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Traffic Anomaly Detection in Intelligent Transport Applications with
Time Series Data using Informer

Xinggan Peng1, Yuxuan Lin1, Qi Cao2, Yigang Cen3, Huiping Zhuang1 and Zhiping Lin1

Abstract— Multivariate time series traffic dataset is usually
large with multiple feature dimensions for long time duration
under certain time intervals or sampling rates. In applica-
tions such as intelligent transportation systems, some machine
learning methods being applied to traffic anomaly detections
are computed under certain assumptions and require further
improvements. Transport traffic time series data may also suffer
from unbalanced number of training data where large amount
of labelled training data available for a few popular classes, but
with very small amount of labelled data for corner cases. In this
paper, based on the recent long sequences prediction method In-
former, an anomaly detection algorithm with an anomaly score
generator is proposed that does not require any assumptions
of data. The encoder-decoder architecture is adopted in the
anomaly score generator. The encoder consists of three stacking
ProbSparse self-attention mechanisms that significantly reduce
computing complexity. The decoder incorporates two multi-
head attention layers and a fully connected layer to obtain
an output of anomaly scores. Then a One-Class Support Vector
Machines (OCSVM) is applied to be the anomaly classifier. The
proposed algorithm is capable of detecting anomalies for both
vehicle traffic flows and pedestrian flows. It has been verified
by applying to a real-world dataset consisting of traffic flows
recorded in 2021, as well as to a public anomaly detection
dataset.

I. INTRODUCTION
Time series data captures information over a duration of

time frames with certain time intervals or sampling rate.
Time series data could be univariant or multivariant over
the time axis. Time series analysis is to study data patterns
for predicting future patterns or detecting data anomalies
[1]. Some examples of time series analysis can be found in
transportation traffic [2], [3], financial market pricing, cyber
activity logs, meteorology [1], etc.

In machine learning and neural networks systems, labelled
training dataset are important to train the models. Under ideal
cases, balanced training data are expected to be associated
with each class, such that the models can perform well
equally for all classes. In some circumstances, including
some real-world applications of transport traffic data, number
of available data for each class are largely unbalanced [4],
[5]. This situation brings challenges on good performances
to have the trained models on corner cases.
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Research works on anomaly detection have been reported
and studied in various applications to find out patterns not
consistent with predicted behaviors [6], [7]. In time series
analysis, a lot of useful information is able to be extracted
from dataset. Unusual events or interesting insights may be
obtained through time series analysis and anomaly detection.

Under the Smart City initiatives in various countries, intel-
ligent transport systems (ITS) with different types of sensors
or cameras have been deployed to monitor the transport
traffic on roads. Relevant traffic flow data have been recorded
for remote monitoring or analytics purpose. Such transport
traffic flow data collected from various sensing sources in
urban areas is a type of time series data [8]. The traffic
flow time series data analysis is very important that could
be classified into two major categories: traffic predictions
and traffic anomaly detections. Traffic predictions mainly
provide forecasting on future traffic information based on
the historical and real-time traffic flow time series data, with
several examples of prior research works being reported in
[9]–[11]. While traffic anomaly detections mainly sense and
flag out un-usual traffic patterns compared to past traffic
flow under similar circumstances. Relevant examples of prior
research works on traffic anomaly detections are introduced
in [12]–[15].

The traffic anomalies may not happen frequently but may
result in potential risks or consequences on urban traffic. The
insights from the traffic anomaly detection in time series data
are very useful to relevant agencies or organizations to make
necessary arrangements or take actions to provide solutions
for these anomalies. It could potentially reduce the traffic
congestions at certain urban regions in certain time frames.

In general, there are three types of anomaly detection
approaches: supervised learning with training data been
labelled as normal or anomaly; semi-supervised learning
with only normal class in training data being labelled; and
unsupervised learning without labelled training data. With
the increasing amount of time series data being collected
over the years from different cities or countries, it becomes
challenging to manage big dataset and identify anomalies.
Machine learning approaches have been employed in identi-
fying meaningful insight and traffic anomaly detection tasks.

An incident detection algorithm based on Convolutional
Neural Networks (CNN) is introduced to detect anoma-
lous conditions in traffic simulation environment [16]. Its
experiments are conducted on data generated by a city
model in Simulation of Urban MObility (SUMO), with
the comparisons between simulated traffic flow values and
historical traffic patterns. A traffic anomaly detection method



using Siamese neural network that contains the twin neural
networks with the same weights in presented [15]. This
model is used to measure the similarity and outputs of
two vectors fed into the twin networks are compared. The
anomaly scores are computed by a pre-trained machine
learning model in vehicular traffic simulations of SUMO
environments. A traffic anomaly detection method consisting
of K-mean clustering component is introduced for univariate
time-series analysis, which is evaluated on real traffic time
series data collected through loop detectors locating at an
urban road network in Europe [13]. Detecting road anomalies
is formulated as a classification problem representing three
sets of features for road conditions [17], where three deep
learning approaches including Deep Feedforward Network,
CNN, and Recurrent Neural Network (RNN) are evaluated
and compared. A recurrent neural networks Long Short-Term
Memory (LSTM) is introduced to detect traffic anomaly by
identifying decrease or an excessive increase of vehicles flow
on the highways compared to normal values [18]. Its model
is evaluated using dataset generated by a multi-agent system
representing the different time series data. Zhou et al. [19]
present a long sequences prediction method named Informer
to solve the long-sequence time-series forecasting (LSTF)
problem, improving inference speed of long-sequence pre-
dictions observed from experiment results on four testing
dataset.

Hybrid machine learning methods are also popular re-
search topics in the traffic flow anomaly detection. A deep
anomaly detection algorithm combining LSTM deep learning
model and extreme value theory is reported that is able to
provide recommendations to the ITS for better road traffic
management [20]. The performance comparisons of CNN,
LSTM and hybrid CNN- LSTM models for traffic congestion
anomaly detection and prediction have been conducted by
applying on 36.34 million data points collected on motor-
ways in Sydney Australia [21]. It is observed from the
experiment results that hybrid CNN-LSTM model under-
performed than the LSTM model and applying anomaly
detection to remove outlier data can significantly enhance
traffic prediction results.

Due to the development based on Vanilla Transformer
[22], Transformer models have shown better performance
in capturing long-range dependency than RNN models in
many applications [19]. However, the training of Transformer
models heavily relies on the use on GPU [23], which pose
a limit for applying such models in practical use. Recently,
a novel improvement of Transformer model named Informer
[19] has been introduced, which significantly reduce time and
space complexity with outstanding prediction performances

In this work, we aim at improving on the existing machine
learning solutions to identify traffic anomalies to uncover
any meaningful insights of traffic behaviour patterns. By
leveraging the Informer method for long sequence time-
series forecasting, an anomaly detection algorithm for traffic
time series data is proposed using the encoder-decoder
architecture based anomaly score generator. Feature maps
with different scales are extracted in the encoder structure.

TABLE I
DESCRIPTION OF THE COLLECTED TRAFFIC DATASET.

Dataset # Features # Train # Validation # Test
Vehicle Flow 5 4938 486 1162

Pedestrian Flow 4 4234 518 1386

Computations with two multi-head attention layers and a
fully connected layer are conducted in the decoder structure.
Anomaly scores of the target sequence at time t can be de-
rived between predicted outputs and true values accordingly.
The proposed machine learning approach has been evaluated
on detecting traffic anomalies for long-sequence predictions,
based on the real-world traffic dataset been recorded in
Guiyang City, China in 2021. The dataset consists of traffic
flows of different types of vehicles and pedestrians with
one hour time intervals. Moreover, the proposed anomaly
detection algorithm has been evaluated on a public dataset
named the Skoltech anomaly benchmark (SKAB) [24].

The main contributions of this research are as follows:
1. By improving the long sequences prediction method,

Informer, an anomaly detection algorithm with an anomaly
score generator is proposed to solve anomaly detection
problem on both vehicles and pedestrian flow dataset.

2. The proposed anomaly detection algorithm has been
evaluated by the real-world time series dataset containing
various types of vehicle traffic flows and pedestrian flows
with one hour sampling rate.

3. The proposed anomaly detection algorithm has been
evaluated on the public dataset SKAB. It achieved competi-
tive results compared with other baseline methods.

The organization of the remaining parts of this paper is
shown next. Section II describes our proposed methodology
and algorithm. Section III presents the experiments and
evaluations on the real-world traffic dataset and the public
dataset SKAB. Section IV concludes this paper.

II. METHODOLOGY AND PROPOSED ALGORITHM

As shown in Fig. 1, there are two primary components of
the proposed algorithm: an anomaly score generator and an
anomaly classifier. We adopt the structure of Informer to be
the first component of our method to generate anomaly scores
of the samples. The One-Class Support Vector Machines
(OCSVM) is applied to be the classifier. The anomaly score
generator applies the encoder-decoder architecture, aiming to
encode input sequences X t into the encoded representation
Ht. Next, the decoder reconstructs this representation to
generate the output Yt from Ht.

The encoder consists of three stacking ProbSparse self-
attention mechanism [19] based blocks to generate feature
maps with different scales. Comparing with canonical self-
attention mechanism [22], which performs the scaled dot-
product on tuple inputs (i.e., query (Q), key (K) and value
(V)), the ProbSparse [19] self-attention mechanism allows
each K to only attend to the top-m dominant of Q. It
significantly reduces the computing complexity as in Eq. (1).



(a)

Fig. 1. Network block diagram of the proposed algorithm.

A(Q,K,V) = Softmax(
QKT

√
d

)V (1)

where Q is the sparse matrix that only contains top-m
dominant of Q under the query sparsity measurement [19]
and d is the dimension of the input.

Self-attention distilling operations [19] are performed in
the layers of the encoder to reduce the size of the network.
Next, feature maps generated from three stacked blocks are
concatenated as the output of the encoder.

The decoder applies the standard structure mentioned
in [22] with two multi-head attention layers and a fully
connected layer to obtain an output of the decoder.

Based on the network of the anomaly score generator, at
time t an input sequence with length Lx can be represented
as Eq. (2).

X t = {xt
1, ..., x

t
Lx

| xt
i ∈ Rdx} (2)

where xt
i is the observed inputs at the ith time stamp and

dx is the dimension of the input.
The network will predict the corresponding target se-

quence with length Ly shown in Eq. (3).

Ŷt = {ŷtLx+τ , ..., ŷ
t
Lx+τ+Ly

| ŷi
t ∈ Rdy} (3)

where ŷti is the predicted value of the target sequence at the
ith time stamp; τ is the time delay and dy is the dimension
of the target sequence.

Next, the anomaly score of the target sequence at time t
can be computed as the Mean Squared Error (MSE) between
the predicted output Ŷt and the true value Yt as:

Scoret = MSE(Ŷt,Yt) (4)

Hence, it is straightforward to determine that the target
sequence Yt is anomalous if the anomaly score of Scoret
is larger than a defined threshold. But such operations take
much time to find the optimal value of the threshold. In
addition, some prior works also apply the encoder-decoder
scheme to detect time-series anomalies where the value of
the threshold is determined by assuming the distribution of
the anomaly score follows multivariate Gaussian distribution
[25], [26]. However, this assumption may not be possible in

TABLE II
PERFORMANCE COMPARISONS OF THE PROPOSED ALGORITHM WITH

OTHER FIVE METHODS ON THE VEHICLE FLOWS TASK.

Method Precision ( % ) Recall ( % ) F1 ( % )
LOF [27] 38.98 44.23 41.44

COPOD [28] 81.08 57.69 67.42
OCSVM [29] 69.64 75.00 72.22
ECOD [30] 70.18 76.92 73.39

Informer [19] 76.92 76.92 76.92
Ours 70.59 92.31 80.00

TABLE III
PERFORMANCE COMPARISONS OF THE PROPOSED ALGORITHM WITH

OTHER FIVE METHODS ON THE PEDESTRIAN FLOWS TASK.

Method Precision ( % ) Recall ( % ) F1 ( % )
LOF [27] 18.25 71.88 29.11

COPOD [28] 88.24 46.88 61.22
OCSVM [29] 52.83 87.50 65.88
ECOD [30] 84.21 50.00 62.75

Informer [19] 73.33 68.75 70.97
Ours 77.78 65.63 71.19

many practical applications. Therefore, we aim to overcome
such disadvantages by an anomaly classifier that does not
require any assumption of data. Since the OCSVM has been
widely applied to different anomaly detection tasks, it is
adopted as the anomaly classifier in this work. Specifically,
the anomaly score of Scoret is sent to a trained OCSVM
based on the training data to detect anomalies automatically.

III. EXPERIMENTS

The effectiveness of the proposed anomaly detection al-
gorithm is evaluated on a real-world traffic dataset including
different types of vehicle flows and pedestrian flows is also
constructed to evaluate the performances of the proposed
algorithm to detect anomalous vehicle pedestrian flows. The
time series dataset is collected in Guiyang City, China, with
an hourly sampling rate from March 2021 to December 2021.
The time series dataset is constructed to record the number
of different types of vehicles and number of pedestrians
per hour. The dataset contains one class for pedestrians and
three classes for vehicles: large vehicles with multiple axles
including multi-wheel heavy trucks; medium vehicles with
two axles including buses, pickup trucks, and lorries, etc.;
small vehicles including sedans and SUV cars. The time
series dataset exhibits largely unbalanced number of data,
as the number of small vehicles are about 10 – 20 times
higher than those of the medium vehicles. While the number
of medium vehicles in the dataset are about 5 – 10 times
higher than those of the large vehicles.

With the constructed time series dataset, there are two
subsets for the anomaly detection tasks: one to detect anoma-
lous vehicle flows, the other for anomalous pedestrian flows
detection. We split each subset into train, validation and test
folds. The detailed descriptions of the collected traffic dataset
are listed in TABLE I.

We consider three widely-used metrics for evaluating the
effectiveness of the proposed anomaly detection algorithm,



Fig. 2. Example of vehicle flow data with point anomaly and continuous group anomaly (top), and the anomaly scores generated by the proposed algorithm
(bottom). Anomalous data are in red.

Fig. 3. Example of passenger flow data with point anomaly and continuous group anomaly (top), and the anomaly scores generated by the proposed
algorithm (bottom). Anomalous data are in red.

including the Precision, Recall and F1 score:

Precision =
TP

FP + TP
,

Recall =
TP

FN + TP
,

F1 =
2× Precision×Recall

Precision+Recall
,

(5)

where TP denotes the number of correct predictions; FP
and FN denote the number of false positive and false
negative predictions, respectively. Better performances are
indicated by higher values in the F1 score, precision and
recall.

All experiments are run on a PC with an Intel CoreTM

i7-8750H 2.20 GHz processor and 16 GB RAM. Other
comparison methods are the Informer [19] and other four
commonly used methods implemented using frameworks
provided by [31], including Local Outlier Factor (LOF) [27],
Copula-Based Outlier Detection (COPOD) [28], OCSVM
[29] and Unsupervised Outlier Detection using Empirical
Cumulative Distribution Functions (ECOD) [30] . The values

of the hyper-parameters in the experiments are set as follows:
time delay τ = 1 hour, input length Lx = 32 hours and target
length Ly = 8 hours for the traffic dataset.

Fig. 2 and Fig. 3 present examples of two types of
anomalies (i.e., the point anomalies and continuous group
anomalies) in the vehicle and pedestrian flow dataset. It is
observed that the anomaly scores generated by the proposed
algorithm are stable for normal samples. But values are rela-
tively high for both samples belonging to the point anomalies
and continuous group anomalies. The results illustrate that
the proposed algorithm is able to capture characteristics of
two types of anomalies.

TABLE II and TABLE III present the comparison re-
sults among the proposed detection algorithm and other
methods on the vehicle flow and pedestrian flow dataset,
respectively. It is observed from TABLE II, the proposed
detection algorithm obtains the highest performance in both
results of Recall and F1 score (i.e., 92.31% and 80.00%,
respectively). It illustrates the developed detection algorithm
is able to recognize most of the anomalies in the dataset



and has better overall detection performances compared with
other widely used anomaly detection algorithms. Similarly,
in the anomaly detection task on pedestrian flows shown in
Table III, the proposed algorithm has the best performance
in the result of F1 score (71.19%). These experiment results
show that the proposed algorithm has better overall detection
performance and makes good balances on false alarms and
missing alarms compared with other five types of methods.
Although the OCSVM method obtains the highest Recall
value at 87.50%, the results of Precision and F1 score
are much lower, which means it generates a lot of false
alarms. Additionally, performances of the five comparing
methods achieved in the pedestrian flow task are much
lower than those obtained in the vehicle flow task. This
performance drop is because the change of pedestrian flows
is much faster and more unpredictable. On the contrary,
the performances of the proposed detection algorithm are
stable in both vehicle flow and pedestrian flow tasks. It
demonstrates that the proposed algorithm is more robust in
dealing with fast-changing time-series samples and making it
more suitable for real-world applications. Comparing results
obtained in both vehicle flow and pedestrian flow tasks,
the proposed algorithm, which combines the Informer and
OCSVM, exhibits a higher F1 score than individually using
Informer or OCSVM. This performance improvement shows
that the proposed algorithm uses Informer and OCSVM to
achieve better anomaly detection performances.

In addition, a public dataset named the SKAB [24], which
has 34 subsets of multivariate time-series data is also used
to evaluate the proposed anomaly detection algorithm. By
clicking the link1, ten commonly used anomaly detection
methods are listed as the baselines for comparison, including
the multivariate state estimation technique (MSET) [32],
Hotelling’s T-squared statistic + Q statistic (SPE index) based
on PCA (T-squared + Q (PCA)) [33], LSTM [34], multi-scale
convolutional recurrent encoder-decoder (MSCRED) [35],
Hotelling’s T-squared statistic (T-squared) [36], Isolation
Forest [37], feed-forward neural network with autoencoder
(Autoencoder) [38] and three variants of it. We adopt the
performance of these reported methods as the benchmark
for comparison.

The values of the hyper-parameters in the experiments of
for the SKAB dataset are set as follows: time delay τ =
1 second, input length Lx = 32 seconds and target length
Ly = 8 seconds. False alarm rate (FAR), missing alarm rate
(MAR) and F1 score (in two decimal places) are posted as
evaluation metrics in the SKAB dataset website, so we keep
this setting:

FAR =
FP

FP + TN
,

MAR =
FN

FN + TP
,

(6)

where TN denotes the number of correct predictions on
normal samples. TP , FP , FN and F1 score are referring

1https://github.com/waico/SKAB

TABLE IV
PERFORMANCE COMPARISONS OF THE PROPOSED METHOD WITH OTHER

TEN METHODS ON THE SKAB DATASET.

Method F1 FAR ( % ) MAR ( % )
Ours 0.82 13.89 14.01

Conv-AE [24] 0.79 13.69 17.77
MSET [32] 0.73 20.82 20.08

LSTM-AE [24] 0.68 14.24 35.56
T-squared + Q (PCA) [33] 0.67 13.95 36.32

LSTM [34] 0.64 15.4 39.93
MSCRED [35] 0.64 13.56 41.16

LSTM-VAE [24] 0.56 9.13 55.03
T-squared [36] 0.56 12.14 52.56

Autoencoder [38] 0.45 7.56 66.57
Isolation Forest [37] 0.40 6.86 72.09

to definitions in Eq. (5). Better performances are indicated
by lower values in the FAR and MAR.

Table IV presents the results of the proposed algorithm
compared with others. It can be observed that the pro-
posed algorithm achieves the best performances in both F1

and MAR (i.e., 0.82 and 14.01%, respectively). Although
Isolation Forest achieves the lowest FAR with 6.86%, its
MAR is too large (72.09%). This phenomenon shows that
such a method can not recognize most of the anomalies.
Compared with these methods, the proposed algorithm can
sufficiently balance false alarms and miss alarms, leading to
better overall detection performances.

In summary, the algorithm can correctly tackle two kinds
of anomaly detection tasks on time series traffic flow. This
is quite promising since many existing methods only focus
on vehicle flow detection instead of detecting both vehicle
and pedestrian flows. In addition, the proposed algorithm
achieves competitive results on the public SKAB dataset.

IV. CONCLUSIONS

In this paper, the anomaly detection algorithm for time
series vehicle and pedestrian flows is proposed. In the con-
ducted experiments, the proposed algorithm can detect two
kinds of anomalous flows with high accuracy. The analysis
also shows that the proposed algorithm obtains competitive
results compared with other widely used anomaly detec-
tion algorithms. Moreover, the prosed anomaly detection
algorithm has been evaluated on the public SKAB dataset.
Moving forward, we will extend the proposed approach to
the more general cases of time series anomaly detections.
Our discovery could motivate further research to improve
time series traffic anomaly detection performances. In the
future works, we could also exploit our anomaly detection
algorithm on data collected from different urban areas, cities
or countries.
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