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Abstract
This paper investigates the performance of satellite attitude controllers based on deep reinforcement

learning, trained in idealised simulation environments and deployed into uncertain and noisy simulation
environments. Additionally, it is investigated whether training directly in the uncertain environment
improves performance when deployed to that environment. Uncertainties considered are Gaussian white
noise superimposed onto sensor measurements of the satellite angular velocity and attitude quaternion
and uncertainty in the satellite inertia tensor. The platform selected is a 6U CubeSat. The results indicate
that the deep-reinforcement-learning-based attitude controller is able to maintain pointing accuracy on
satellites of different inertia tensor to the training satellite. The pointing accuracy decreases when the
sensor measurements are subject to Gaussian white noise. The results also suggest that training directly in
the environment subject to these uncertainties does not improve pointing accuracy relative to the controller
trained in the ideal environment if these uncertainties cause the state vector to break the Markov property.
Furthermore, training in the uncertain environment can add instability to the learning process and prevent
the controller from converging to a high performance behavioural policy.

1. Introduction
An autonomous attitude control system is one of the

principal systems on-board satellites that require high
pointing accuracy. Traditionally, autonomous onboard
attitude control has been achieved through quaternion
feedback [1, 2], Proportional Integral Derivative (PID),
and sliding mode controllers [3–6]. While these methods
are autonomous, robust, and can achieve high pointing
accuracy, they require careful parameter tuning for every
specific satellite and manoeuvre.
Deep Reinforcement Learning (DRL) may offer an

attitude controller that is not sensitive to parameter tuning
and is capable of adapting to uncertainties such as inertia
tensor uncertainty, disturbances, or actuator degradation.
The applications of DRL to satellite attitude control has
been investigated for spacecraft detumbling after capturing
an asteroid of unknown inertia tensor in Ref. [7]. In Ref.
[8] a DRL agent was trained, using the Proximal Policy
Optimisation (PPO) and curriculum learning, as a controller
for the large angle slew manoeuvre of a spacecraft with an
inertia tensor varying from the mass of a 1U-CubeSat to
that of the International Space Station. The applications
of the Deep Deterministic Policy Gradient DRL algorithm
to the large angle slew manoeuvre is investigated in Ref.
[9], where industry standard pointing accuracy is achieved
and the resulting controller is shown to be robust against
disturbances unseen during training and varied principal

moments of inertia relative to the training satellite. In Ref.
[10], the PPO algorithm is used with a discrete action space
to achieve industry standard pointing accuracy during the
large angle slew manoeuvre.
Even though satellite attitude control using DRL is

promising, results in the approaches above were achieved
in idealised simulations. Before DRL attitude controllers
can be used on real satellite, it will be necessary to investi-
gate the tolerance of DRL attitude controllers to a range
of uncertainties including sensor measurement noise and
inertia tensor uncertainty. Furthermore, DRL is currently
not suitable to being trained online on a real satellite in
space. This is due to risks to the satellite safety in the early
training phases and due to the limited onboard available
computational power. Therefore, there is a need to train
DRL attitude controllers in simulation before they can be
deployed onto real satellites. There will be inevitable differ-
ences between the simulated satellite, used for training, and
the final satellite onto which the DRL attitude controller
is deployed. In this paper, we investigate how these differ-
ences affect the performance of the DRL attitude controller
during the large angle slew manoeuvre, by simulating them,
on a 6U-CubeSat satellite. Specifically, we look at how the
addition of Gaussian white noise in sensor measurements
of the satellite angular velocity and attitude quaternion
affect the performance of the DRL attitude controller. We
also investigate how discrepancies in the products of in-
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ertia between the training and testing satellites affect the
performance of the DRL attitude controller. Finally, we
investigate whether adding Gaussian white noise to sensor
measurements during training and if training the DRL atti-
tude controller on a satellite of varied products of inertia
makes the resulting DRL attitude controller more robust to
these uncertainties.
The rest of this paper is organised as follows. Section 2

covers the mathematical model of the 6U-CubeSat. Section
3 is a summary of reinforcement learning and Markov
Decision Processes (MDPs). Section 4 is comprised of
three major subsections, the first covering the definition of
the state vector, the action space, and the reward function
used to train the DRL agent. The second subsection details
how Gaussian white noise in sensor measurements and
inertia tensor uncertainty were implemented. The third
subsection details the experiments conducted. The results
of the simulations are covered in Section 5. Finally a
summary of the findings and future work is covered in
Section 6.

2. Mathematical model
This section covers the mathematical model of a 6U-

Cubesat providing the required frames of reference, dynam-
ics, and kinematics. The standard 6U rigid-body design is
used: 6 kg, 0.3 m × 0.2 m × 0.1 m. No depolyables are
modelled.

2.1. Reference frames
Three reference frames are considered in this paper: the

inertial reference frame, the Principal Axes of Inertia (PAI)
reference frame, and the Satellite Body (SB) reference
frame. The inertial reference frame is a celestial reference
frame that is inertial with respect to distant stars. The
inertial reference frame considered is the Earth-Centered
Inertial (ECI) reference frame. The ECI reference frame
has its origin at the Earth’s center of mass and has its x-axis
aligned with the First Point of Aries, the z-axis is aligned
with the Earth’s celestial north pole. The y-axis of the ECI
reference frame points to the equator such that the y-axis is
perpendicular to the x and z axes. The ECI reference frame
is the reference frame with respect to which the satellite
tracks its own orientation and is also the reference frame
with respect to which the target attitude for the large angle
slew manoeuvre is defined.
The PAI reference frame is fixed with the satellite

body, with its origin at the satellite center of mass. The PAI
reference frame is the reference frame in which the products
of inertia of the satellite are all zero. The orientation of
the PAI reference frame relative to the satellite body is
determined by the mass distribution of the satellite.
The SB frame is a body frame utilised by engineers

when designing the satellite. The SB reference frame is

fixed with the satellite body, and has its origin located at
the satellite centre of mass. The SB frame considered has
its x-axis perpendicular to one of the 2U×1U faces of the
6U-CubeSat. The z-axis is perpendicular to one of the
3U×2U faces of the CubeSat, and the y-axis completes
the right handed pair such that it is perpendicular to the
corresponding 3U×1U face of the CubeSat. This is the
reference frame with respect to where the satellite actuators
are placed, such that each actuator produces a torque about
its corresponding satellite body axis. Parameters in the
ECI, PAI, and SB reference frames are indicated with the
subscript I, P and B respectively.

2.2. Dynamics
The satellite is assumed to be a rigid body, as such its

rotational dynamics are governed by Euler’s equation of
rotational rigid-body dynamics:

¤𝝎𝐵𝐼 (𝑡) = 𝑱−1𝐵 (𝑳𝐵 (𝑡) − 𝝎𝐵𝐼 (𝑡) × (𝑱𝐵𝝎𝐵𝐼 (𝑡))) (1)

Euler’s equation is expressed in the body reference
frame. 𝝎𝐵𝐼 is the angular velocity of the SB reference
frame relative to the the ECI reference frame, 𝑱𝐵 is the
inertia tensor of the satellite expressed in the SB reference
frame, and 𝑳𝐵 is the sum of external torques.

2.3. Kinematics
The attitude control system utilises a quaternion-based

attitude parameterisation. The rate of change of the attitude
quaternion (describing the orientation of the body reference
frame relative to the ECI reference frame) is:

¤𝒒𝐵𝐼 (𝑡) = 1
2
𝝎𝐵𝐼 (𝑡) ⊗ 𝒒𝐵𝐼 (𝑡) = 1

2
𝛀(𝝎𝐵𝐼 )𝒒𝐵𝐼 (𝑡) (2)

𝛀(𝝎𝐵𝐼 ) =


0 −𝜔3 𝜔2 𝜔1

𝜔3 0 −𝜔1 𝜔2

−𝜔2 𝜔1 0 𝜔3

−𝜔1 −𝜔2 −𝜔3 0


(3)

Eq. 2 contains 4 by 1 quaternion vectors, where the
scalar element of the quaternion takes the last place in the
column matrix.
Together, Eqs. 1 and 2 are sufficient to fully define the

attitude of the spacecraft at any point in time, given its initial
conditions, through numerical integration. The satellite
was simulated by integrating Eqs. 1 and 2 using the Runge-
Kutta 4𝑡ℎ order method with an integration time-step of
0.05 s. The integration time-step was chosen to minimise
computational expenditure, as thousands of simulations are
needed to train the controller, while maintaining simulation
accuracy.
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2.4. Inertia tensor
The 6U-CubeSat is modelled as a uniform density

cuboid of mass 𝑚 = 6 kg, length 𝑙 = 0.3 m, width 𝑤 = 0.2
m, and height ℎ = 0.1 m. The three principal moments of
inertia are then found using:

𝐼𝑥 =
𝑚

12
(𝑤2 + ℎ2) = 0.025 kgm2 (4)

𝐼𝑦 =
𝑚

12
(𝑙2 + ℎ2) = 0.05 kgm2 (5)

𝐼𝑧 =
𝑚

12
(𝑙2 + 𝑤2) = 0.065 kgm2 (6)

For the case that these are the only components to
the satellite inertia tensor then the PAI reference frame is
parallel to the SB reference frame.

3. Reinforcement learning

3.1. Markov Decision Processes
Reinforcement learning is a framework for teaching a

decision making agent to solve discrete-timeMDPs. MDPs
formalise the sequential decision making of an agent in an
environment. The environment comprises everything but
the decision-making agent; in this paper, the environment
is the governing equations that simulate the CubeSat, as
well as the sensors, actuators, and uncertainties. In a
MDP at every time-step, the agent receives interpretation
of the current state of the environment, based upon the
current state of the environment the agent selects an action.
The action causes the environment to transition into a
new state, after which the agent receives a reward and a
new interpretation of the current state of the environment
as shown in Fig 1. This process of receiving a state
interpretation, selecting an action, and then receiving a
reward and a new state interpretation continues until the
environment transitions into some terminal state, which
ends the current episode of interactions with the MDP.
The goal is for the agent to learn a behavioural policy that
maximises the sum of rewards the agent expects to receive
in any episode.
The behavioural policy 𝜋(𝑎 |𝑠) is a mapping from a

state 𝑠 to probabilities of selecting each of the available
actions 𝑎 in that state. Traditionally, the agent learns
the behavioural policy by repeatedly interacting with the
environment over many episodes. It should be noted that
the agent is only the decision maker, i.e. the controller from
traditionally control theory, and everything else including
sensors, actuators, and the dynamics of the problem are
part of the environment. The state measurement the agent
receives are sensor measurements, and the action the agent
selects are actuator control signals.
Deep reinforcement learning utilises artificial neural

networks to parameterise the behavioural policy. The

Fig. 1 Markov Decision Process

neural network takes as input the state vector and outputs
values that can be used to derive actions, the exact nature of
the output depends on the specific DRL algorithm. When
the agent is learning the behavioural policy in DRL it is
learning neural network parameters. The DRL algorithm
used was the Proximal Policy Optimisation [11] algorithm,
which was chosen for its continuous action space, fast
policy convergence rate, and stability properties that limit
destruction policy updates.

3.2. Markov Property
The state interpretation that the decision making agent

receives at every time-step is referred to as the state vector.
The state vector possess the Markov property if the state
vector contains all the important information of all previous
states and actions [12]. Equivalently, when the agent
is provided the current state vector it should have the
same relevant information, for the purpose of solving the
problem, available as when provided with the entire history
of measurements of the system and actuator control signals.
Traditional reinforcement learning algorithms assume that
the state vector will have the Markov property.

4. Methodology

4.1. State vector
The state vector replaces the error control signal, from

traditional control methods, as the input to the attitude
controller. The state vector:

𝑠(𝑡) =


𝒒𝐵𝑇𝑚 (𝑡)
¤𝒒𝐵𝑇𝑚 (𝑡)
𝝎𝐵𝐼

𝑚 (𝑡)
𝑡


𝑇

(7)

contains the four components of the error quaternion
𝒒𝐵𝑇 (𝑡), describing the rotation between the current orien-
tation and the target orientation, the four components of
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the rate of change of the error quaternion ¤𝒒𝐵𝑇 (𝑡), the three
components of the spacecraft angular velocity 𝝎𝐵𝐼 (𝑡), and
the current normalised simulation time 𝑡. The subscript
𝑚 indicates that these are the measured quantities which
are not necessarily the same as the true quantities (with-
out subscript 𝑚). Note, the state vector is a vector that
summarises the state of the environment and provides the
controller a measure of properties that may be useful for
deriving actuator control signals.
While both the rate of change of the error quaternion

and the angular velocity describe the same information
it may be useful for the DRL attitude controller to be
able to access both parameters without having to learn
the transformation between them, which is why both are
included in the state vector. The normalised simulation time
is included such that the state vector satisfies the Markov
property. Specifically, without access to the simulation
time, the DRL attitude controller would have no measure of
the remaining simulation time, and hence have to attempt
to complete the manoeuvre as quickly as possible instead
of completing the manoeuvre efficiently and safely.

4.2. Action space
The DRL attitude controller was trained using the

Proximal Policy Optimisation (PPO) [11] algorithm with a
continuous action space. As stated the PPO algorithm was
selected for its continuous action space, fast convergence
rate and its clip fraction in the loss function that aims to
limit destructive policy updates. It is assumed that the
CubeSat has a control system capable of producing the
commanded control torques about the satellite body axes,
saturating at a maximum torque of 2 mNm about each axis.
The actuators are considered as external torque sources and
represented by the 𝑳𝐵 (𝑡) term in Eq. 1.

4.3. Reward function
The reward function used to train the DRL attitude

controller comprises of three reward elements. The first
rewards the agent for pointing within 0.25° of the target
orientation at the end of the episode:

𝑟1 (𝑡) =
{
1, if 𝜙(𝑡) ≤ 0.25◦ at 𝑡 = 100 s
0, otherwise

(8)

The second reward element:

𝑟2 (𝑡) =
𝜙(𝑡 − Δ𝑡) − 𝜙(𝑡)

𝜋
(9)

is an auxiliary reward function that is used to supplement
the first reward element. This second reward element is
required due to the sparsity of the first reward element
given that the random untrained agent is unlikely to ever

obtain the first reward element. The second reward ele-
ment is awarded after every time-step and is equal to the
difference in the Euler angle 𝜙, described by the error
quaternion 𝒒𝐵𝑇 , between the previous time-step and the
current time-step. This linear function of the change in
the Euler angle was used because the sum of reward it can
provide is bounded and independent of the rate at which
the large angle slew manoeuvre is completed. That is,
the maximum possible sum of rewards provided by 𝑟2 is
fixed equal normalised start of episode Euler angle and
does not encourage the agent to complete the manoeuvre in
minimum time, allowing for safe and efficient large angle
slew manoeuvres.
The third reward element:

𝑟3 (𝑡) =
{
−1, if | 𝝎𝐵𝐼 (𝑡) |> 1
0, otherwise

(10)

penalises the agent if the magnitude of the satellite angular
velocity becomes greater than 1 rad/s and ends the simula-
tion early. This reward function is used to limit the search
space of desirable behaviours, as excessively large angular
velocities can be dangerous to the satellite and because
the simulation accuracy can break down if the angular
velocities become large (this is due to constant integration
time-step used when simulating the satellite’s dynamics).
The overall reward function provided to the agent at

after every time-step is the sum of these three reward
elements.

4.4. Measurement Noise
The investigated attitude control scenario utilises a

rate gyro to provide measurements of the satellite angular
velocity relative to the inertial reference frame. The rate
gyro is modelled as a sensor whose measurements are
subject to Gaussian white noise 𝑵𝑚 directly:

𝝎𝐵𝐼
𝑚 (𝑡) = 𝝎𝐵𝐼 (𝑡) + 𝑵𝑚 (𝜎𝑚) (11)

The noise is sampled from a Gaussian distribution,
with a mean of 0.0 and standard deviation of 𝜎𝑚 =

3.9738×10−3 ◦, approximately in line with that of standard
CubeSat gyroscopes. Note, the Gaussian distribution is
sampled three times at every time-step to provide separate
noise values for each of the three angular velocity vector
components.
The attitude quaternion determination system considers

an inertial strap-down measurement unit that tracks the
attitude quaternion by integrating Eq. 2, but using the
measured angular velocity (𝝎𝐵𝐼

𝑚 (𝑡)) in place of the true
angular velocity (𝝎𝐵𝐼 (𝑡)). The integration method used
is the Runge-Kutta 4𝑡ℎ order integration method, with a
time-step of 0.05 s as is used by the simulation, such that
if there is no noise then the measured attitude quaternion
is exactly the true attitude quaternion.

IAC-22,C1,2,9,x69270 Page 4 of 10



73nd International Astronautical Congress (IAC), Paris, France, 18-22 September 2022.
Copyright ©2022 by Mr. Jan Loettgen. Published by the IAF, with permission and released to the IAF to publish in all forms

4.5. Inertia tensor uncertainty
The DRL attitude controller is trained in simulation and

then tested in simulation. The testing simulation is meant to
represent deployment into space on a true satellite. If there
is uncertainty in the final inertia tensor of the deployed
satellite then the DRL attitude controller cannot be trained,
in simulation, for this satellite. Inertia tensor uncertainty
can arise due to movement of components, such as solar
panels, on the satellite or due to propellant sloshing or
propellant consumption.
To simulate inertia tensor uncertainty in the testing

satellite, three random normally distributed numbers are
sampled for each of the products of inertia 𝐼𝑥𝑦 , 𝐼𝑥𝑧 , 𝐼𝑦𝑧 .
The normal distributions for each of the three products of
inertia moments of inertia have a mean of 0.0, and standard
deviations of 𝜎𝑥𝑦 , 𝜎𝑥𝑧 , 𝜎𝐼𝑦𝑧 . The addition of the products
of inertia to the inertia tensor in body axes:

𝑱𝐵 =


𝐼𝑥 −𝐼𝑥𝑦 (𝜎𝑥𝑦) −𝐼𝑥𝑧 (𝜎𝑥𝑧

−𝐼𝑥𝑦 (𝜎𝑥𝑦) 𝐼𝑦 −𝐼𝑦𝑧 (𝜎𝑦𝑧)
−𝐼𝑥𝑧 (𝜎𝑥𝑦) −𝐼𝑦𝑧 (𝜎𝑦𝑧) 𝐼𝑧

 (12)
has the effect of rotating the PAI reference frame relative
to the SB reference frame. This causes further coupling
in the dynamics as control torques are applied relative to
the body reference frame. The standard deviations in the
products of inertia were obtained by assuming that the
uncertainty is represented by a 0.5 kg mass located 7.5cm,
5cm, and 2.5cm away from the CubeSat centre of mass
along the x, y and z spacecraft body axes, respectively. The
principal moments of inertia, and the standard deviations
of the products of inertia are detailed in Table 1.

Table 1 Detailing the principal moments of inertia and
standard deviation of products of inertia uncertainty.

Parameter Value (kgm2)
𝐼𝑥 0.025
𝐼𝑦 0.05
𝐼𝑧 0.065
𝜎𝑥𝑦 1.875 × 10−3

𝜎𝑥𝑧 0.9375 × 10−3

𝜎𝑦𝑧 0.625 × 10−3

4.6. Investigated Scenarios
TheDRL attitude controller was trained in four different

scenarios of varying uncertainty. Scenario 1 is the state-
of-the-art idealised scenario, where there is no uncertainty,
and is used to obtain a baseline performance measure.
Scenario 2 has angular velocity and attitude quaternion
measurement noise as described in Section 4.4. Scenario

3 has inertia tensor uncertainty as described in Section
4.5. Scenario 4 has both measurement noise and inertia
tensor uncertainty. Table 2 shows the uncertainties in every
scenario. In total four agents were trained, one in each
scenario.

Table 2 Investigated Scenarios

Scenario Measurement noise Inertia uncertainty
1 × ×
2 ✓ ×
3 × ✓

4 ✓ ✓

4.7. Training
Anepisode begins by putting the satellite into a uniformly-

random orientation relative to the ECI reference frame, the
angular velocity of the satellite is set to zero. The target
orientation for the large angle slew manoeuvre is always
set as having the satellite body reference frame aligned
with the ECI reference frame. The error quaternion is
calculated as the quaternion difference between the current
orientation and the desired orientation. The DRL attitude
controller receives the first state measurement based upon
which it computes control torques to apply to each of the
satellite body axes. The controller then receives a new
state measurement and a reward and again selects an action.
This process continues until the environment transitions
into the terminal state which is if either the simulation
reaches the maximum simulation time of 100 s, or if the
satellites exceeds the maximum allowed angular velocity
of 1 rad/s. Each agent was trained for 5000 episodes.
When inertia tensor uncertainty is included, then at the
start of the episode a random inertia tensor is generated by
sampling the products of inertia from a normal distribution
as discussed in Section 4.5.
The dynamics of the of the satellite were implemented

as an OpenAI gym environment [13] in Python. The
implementation of the PPO algorithm usedwas from Stable-
Baseline3 [14] with a discount factor of 0.99, a learning rate
of 3×10−3, a batch size of 64, and a clip range of 0.2, other
hyper parameters were kept as the default values specified
at [14]. Separate policy and value functions networks were
used, both with a neural network architecture of two dense
hidden layers of 128 neurons each.
At the start of the learning process, the neural network

parameters are initialised randomly, this causes the initial
decisionmaking policy to be random. The data used to train
the neural network is gathered during training episodes,
while partially following the policy, is also somewhat
random. This can cause differences in the final effectiveness
of the policy between repeat runs of the same agent in the
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same environment under the same conditions. To ensure
that results are repeatable and not dependent on random
neural network initialisation, each agent is trained and
tested in 10 independent repeat runs. After a DRL attitude
controller has been trained for 5000 episodes in each
scenario, it is then independently tested in every scenario
for 1000 testing episodes.

5. Results
Figures 2a and 2b show the end-of-episode Euler angle

and angular velocity magnitude respectively, for testing
of each agent in every scenario over the ten repeat runs.
Every run of every agent was tested in 1000 episodes in
each scenario, the mean end of episode Euler angle and
angular velocity of the 10 repeat runs are shown as a box
plot. The red line indicates the median across the 10 runs,
the boxes indicate the interquartile range, and the whiskers
indicate the minimum andmaximum run that fell within 1.5
times the interquartile range relative to the lower and upper
quarterly respectively. All runs that did not fall within the
whiskers are plotted as flier points. In Figs. 2a and 2bAgent
1-4 refers to the agents trained in Scenarios 1-4 respectively.
If an agent was able to learn a high performance policy, then
the attitude controller should reliably bring the satellite
into orientation that minimises the end of episode Euler
angle and angular velocity magnitude. Across all runs
of every agent in every scenario the mean pointing error
always remained below 10◦. For all four agents, there were
some runs which performed significantly worse than the
median run. Figures 2a and 2b show that the runs with a
lower median pointing error also had a lower end of episode
angular velocity, showing that the policy these agents learnt
had the agent stabilise the satellite orientation about the

desired orientation.
Across all four scenarios Agent 1 had the lowest median

pointing error and the smallest interquartile range, across
the 10 runs, showing that it was the most stable agent
and was consistently able to learn a high performance
policy. Agent 3 has a similar median pointing accuracy
as Agent 1 but larger interquartile range in all scenarios
except Scenario 3 where Agent 3 had a similar interquartile
range and median pointing accuracy. Scenario 3 is the only
scenario where the worst and best performance run of Agent
3 performed better than the worst and best performance
run of Agent 1 respectively.
Agents 2 and 4 performed worse than Agents 1 and

3 in all four scenarios. The relatively poor performance
of most runs of these agents shows that the policy learnt
were subpar and the large spread in performance of the
runs across all scenarios shows poor convergence to a
high performance policy. This is due to the fact that the
addition of Gaussian noise to sensor measurements causes
the state vector to break the Markov property and the
state vector only contains measurements from the current
time-step, preventing the agent from being able to filter
out the noise. Furthermore, the reward function uses the
true measures of angular velocity and orientation and not
the noisy measurements, as a result of which a measured
state that the agent believes to be rewarding may not be
rewarding. Together these issues hindered the training
process of Agents 2 and 4 preventing them from learning
a policy that is capable of successfully controlling the
satellite in even the baseline scenario. Agents 1 and 3 were
also not able to maintain performance in the face of noisy
measurements due to the issue with the state vector and
the Markov property, but outperformed Agents 2 and 4 as

Scenario 1 Scenario 2 Scenario 3 Scenario 4
0

1

2

3

4

5

6

Eu
le
r a

ng
le
 (°

)

Agent 1
Agent 2
Agent 3
Agent 4

(a) Mean Euler angle at episode end

Scenario 1 Scenario 2 Scenario 3 Scenario 4

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

An
gu

la
r v

el
oc

ity
 (r

ad
/s
)

Agent 1
Agent 2
Agent 3
Agent 4

(b) Mean angular velocity at episode end

Fig. 2 The Euler angle of the attitude quaternion at the end of the episode (a) and the magnitude of the angular velocity
at the end of the episode (b) obtained when testing each of the ten runs of each of the four agents in each of the four
scenarios for 1000 episodes.
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their training environments did not have the issue with the
Markov property and reward function allowing the runs of
these agents to converge to a high performance policy for
the baseline scenario.
For every agent the mean pointing error in Scenario

4 is approximately equal to the sum of the mean pointing
errors, of that agent, in Scenarios 2 and 3. The pointing
error of all agents increased in Scenarios 2 and 4 relative
to Scenario 1. None of the four agents achieve a median
pointing accuracy of better than 0.1◦, this is because the
reward function provides diminishing rewards for smaller
pointing errors. Specifically, the reward received for a
pointing error of 0◦ relative to a pointing error of 0.1◦ is
only 5.556 × 10−4 which is extremely small compared to
the sum of rewards in any given episode.
Example episodes of each trained agent in its it corre-

sponding scenario is shown in Figs 3-6 respectively. In all
four, randomly selected, example episodes the reorienta-
tion into the target attitude is successful, as can be seen
by the scalar component of the error quaternion reaching
approximately 1. However, Agents 2 and 4 do not succeed
in stabilising their orientation due to the noise in mea-
surements of the spacecraft angular velocity. In all four
example episodes actuator saturation, at 2 mNm, can also
be seen.

6. Conclusion
This paper sought to answer if deep reinforcement

learning satellite attitude controllers, that were trained in
idealised simulations, canmaintain their performance when
tested in environments where the satellite sensor measure-
ments are subject to Gaussian white noise or where the
mass distribution on the testing satellite is different to that
of the training satellite. Furthermore, it was investigated
whether training in the environment subject to these uncer-
tainties would improve performance when testing under
these conditions. The agent, trained in the idealised envi-
ronment, had a median pointing accuracy of 0.1195◦ when
tested in the idealised environment. This agent maintained
performance when tested on satellites of different mass
distribution despite this change not being observable to
the agent. When tested with Gaussian white noise present
in the sensor measurements, performance degraded to a
median pointing accuracy of 1.6384◦. Despite the differ-
ences between the training environment and the testing
environment, the baseline agent never exceeded a mean
terminal pointing error of 3◦ or a mean terminal angular
velocity magnitude of 0.01 rad/s.
The agent trained in the environment with measurement

noise performed worse than the baseline agent both when
tested in the noiseless and noisy environments. The agent
trained on satellites of slightly different mass distributions
performed similarly to the baseline agent in all scenarios.
As such there is no evidence that training in an uncertain

environment helps to improve performance when tested in
that environment if the uncertainty causes the state vector
to violate the Markov property as is the case here. Future
research will be conducted to investigate if providing pre-
vious state measurements and actions to the agent allows
the agent to learn the spacecraft mass distribution thus
improving performance in the face of inertia tensor uncer-
tainty. Additionally, we will investigate the robustness of
the DRL attitude controller against sudden angular velocity
and constant torque disturbances.
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Fig. 3 Sample episode Agent 1 in Scenario 1
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Fig. 4 Sample episode Agent 2 in Scenario 2
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Fig. 5 Sample episode Agent 3 in Scenario 3
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Fig. 6 Sample episode Agent 4 in Scenario 4
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