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Abstract
1. The potential for statistical complexity in species distribution models (SDMs) 

has greatly increased with advances in computational power. Structurally com-
plex models provide the flexibility to analyse intricate ecological systems and 
realistically messy data, but can be difficult to interpret, reducing their practi-
cal impact. Founding model complexity in ecological theory can improve insight 
gained from SDMs.

2. Here, we evaluate a marked point process approach, which uses multiple 
Gaussian random fields to represent population dynamics of the Eurasian crane 
Grus grus in a spatio- temporal species distribution model. We discuss the role 
of model components and their impacts on predictions, in comparison with a 
simpler binomial presence/absence approach. Inference is carried out using 
Integrated Nested Laplace Approximation (INLA) with inlabru, an accessible and 
computationally efficient approach for Bayesian hierarchical modelling, which is 
not yet widely used in SDMs.

3. Using the marked point process approach, crane distribution was predicted to be 
dependent on the density of suitable habitat patches, as well as close to obser-
vations of the existing population. This demonstrates the advantage of complex 
model components in accounting for spatio- temporal population dynamics (such 
as habitat preferences and dispersal limitations) that are not explained by environ-
mental variables. However, including an AR1 temporal correlation structure in the 
models resulted in unrealistic predictions of species distribution; highlighting the 
need for careful consideration when determining the level of model complexity.

4. Increasing model complexity, with careful evaluation of the effects of additional 
model components, can provide a more realistic representation of a system, 
which is of particular importance for a practical and impact- focused discipline 
such as ecology (though these methods extend to applications for a wide range 
of systems). Founding complexity in contextual theory is not only fundamental 
to maintaining model interpretability but can be a useful approach to improving 
insight gained from model outputs.
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1  |  INTRODUC TION

The continuing increase and the improvement both of the availabil-
ity and detail of ecological information, and of computational re-
sources allows realistically complex and flexible statistical models to 
be fitted to ecological data. However, increasing structural complex-
ity through the inclusion of additional model components without 
ecological justification will not improve our ability to understand 
fundamental ecological responses and predictions. Hence increased 
model complexity is only relevant if the more complex models pro-
vide us with additional insight into ecological processes than sim-
pler and often computationally cheaper models (Bolker, 2009). 
For instance, more complex models may improve the accuracy of 
predictions or abundance estimates: they may have less restrictive 
assumptions, thus avoiding incorrect inference and model interpre-
tation, and they may have the ability to explicitly reflect complex 
ecological processes.

In the specific context of species distribution models, which 
seek to provide insight into the distribution of species in geo-
graphic and environmental space, complex spatio- temporal models 
are often utilised. Increased model complexity is supported by the 
fact that those complex models may reflect the complex ecologi-
cal processes driving the species distribution, such as demography 
(Pagel & Schurr, 2012), dispersal (Elith & Leathwick, 2009; Iverson 
et al., 2004), and physiology (Buckley et al., 2011) and hence provide 
additional ecological insight. Increasing model complexity through 
including model structures that reflect spatio- temporal dynamics 
not only accounts for autocorrelation not explained by covariates, 
but may also reflect ecological processes such as dispersal limitation 
or site fidelity. However, caution is needed to avoid such random ef-
fects being overfitted and concealing the impact of model covariates 
(Sørbye et al., 2019).

Model complexity is occasionally influenced by the maximisation 
of predictive performance, not ecological theory, as has been noted 
for correlative species distribution modelling (Austin, 2002, 2007). 
In many studies of species distribution, the research aims include 
interpretation of effects or mechanisms, or extrapolation to spatial 
areas or time periods outside of those studied. In these instances, 
model interpretability and ecological realism should be considered 
alongside predictive performance during model selection.

In this paper, we highlight that the level of complexity in a spatio- 
temporal ecological model has to be carefully chosen and tailored 
to the system under investigation. To this end, we carefully inspect 
the complexity and limitations of a marked spatio- temporal point 
process model related to a model that has previously been fitted 
(Soriano- Redondo et al., 2019) with the aim of understanding and 
predicting the spatial distribution of a reintroduced species. The 
modelling in Soriano- Redondo et al. (2019) is facilitated through a 

Bayesian hierarchical modelling approach where spatio- temporal 
dynamics in behaviour are represented by a flexible stochastic par-
tial differential equation (SPDE) (Lindgren et al., 2011). This allows 
the model to be fitted in continuous space (Simpson et al., 2017) and 
within a realistic timeframe through the computational efficiency of 
integrated nested laplace approximation (INLA) (Rue et al., 2009). 
We revisit this approach here, fitting a similar model using the 
user- friendly software package inlabru, with the specific aim of 
reflecting on the role of complex model components and how they 
represent ecological processes in species distribution models. We 
show that model complexity has to be carefully aligned with the 
complexity of the ecological processes that can be observed in the 
data, to provide adequate model interpretability and hence relevant 
ecological insight.

1.1  |  Approaches to species distribution modelling

Species distribution models (SDMs) link information on the pres-
ence/absence or abundance of a species to environmental variables 
to predict where (and how much of) a species is likely to be present in 
unsampled locations or time periods (Martinez- Minaya et al., 2018).

Existing methods for species distribution modelling include: 
approaches developed to deal with presence- only datasets (such 
as maximum entropy algorithm, distance sampling, similarity, and 
envelope methods such as MAXENT, Gower metric, Mahalanobis 
distance, and ecological niche factor analysis); machine- learning al-
gorithms that are iterative in ecological systems (such as artificial 
neural networks and deep learning); and classic regression models 
(such as generalised linear models (GLM), their semiparametric ex-
tension, generalised additive models (GAM), and a related method, 
multivariate adaptive regression splines (MARS)).

Several of the above methods are based on the assumption that 
the observations being modelled are independent. This is not always 
the case because ecological (and particularly species distribution) 
data usually present residual spatial or spatio- temporal correlation 
structures (Kneib et al., 2008). These structures can be the effects 
of processes that are unaccounted for in simple habitat models, such 
as social interaction with conspecifics, dispersal limitations or in-
terspecific competition (Lichstein et al., 2002; Miller, 2012; Storch 
et al., 2003). Spatial data are also subject to spatial autocorrelation— 
the phenomenon that two points are more similar the closer they are 
in space, (Tobler, 1970).

Failing to account for unexplained spatial or temporal correla-
tion structures in species distribution modelling can lead to spurious 
significance and an increase in the rate of Type I errors (false posi-
tives) in the interpretation of explanatory variables (Dormann, 2007; 
Dormann et al., 2007; Miller, 2012; Segurado et al., 2006). In some 
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cases, not including these effects can lead to inference of an incor-
rect direction in the relationship between environmental covariates 
and response (Kühn, 2006). However, the inclusion of model compo-
nents to account for unexplained spatial or temporal structures can 
rectify the above issues, as well as allowing insight into otherwise 
overlooked effects (Lichstein et al., 2002) and improving model fit 
(Dormann, 2007). Although, careful prior choice is advised to re-
duce the risk of correlation structures incorrectly lowering the es-
timated significance of fixed effects (Hodges & Reich, 2010; Sørbye 
et al., 2019).

GAM and MARS can account for spatio- temporal autocorrela-
tion by taking a semiparametric approach through including smooth-
ing spline terms. A very powerful and flexible alternative is to use a 
parametric approach in which the spatial and temporal correlation 
structures are represented by a (Gaussian) random field and approx-
imated by an SPDE (Lindgren et al., 2011; Miller et al., 2020). This 
allows us to flexibly model species distribution data in continuous 
space as georeferenced data (for count or presence- absence data) 
or as point patterns (for presence only or effort- corrected presence 
data; Yuan et al., 2017). This approach is taken in Soriano- Redondo 
et al. (2019) as well as in this paper.

1.2  |  Point process methodology and INLA

As model complexity increases— for example, when spatio- 
temporal correlation structures are included as complex model 
components— an advantageous approach can be found in Bayesian 
hierarchical modelling (Cressie et al., 2009). Hierarchical models 
allow parameters to vary at more than one level via the introduc-
tion of random effects. Constructing such models in a Bayesian 
framework enables full inference through the quantification of 
parameters and uncertainty; a feature of great practical benefit in 
applied conservation contexts (Wade, 2000; Wintle et al., 2003). 
Bayesian modelling also enables the inclusion of informative prior 
information, which can help to avoid overfitting of random ef-
fects (Sørbye et al., 2019). Several authors have applied a Bayesian 
approach to analyse different aspects of species distribution, 
such as comparing Gaussian processes against other popular ap-
proaches to modelling (Golding & Purse, 2016), visualising spatial 
patterns with Bayesian hierarchical logistic regression (Gelfand 
et al., 2006), analysing species distribution using presence/ab-
sence data (Latimer et al., 2006), working with occupancy models 
(MacKenzie et al., 2002), or analysing distance sampling data using 
a Bayesian GAM (Sigourney et al., 2020).

Hierarchical Bayesian models have traditionally relied on 
Markov chain Monte Carlo (MCMC) simulation techniques, which 
are computationally expensive and technically challenging, con-
sequently limiting their application. However, INLA methodology 
and its powerful application to modelling complex datasets has 
opened hierarchical Bayesian modelling to a wider range of appli-
cations (Illian et al., 2013). As opposed to MCMC simulations, INLA 
uses an approximation for inference and hence avoids the intense 

computational needs, convergence, and mixing problems sometimes 
encountered by MCMC algorithms. Moreover, INLA can be used in 
combination with the SPDE approach, which approximates Gaussian 
random fields with a Matérn covariance structure, allowing for 
computationally efficient modelling in continuous space (Lindgren 
et al., 2011; Simpson et al., 2012). Implementation of these methods 
in R (R Core Team, 2021) is made accessible through the package 
inlabru (Bachl et al., 2019), which was designed as a user- friendly 
wrapper and extension to R- INLA (Rue et al., 2009), providing easier 
syntax for point process model fitting as well as reflecting ecological 
observation processes. These statistical methods and their packages 
for implementation constitute an efficient and reliable framework 
for complex spatio- temporal modelling, with a range of applications 
in ecology and beyond (Williamson et al., 2021; Yuan et al., 2017).

Here, we focus on the application of spatio- temporal marked 
point process models to analyse complex ecological systems, made 
feasible through the use of R- INLA and inlabru. Spatio- temporal 
point process methods model the locations of objects or events in 
time and space to provide an understanding of the overall spatio- 
temporal pattern formed by the locations, which might reflect in-
terindividual interactions or habitat preferences. A simple example 
of a point process is the inhomogeneous Poisson process, where 
points are distributed following a fixed intensity function that varies 
through space. A particularly flexible class of point process models 
are Cox processes, specifically the log Gaussian Cox process. Cox 
processes are generalisations of the inhomogeneous Poisson pro-
cess, where the intensity is represented by a random field. This im-
plies that both the intensity function and the distribution are random 
(‘doubly- stochastic’). In the case of the log Gaussian Cox process, the 
intensity Λ(. ) has the following form: Λ(s) = exp(G(s)), where G(. ) is 
a Gaussian random field. Given this intensity, the point locations are 
assumed to be independent, that is, to follow a Poisson process. As 
a result, these are a special case of latent Gaussian models, the class 
of models that may be fitted with INLA (Cox & Isham, 1980; Illian 
et al., 2012; Møller et al., 1998).

An extension of the simple point process model is the marked 
point process model, in which information on the location of objects 
or events is modelled along with the qualitative or quantitative prop-
erties (commonly referred to as ‘marks’) of these events or objects. 
If a dependency between the values of a mark and the point distri-
bution is assumed, these can be jointly modelled with two or more 
dependent likelihoods. Simultaneously modelling the distribution of 
points (as a point process) and some data feature collected at the 
point locations greatly increases the model complexity and compu-
tational cost. The computational efficiency of INLA, however, makes 
fitting these models feasible (Illian et al., 2012) and inlabru facilitates 
the fitting of both simple as well as marked point processes, which 
can be rather cumbersome in plain R- INLA.

When fitting a marked point process model in inlabru, the 
spatio- temporal structure of the marks (independent of the point 
distribution) and the spatio- temporal structure of the points can be 
represented with different Gaussian random fields in a shared repre-
sentation of continuous space and discrete time. In this way, multiple 
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data features and different sources of spatial clustering can be incor-
porated into a single model of species distribution.

In this paper, we reflect on a modelling structure first developed by 
Soriano- Redondo et al. (2019), which follows the population spread of 
the Eurasian crane Grus grus across England. Here, we construct sev-
eral models based on this work, to assess the role of complex model 
components in capturing spatial and spatiotemporal clustering dy-
namics in the species distribution. We take advantage of the new and 
advanced analytical approaches developed in inlabru, to explore the 
spatiotemporal structures and AR1 temporal correlation component 
in Soriano- Redondo et al. (2019). Here, the point pattern of habitat 
patches also reflects the observation process, as data- collectors used 
prior information on species habitat preference to influence the sam-
pling design. Accounting for spatially varying detection probability is a 
particular strength of inlabru, which was developed specifically for 
(ecological) datasets with complex observation processes.

2  |  MATERIAL S AND METHODS

2.1  |  Data

We investigate the spatial distribution of a resident breeding popula-
tion of Eurasian crane in England following the return of the species to 
the UK in 1979 (Stanbury, 2011), with the aim of predicting the distri-
bution of the population in future years. Breeding pairs of cranes are 
only found in wetland habitats, which creates a spatial restriction on the 
suitable habitat available to the species, although little is known about 
its dispersal ability. The distribution of wetland locations in England is 
heterogeneous, with various underlying factors creating a clustered 
structure of habitat patches. Thus, the distribution of the crane popula-
tion throughout the UK and hence its future spread is dependent on 
the availability of suitable wetland habitat. Due to this known species 
habitat preference, data on crane presence were collected only at wet-
land locations, and not in interstitial areas. We demonstrate how this 
type of data can be modelled as a marked point process in inlabru, in 
order to infer habitat preferences and predict species distribution, while 
accounting for known species habitat requirements and observation 
processes. Specifically, we model the observation process as reflected 
in the wetland locations as a point pattern, jointly modelled with the 
presence/absence of nesting cranes as a mark.

The dataset includes information on a small breeding population 
that naturally settled in the UK in 1979 after earlier extirpation of 
the species, as well as animals used in a reintroduction project in 
2010– 2014. It also includes records for 2,526 wetlands in England 
derived from the UK Land Cover Map 2007 (Morton et al., 2011) and 
the Wetland Vision map of current wetlands (Hume, 2008). While 
the UK Land Cover Map 2007 assigns the dominant habitat to a 25 m 
raster grid, the Wetland Vision map determines the boundaries of the 
major wetland areas in England. Combining both sources provides an 
approximation of most available wetland patches in England. This 
selection was reduced by eliminating wetlands in moorland areas 
since cranes in the UK are only nesting in lowland wetland areas 

(Stanbury & Sills, 2012). Wetland patches smaller than 5 ha were 
also removed, as estimates show that cranes required at least 8 ha to 
nest (Johnsgard, 1983). The fine grain of this classification allows us 
to treat the wetland areas as points, since extensive wetland regions 
are fragmented by other types of habitats, roads or other human in-
frastructure, and are indeed composed by multiple smaller wetland 
areas. Each wetland area has associated information: its coordinates, 
data on the presence or absence of breeding pairs of cranes, wetland 
extent, perimeter- to- area ratio, the proportion of urbanised areas in 
a 10 km surrounding terrestrial buffer.

To evaluate the structure of the model in Soriano- Redondo 
et al. (2019), we present two modelling approaches with the aim of 
estimating the spatio- temporal distribution of cranes in England. 
The first approach makes use of a single Gaussian random field to 
represent spatio- temporal correlation in the distribution of the ob-
served population of cranes. The second is a marked point process 
approach, which incorporates a second Gaussian random field, ac-
counting for the distribution of wetlands. Within these modelling 
frameworks, we explore differences arising from the inclusion of a 
temporal correlation structure via a first- order autoregressive (AR1) 
process, where estimates for each year are dependent on the im-
mediately previous year, compared to treating each year of data as 
independent and identically distributed (IID).

2.2  |  Single- field models

In order to explore what level of model complexity is needed to an-
swer relevant ecological questions based on the crane data, we start 
with a relatively simple spatio- temporal model in continuous space. 
To improve our understanding of the spatio- temporal distribution 
of cranes across England, we initially ignore the fact that cranes will 
only nest in wetland habitats, and we first construct a model con-
taining a single spatio- temporal Gaussian random field. This is es-
sentially a model of geo- referenced (binomial) data (often referred 
to as a geostatistical model) with a single likelihood, which does not 
take the observation process into account and assumes that crane 
presence is equally likely across England. Here, crane presence is 
modelled as a binomial distribution:

The occurrence of cranes Os,t at each location s, in each year t 
can be considered an individual Bernoulli trial with probability P(s, t) . 
Here, the location s is a vector representing coordinates s1 and s2 in 
two- dimensional space. Note that for larger- scale models, location 
could also be represented on the sphere (Simpson et al., 2016).

The probability of crane presence P in a location s at time t is 
dependent on the observed distribution of the existing population 
in space and time, as well as the effect of environmental covariates:

(1)Os,t ∼ Bernoulli(P(s, t)).

(2)P(s, t) = logit−1

(

�0 +

I
∑

i=1

�ixi(s, t) +M(s, t)

)

.
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Here, �0 represents an intercept term and xi(s, t) is the value of each 
covariate i  at location s and time t. The environmental covariates 
included in the model were: the density of surrounding urbanised 
areas (within a 10 km terrestrial buffer), wetland perimeter- to- area 
ratio, and wetland extent. The values of these covariates were stan-
dardised using the Z- score formula prior to inclusion in the model, in 
order to improve the stability of numerical computation. The regres-
sion coefficient �i of each covariate is estimated in the model. The 
spatio- temporal Gaussian random field M(s, t) represents the spatial 
structure in distribution of the observed crane population in space 
and time unexplained by the intercept and covariates. The Gaussian 
random field M(s, t) is approximated using an SPDE. Penalised com-
plexity (PC) priors defining a likely minimum spatial range of 200 km 
and maximum standard deviation of 1.5 were used to inform this 
covariance structure, according to ecological understanding of the 
distances across which values may be correlated, and the extent to 
which values may vary. PC priors are interpretable default priors that 
operate under the principle of Occam's Razor, penalising complexity 
away from a simpler base model (Blangiardo et al., 2013; Simpson 
et al., 2017). Further information on the priors used can be found 
in Appendix B. We explore two options for the temporal element 
of this field, (a) incorporating a random effect in which each year of 
data is considered independent and identically distributed (IID) and 
(b) modelling temporal correlation between consecutive years with a 
first- order autoregressive (AR1) process.

Model fitting and inference were carried out in R version 
4.1.1 (R Core Team, 2021) using the packages inlabru version 
2.3.1.9000 (Bachl et al., 2019) and R- INLA version 21.02.23 
(Rue et al., 2009). The code used in this analysis is available on 
Zenodo (Laxton et al., 2022a). A transformed version of the data 
is available on Dryad (Laxton et al., 2022b). These data have been 
randomly transformed to prevent an exact identification of nest 
locations and avoid potential disturbance to cranes during the 
breeding period.

2.3  |  Marked point process models

The binomial presence/absence model in Equations (1) and (2) 
captures the spatial correlation structure in the occurrence of 
breeding pairs of cranes, but ignores the distribution of suitable 
habitat patches (wetlands). However, sampling only took place in 
locations where cranes would be expected to nest, this obser-
vation process can also be interpreted as preferential sampling 
(Diggle et al., 2010; Pennino et al., 2019). In this example, crane 
detectability is assumed to be known, as due to the large size of 
the animals, they are easy to detect. However, with rare or small 
organisms that are more difficult to detect, it may be of interest 
to use models to predict and estimate abundance across space. In 
these cases, such a model would likely predict presence where the 
species of interest does not occur, and overestimate abundance 
as a result. Despite the certainty of detection of cranes here, the 
distribution of wetlands is still an important factor in determining 

species distribution, as it represents habitat preference. This 
can be accounted for through modelling the data using a marked 
point process, by jointly modelling the distribution of wetlands 
as a point process and the presence/absence of breeding pairs of 
cranes as a binomial mark. The presence/absence of cranes can be 
viewed as a mark on the wetland point process; a feature which 
only occurs at the point locations, and so is dependent on the un-
derlying spatial structure of the points. In this second approach, 
we extend the model presented in Equation (2) to include the 
density of available wetland habitat. This model structure is taken 
from Soriano- Redondo et al. (2019), and the models developed in 
this manuscript are based on those created by Soriano- Redondo 
et al. (2019), in order to evaluate the advantages and disadvan-
tages of including complex model components.

The point pattern of wetland locations is modelled as a log 
Gaussian Cox process in inlabru. The distribution of wetlands is 
independent conditional on the point process intensity Λ(s):

The log- intensity of the spatial point process model is given by 
an intercept term �0 and a spatial Gaussian random field G(s). Since 
we are not interested in gaining an understanding of the underlying 
drivers of wetland distribution in this context, we do not include co-
variates in the model that would help explain their spatial distribu-
tion; however, this could be easily done.

The probability of crane presence P(s, t) is dependent on both the 
distribution of wetlands in space, and the distribution of the existing 
crane population in space and time:

Here, wetland density is incorporated into the model through 
the inclusion of the spatial Gaussian random field G(s) multiplied by 
a scaling parameter �, which determines the strength and direction 
of the interaction between wetland density and crane presence. A 
prior is placed on � (see the Data Availability Statement for code) 
to provide stability due to convergence issues. This ensures a sim-
ple interpretation of the interaction between G(s) and crane pres-
ence (i.e., positive effect of high density as opposed to negative 
effect of low density). The spatio- temporal Gaussian random field 
M(s, t) represents the distribution of the observed crane popula-
tion in space and time, independent of wetland distribution. As in 
the binomial presence/absence model, both an AR1 and IID tem-
poral correlation structure are considered for M(s, t). However, the 
point pattern of wetland locations does not change between years, 
and so represents a constant restriction on species distribution. 
Therefore, G(s) is a purely spatial Gaussian random field, and does 
not incorporate a temporal element. This represents an improve-
ment in computational efficiency compared to the model structure 
in Soriano- Redondo et al. (2019), which includes a spatiotemporal 
field instead of a  spatial one.

(3)Λ(s) = exp
(

�0 + G(s)
)

.

(4)P(s, t) = logit−1

(

�0 +

I
∑

i=1

�ixi(s, t) + �G(s) +M(s, t)

)

.
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3  |  RESULTS

In both the binomial presence/absence model (Equation 2) and 
marked point process model (Equation 4), which incorporated an 
AR1 temporal correlation structure, the correlation parameter for 
the AR1 process, �t, (which is bounded between −1 and 1) was es-
timated to be extremely high (Table 1). This indicates a very strong 
temporal correlation across years. Due to this strong temporal cor-
relation, the model estimated the same spatial structure in the mark 
random field M(s, t) and predictions of crane probability of pres-
ence across all 5 years considered in the study (see Appendix A, 
Figure A2). These estimates constituted a spatial structure reflecting 
an average of all years of data, as opposed to accurately representing 
changes in spatial structure each year. Such averaged estimates may 
be inaccurate when interpreting within- year spatial effects, and so 
graphical representations of results are provided here for the mod-
els which treat each year of data as IID only.

In the marked point process and binomial presence/absence 
models, the mark random field M(s, t) represents the spatial distri-
bution of the crane population each year (Figure 1, centre plot). This 
constrains predictions to near where nesting pairs of cranes have 
been observed, and without it, the species could be predicted to 
occur in areas of suitable environmental conditions, but that are an 
unrealistic distance from the established population.

The marked point process models also contain a point ran-
dom field, G(s), which models the spatial distribution of wetlands 
(Figure 1, left plot; Figure A4). The strength and direction of the 
interaction between the wetland density and probability of crane 

presence is estimated through the scaling parameter �. In the models 
containing the point random field, � is estimated as a significant posi-
tive effect (Table 1). This means that probability of crane presence is 
estimated to be higher in areas of high wetland density, as opposed 
to low density areas. Without the inclusion of the point random field 
(as in the binomial presence/absence model), predictions of species 
distribution could be correlated across wide expanses of interstitial 
habitat and are not assumed to depend on the density of suitable 
habitat patches.

Estimated regression coefficients were similar across all models 
for both wetland perimeter- to- area ratio and wetland extent. For 
all models, wetland perimeter- to- area ratio had a significant nega-
tive effect on crane presence, and wetland extent had a significant 
positive effect (Table 1). However, there was a slight difference in 
estimated effect of density of surrounding urbanised areas between 
the IID and AR1 models. Although density of surrounding urbanised 
areas was found to have a negative effect in all models, this was esti-
mated as not being significant in the binomial presence/absence and 
marked point process models which incorporated an AR1 temporal 
correlation structure, but was estimated as being significant in those 
models with an IID temporal structure (Table 1).

Probability of presence of breeding pairs of cranes across 
space in 2015 was predicted using the binomial presence/absence 
and marked point process models with IID temporal structure. 
Predictions from the binomial presence/absence model (Figure 2, 
left plot) show a wider spatial range in areas of high probability of 
presence, compared to predictions from the marked point process 
model (Figure 2, right plot).

TA B L E  1  Posterior mean and 95% credible intervals for: Regression coefficients of environmental covariates; scaling parameter (�) 
representing the interaction between G(s) and the probability of crane presence; temporal correlation parameter from the AR1 process; 
parameters of the spatial, G(s) , and spatiotemporal, M(s, t), fields. The covariate coefficients and scaling parameter values with credible 
intervals, which do not cross zero are in bold. Model run times and Watanabe– Akaike information criterion (WAIC) scores are also given. The 
covariates included in the model were: Density of surrounding urbanised areas (within a 10 km terrestrial buffer), wetland perimeter- to- area 
ratio and wetland extent. The values of these covariates were standardised using the Z- score formula prior to inclusion in the model. All 
values given are rounded to 2 decimal places

Binomial presence/absence Marked point process

IID AR1 IID AR1

Urban density coefficient −0.58 [−1.19, −0.04] −0.14 [−1.15, 0.72] −0.74 [−1.48, −0.1] −0.09 [−1.19, 0.85]

Wetland extent coefficient 0.08 [0.02, 0.14] 0.12 [0.02, 0.24] 0.1 [0.03, 0.16] 0.1 [0, 0.21]

Perimeter:Area ratio coefficient −3.02 [−3.92, −2.2] −3.49 [−4.57, −2.53] −3.02 [−3.94, −2.19] −3.47 [−4.55, −2.51]

Scaling (�) NA NA 0.62 [0.11, 1.16] 0.99 [0.04, 2.05]

Temporal correlation (�t) NA 0.99 [0.98, 1] NA 0.99 [0.98, 1]

M(s, t) spatial range 346.7 [183.45, 
612.59]

119.95 [70.38, 197.16] 238.66 [142.06, 315.93] 145.15 [67.5, 282.16]

M(s, t) standard deviation 1.22 [0.66, 2.01] 3.03 [1.94, 4.25] 0.98 [0.56, 1.29] 3.34 [2.24, 4.86]

G(s) spatial range NA NA 105.97 [88.57, 185.44] 124.19 [83.17, 
188.41]

G(s) standard deviation NA NA 1.22 [1.07, 1.32] 1.34 [1.01, 1.83]

Run time 63.26 123.64 108.62 174.94

WAIC 464.38 425.38 28,045.01 28,024.94
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4  |  DISCUSSION

In this paper, we have fitted four different models of varying com-
plexity. The simplest model is a spatio- temporal model with a single 
likelihood with an IID assumption between years. We will now com-
pare the relative benefits of the different models with regard to the 
ecological aim of predicting species distribution and representing 
relevant ecological processes in space and time. Predictions of high 
probability of crane presence from the marked point process model 
(Figure 2, right plot) correspond to areas of high wetland density 
(Figure 1, left plot), provided these high density areas overlap with 
areas of high species intensity (Figure 1, centre plot). Differences 
can be observed in the high probability of presence along the 

Norfolk Coast (East) predicted by the binomial presence/absence 
model (Figure 2, left plot), likely due to the presence of cranes to the 
South East of this area (Figure 1, right plot). However, this is not the 
case in the marked point process prediction, where it is taken into 
account that this area has a lower density of wetland habitat relative 
to the area where the existing population is observed. Additionally, 
the binomial presence/absence model predicts a high probability of 
presence at a single wetland in the North- West of England, likely 
due to the large extent of this wetland. Below this, several wetlands 
spanning the West and South- West of England are predicted to have 
mid- to- high probability of crane presence. This does not occur in 
the marked point process prediction, where spatial structure of the 
predictions is more constrained and dependent on wetland density.

F I G U R E  1  Estimated point random 
field (G(s), left) and mark random field 
(M(s, t), centre) for 2015 from the marked 
point process model with IID temporal 
structure. Colour scale is given in low- high 
intensity as we are interested in relative 
differences across space and not absolute 
values. Distribution of wetland locations 
and observed crane presences in England 
in 2015 (right). Purple background colour 
is used for visual clarity and does not 
represent a value on the colour scale.

F I G U R E  2  Mean predicted probability of the presence of a breeding pair of cranes at each wetland location in 2015. Predictions were 
made using the binomial presence/absence model (left) and the marked point process model (right) with IID temporal structure. Colour scale 
is given in low- high probability as we are interested in relative differences across space and not absolute values. ‘Low’ represents a value of 
mean predicted probability of crane presence less than or equal to the 99th quantile of mean predicted probabilities across all four models 
analysed. ‘High’ represents a value of mean predicted probability of crane presence greater than this cutoff point. Purple background colour 
is used for visual clarity, and does not represent a value on the colour scale.
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The scaling parameter � represents the strength and direction 
of the interaction between the point field G(s) and the probability 
of crane presence. In the marked point process model with an AR1 
temporal structure, the significant positive effect of wetland density 
on the probability of crane presence is of greater magnitude than 
that of the model with IID temporal structure (Table 1). This is due to 
the fact that the AR1 model borrows strength across years, meaning 
that the repeated presence of cranes in high- wetland- density areas 
over time indicates a stronger effect than that observed in the IID 
model, which considers each year of data independently.

The spatiotemporal field M(s, t) in the AR1 models has a smaller 
posterior spatial range and larger standard deviation than that of the 
IID models (Table 1). This is due to the fact that the AR1 models 
borrow strength across years, meaning that the spatial structure is 
influenced by the repeated occurrence of relatively isolated crane 
presences over time. Similarly, the standard deviation is high, as this 
allows sufficient variation in the field for the estimated species in-
tensity to range from low to very high values. On the other hand, 
the IID models consider each year of data independently, and so are 
more strongly influenced by the priors, which suggest a larger spatial 
range and lower standard deviation, with the intensity of the species 
correlated across larger intervals and lowering smoothly away from 
areas of higher intensity. While the priors are biologically realistic, 
they may contrast with the trends observed in the data due to the 
early stage of reintroduction at which the data was collected.

In the models with AR1 temporal structure, the temporal cor-
relation, �t, is estimated to be extremely high (Table 1) and the spa-
tial structure of M(s, t) is predicted to be the same for each year of 
data (Appendix A, Figure A2). This indicates that the spatiotemporal 
field in these models captures a spatial structure in the data that 
is constant over time. This strong trend of a static spatial structure 
may be due to the early stage of reintroduction when observations 
were made. At this early stage, the population is small and so may 
not be subject to strong dispersal pressures such as habitat density 
dependence, meaning that movement between habitat patches may 
be less common than it would be in a densely populated area. The 
population is also only observed in a small proportion of its poten-
tial range, meaning that a large amount of the study area is taken 
up by consistent zero counts. Limited movement, large numbers of 
consistent absences, and the binary nature of presence/absence 
data all lead to few observed changes in the dataset between years 
(Appendix A, Figure A1). Therefore, the static spatial structure 
picked up by the model may not reflect the behaviour of the study 
species, for example, strong site fidelity, and instead could be a fea-
ture of the stage of the reintroduction process the population was in 
when the data were collected. A longer period of observation may 
be required to accurately capture and predict the dispersal dynamics 
of the species.

Since the AR1 models detect the strong trend of a static spatial 
structure over time, they estimate no change in the spatial represen-
tation of the spatio- temporal field M(s, t) between years. This means 
that the spatio- temporal field must represent the most likely spatial 
correlation structure for all years, and so produces an average from 

the full dataset. This averaging can produce misleading estimates of 
species distribution, particularly when the species is observed to ‘ap-
pear’ in a new area of the study region part- way through the study, 
as it can be predicted to have a high probability of presence in this 
area before the appearance event. For example, breeding pairs of 
cranes were first observed in Somerset (South West) in 2013 as the 
result of a successful reintroduction project (Appendix A, Figure A1). 
However, the spatio- temporal field from the AR1 models shows a 
high intensity of cranes in this area in the years prior to this event, 
when no breeding pairs of cranes had been observed in the area 
(Appendix A, Figure A2). In this example, the covariates included 
in the model are also stationary across the interval of observation. 
As such, predictions from the models with AR1 temporal structure 
are very similar across all years in the study period (Appendix A, 
Figure A5). This not only conceals fine scale interannual differences 
in spatial distribution but also removes novel insight from future pre-
dictions. Such an effect may be avoided by including an extra, purely 
spatial, field in the mark likelihood and setting priors to manually re-
strict this to capturing the static spatial effect, separating this strong 
signal from the changes in spatial structure over time which could 
then be picked up by the spatiotemporal field. As mentioned above, 
the effect observed here is a result of the data structure, and so a 
larger dataset collected over a longer duration may provide suffi-
cient information to avoid these issues.

The issues created by the strong, static spatial trend picked up by 
the spatiotemporal field in this example demonstrate that inclusion 
of complexity (here, an effect accounting for temporal correlation) 
may not necessarily improve ecological insight gained from a model. 
The averaged predictions created by the most complex model we 
consider here (the marked point process with AR1 temporal correla-
tion structure) mean that it was not the most suitable model with 
regard to prediction of the species distribution within the observa-
tion period. It is likely that this effect was present in the INLA model 
of this data (Soriano- Redondo et al., 2019) but was interpreted as 
a strong temporal trend in direction of species spread, as opposed 
to a static effect, due to a lack of accessible plotting methods in 
INLA at the time of analysis. However, due to the accessible pre-
dict() function and connection with visualisation tool ggplot2 in 
 inlabru, the true nature of this effect was more easily identified. 
An even more complex model, containing another purely spatial field 
and strong priors, may improve output quality when aiming to pre-
dict future distribution of the population.

Of the four models considered in this paper, the most complex 
(the marked point process model with AR1 temporal structure) had 
the longest running time, and the simplest (the binomial presence/ab-
sence model with IID temporal structure) had the shortest (Table 1). 
While running time is an important methodological  consideration, 
each of these models is made extremely computationally efficient 
through the use of the INLA approach, allowing model choice to be 
more strongly determined by ecological insight gained, as opposed 
to computational efficiency.

Watanabe– Akaike information criterion (WAIC) scores were 
computed for each of the four models (Table 1), although it is 
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important to note that the binomial presence/absence and marked 
point process models cannot be compared using this criterion. 
However, within each model type, it is interesting to note that the 
AR1 models have a lower score than the IID models, indicating a 
better fit to the data. This is unsurprising when considering that 
the AR1 models are more strongly influenced by the data, as in-
formation is borrowed across years, whereas the IID models are 
more reliant on the priors. The true meaning of such criteria in the 
area of point process modelling is not well understood, due to the 
historically theoretical nature of the topic, and as demonstrated in 
this manuscript, these criteria do not necessarily provide a defini-
tive answer as to selecting the ‘best’ model for interpretation and 
ecological insight.

Species distribution data is often a combination of the true 
underlying distribution of the species, and the observation pro-
cess used to collect data, creating a need to disentangle the true 
drivers of species distribution from sampling effects. In the early 
stages of a species invasion or reintroduction, there is a time lag, 
which means that the observed distribution may not match the 
true potential distribution of the species once the population has 
been established (De Marco et al., 2008). Making observations 
at this initial stage could bias inference of the effects of environ-
mental covariates, as the distribution of the species is restricted 
by dispersal limitations, which remain unaccounted for. Including 
complex model components to represent spatial correlation struc-
tures, as is demonstrated here via the inclusion of G(s) in the 
marked point process model, can account for the fact that the 
species distribution is limited by the early stage of its introduc-
tion to the environment, giving a more accurate prediction of the 
range being constrained close to where the species has been ob-
served. Accounting for spatial correlation can also aid in avoiding 
Type I errors when inferring the significance of covariate effects 
(Dormann et al., 2007). However, caution is advised when incor-
porating additional structural complexity into models of this type 
of data, due to its zero- inflated and relatively static nature (ob-
served here through the issues associated with inclusion of an AR1 
temporal correlation structure). Accounting for the observation 
process, and spatially varying detection probability is a particu-
lar strength of the inlabru package, which can also be used to 
model subsampled and distance sampling data (Jullum et al., 2020; 
Yuan et al., 2017).

Complex model components such as spatial and spatio- temporal 
random fields can be used to represent population dynamics in 
species distribution models. In this example, density of wetland 
habitat patches has a positive effect on the probability of crane 
presence in the marked point process model, representing the hab-
itat preferences of this species. Through explicit understanding of 
the dynamics represented by each field, the benefits of increased 
complexity can be achieved while maintaining interpretability of re-
sults. However, when increasing model complexity, it is important 
to maintain an understanding of the effects and role of each model 
component, in order to determine whether it benefits the outcomes 
of the modelling aims.
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