBV is constant, there is a 

progressive rise in SBV and circulatory filling pressures. Together with other factors such 

as vascular permeability and Starling forces between the plasma and interstitium, part of 

the fluid overload is shifted towards the interstitial compartment because of net capillary 

filtration. Because of markedly increased lymphatic function, interstitial fluid is initially 

efficiently drained without fluid accumulation. Nevertheless, when lymph flow reaches a 

plateau, the rate of transudation from capillaries into the interstitium exceeds lymphatic 

capacity, and fluid starts to build up in the interstitial space. 

HF: heart failure; SBV: stressed blood volume; TBV: Total blood volume; UBV: 

Unstressed blood volume. 

 

Figure 3. Congestion phenotypes. 

Time-onset, utility of circulating biomarkers, and potential therapeutic 

implications.   

We propose four congestion phenotypes: pulmonary intravascular, pulmonary tissular, 

systemic intravascular, and systemic tissular. An integrative assessment using symptoms, 



 
 

signs,  imaging, and circulating biomarkers may be useful for identifying the predominant 

congestion phenotype. Identification of the predominant congestion phenotype may 

imply crucial therapeutic implications as proposed.  

CA125: antigen carbohydrate 125; LV: left ventricle; PCWP: pulmonary capillary wedge 

pressures; SGLT2i: sodium–glucose cotransporter 2 inhibitors. 

 

Figure 4. Biomarkers in a clinical context. 

BNP: brain natriuretic peptide; bioADM: biologically active adrenomedullin; CA125: 

antigen carbohydrate 125; CD146: Cluster of differentiation 146; HF: heart failure; NT-

proBNP: aminoterminal pro barian natriuretic peptide; sST2: soluble ST2. 

 

Graphical Abstract. Schematic summary of circulating surrogate biomarkers of 

congestion. 
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