

Szafarczyk, R., Nabi, S. W. and Vanderbauwhede, W. (2023) Reducing

FPGA Memory Footprint of Stencil Codes through Automatic Extraction of

Memory Patterns. In: 32nd International Conference on Field-

Programmable Logic and Applications (FPL 2022), Belfast, United

Kingdom, 29 August - 2 September 2022, pp. 148-152. ISBN

9781665473903 (doi: 10.1109/FPL57034.2022.00033)

There may be differences between this version and the published version.

You are advised to consult the published version if you wish to cite from it.

http://eprints.gla.ac.uk/278313/

Deposited on 1 September 2022

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

https://doi.org/10.1109/FPL57034.2022.00033
http://eprints.gla.ac.uk/278313/
http://eprints.gla.ac.uk/

Reducing FPGA Memory Footprint of Stencil Codes
through Automatic Extraction of Memory Patterns

Robert Szafarczyk
School of Computing Science

University of Glasgow, Glasgow, UK
robert.szafarczyk@glasgow.ac.uk

Syed Waqar Nabi
School of Computing Science

University of Glasgow, Glasgow, UK
syed.nabi@glasgow.ac.uk

Wim Vanderbauwhede
School of Computing Science

University of Glasgow, Glasgow, UK
wim.vanderbauwhede@glasgow.ac.uk

Abstract—FPGAs are attractive for scientific high-performance
computing due to their potential for high performance-per-Watt.
Stencil codes in scientific applications are difficult to optimize on
FPGAs, because of redundant, non-contiguous memory accesses
to relatively low bandwidth DRAM. In this paper, we present an
algorithm to aggressively reduce on-chip block RAM (BRAM)
and off-chip DRAM utilisation of stencil codes running on
FPGAs. The algorithm extracts memory accesses from computa-
tional pipelines and removes all redundant intermediate arrays,
including those used for stencil buffering, by trading DRAM
accesses for computation. The algorithm is based on rewrite-
rules on a strict functional representation derived from Fortran
code and generates provably correct, optimized code.

Typical FPGA implementations store the stencil window in
on-chip shift registers implemented in BRAMs; we use only
DRAM and optimize the memory accesses instead. Our approach
dramatically reduces BRAM usage so that the domain size is only
limited by available DRAM. We report a drop of 78% and 18% in
BRAM usage in 3-D and 2-D stencil codes compared to a manual
implementation using shift registers while staying competitive in
performance or even improving performance-per-Watt.

Index Terms—stencils, compiler rewrite rules, dataflow, HLS

I. INTRODUCTION

High-Level Synthesis (HLS) has made FPGAs more acces-
sible for software developers, making them a viable platform
for the acceleration of High-Performance Computing (HPC)
workloads, because of the promise of higher energy efficiency.
Most existing HPC climate models (and many new ones) are
written in Fortran. Fortran is a highly suitable language for
domain scientists to express the underlying physics, and the
use of Fortran isn’t a problem when targeting supercomput-
ers consisting of CPUs. Porting to GPUs is non-trivial but
feasible [15]; porting such code to FPGAs, however, is very
challenging. Manually rewriting large code bases in an HLS
language is usually not feasible (e.g. the Weather Research
and Forecasting Model (WRF) comprises more than a million
lines of Fortran code).

We have developed a Fortran-to-OpenCL compiler primarily
targeting GPUs and have adapted it to translate compute-
intensive legacy Fortran code for acceleration on FPGAs. In
our toolchain1, we represent compute-intensive stencil-based
finite difference codes in an intermediate dataflow functional
language (TyTraCL), allowing provably correct transforma-
tions at the dataflow level, without changing computations.

1https://github.com/wimvanderbauwhede/RefactorF4Acc

Stencils are difficult to optimise for FPGAs because the
data needed for the stencil reach (stencil window buffer) often
don’t fit into on-chip memory (BRAM), especially in a 3-
D domain. In that case, stencil buffers need to be stored in
off-chip memory, making memory accesses costly in terms of
performance and energy consumption.

In this paper, we propose a novel compiler-based optimisa-
tion which drastically reduces the DRAM and BRAM memory
footprint of stencil codes on FPGAs. Our contributions are:

• A rewrite-rules based algorithm, which extracts stencil
memory accesses from deep computational pipelines and
removes redundant intermediate arrays.

• Evaluation of our approach on two stencil codes, showing
a reduction in FPGA resources compared to a hand
implementation while staying competitive in performance
and supporting larger domains. We also show that our
approach provides better performance-per-Watt and lower
latency than the original Fortran CPU implementation.

II. BACKGROUND & RELATED WORK

A. Related Work

HLS compilers from FPGA vendors automatically apply
many memory transformations to reduce the number of
DRAM accesses and keep the computational pipeline fed
with data [4], [19]. The authors in [5], [16] present a set of
optimization guidelines for HLS FPGA programming, includ-
ing memory access transformations. Extracting memory from
compute pipelines is mentioned as an important optimization
for stencil codes. Mainstream HLS compilers often fail to
perform this automatically without explicit annotations from
the programmer [8]. Our approach extracts these memory
accesses in a fully automatic and provably-correct way.

Others have used the approach of separating computations
from the data flow. Halide [11] is a C++ DSL for image
processing which lets the programmer specify separately what
to compute and how to schedule the required data movement.
Although the primary target of Halide programs are GPUs and
CPUs, recent work has presented HeteroHalide, which targets
FPGAs [9]. The programmer can choose from several back-
ends, including SODA [3], which optimizes stencil programs
for FPGAs. Compared to HeteroHalide, our Fortran-to-FPGA
approach doesn’t require explicit programmer annotations, and

https://github.com/wimvanderbauwhede/RefactorF4Acc

the transformation we present in this paper isn’t studied by
them. SODA can be used in HeteroHalide to perform an
automated design space exploration (DSE) to find optimal un-
roll factors, number of iterations, and shift-register sizes. Our
intermediate representation is also amenable to an automated
DSE, as we have demonstrated previously [10]. HeteroHalide
targets image processing stencils, which usually work on a
smaller domain and stencil window compared to stencils in
scientific computing.

The DaCe framework implements code transformations at
the dataflow level, generating HLS code for FPGAs [2]. DaCe
programs are usually written in Python/NumPy, with their data
flow between side-effect free functions represented as a flow-
based Stateful Dataflow Multigraph (SDFG). This effectively
decouples data movement from compute. Their approach to
rewriting programs is based on graph transformations. In [6],
the authors extend DaCe with StencilFlow – a framework
for accelerating stencil computations on FPGAs. StencilFlow
automatically generates shift-registers between stencils and
applies several vendor-specific optimizations during code gen-
eration. Our algorithm removes the need for buffering in-
between stencils. We have found that using shift-registers,
which consume considerate BRAMs, restricts the supported
domain size for stencil codes operating in more than two
dimensions.

B. TyTraCL: A Functional Coordination Language

In prior work, we developed a source-to-source compiler
toolchain which turns legacy Fortran 77 code into type-safe
Fortran 95 [12]. This allows the code to be auto-parallelized to
target GPUs [13]. Internally, we use a functional coordination
language (TyTraCL), inspired by Haskell, to describe the
program at a dataflow level [14]. Effectively, the Fortran code
is transformed into a functional language which describes the
data flow. The main building blocks of TyTraCL are:

• fixed-size vectors representing Fortran arrays,
• scalarized kernel functions,
• higher-order functions map and fold to express loops.
• a stencil function to express stencil-based accesses (for a

point in a vector, it returns its stencil points),
• functions combining and splitting of vectors and stencils.
In this work, we target SYCL as our backend [17]. SYCL

abstracts away most of the boilerplate needed in OpenCL,
making it an easier target for our source-to-source compiler.
For example, SYCL can automatically schedule host-device
data transfer by analysing the memory dependency graph,
including overlapping data transfer and computation.

III. MEMORY REDUCTION

The key algorithmic contribution of this paper is a set of
program transformations, implemented as type-driven rewrite
rules on the TyTraCL code, which eliminate intermediate
arrays from the code. For each output array, we can extract
a chain of higher-order functions producing the values in
that array. We can then pattern-match on predefined chains
of higher-order functions involving stencils, and change the

function chains to different, equivalent chains, such that for
the final stencil in a stencil chain, the neighbouring points are
always recomputed, instead of being stored in buffers.

There are two main cases to consider. The simpler case
is when we have a sequence of dependency-free loops that
compute values and store the results in intermediate arrays, to
be used by the following loops. In such a case, it is easy to
see that we can merge the loops into a single loop and remove
the intermediate arrays. In TyTraCL code, this is particularly
straightforward: a sequence of map calls

v 1 = map l o o p k e r n e l 1 v 0
v 2 = map l o o p k e r n e l 2 v 1
v 3 = map l o o p k e r n e l 3 v 2

can be replaced by a single map call on the composed
function (. is the function composition operator)

v 3 = map (l o o p k e r n e l 3 . l o o p k e r n e l 2
. l o o p k e r n e l 1) v0

and thus v1 and v2 are eliminated. This is one example of
a type-driven rewrite rule.

The much more complex case is when some of the loops
operate on the intermediate arrays via stencil access patterns.
It is not possible to simply compose the functions because of
the intervening stencil call: although it may seem that we can
rewrite

v 1 = map l o o p k e r n e l 1 v 0
v 1 s = s t e n c i l s 1 v 1
v 2 = map l o o p k e r n e l 2 v 1 s

as

v 2 = map l o o p k e r n e l 2
(s t e n c i l s 1 (map l o o p k e r n e l 1 v 0))

and so eliminate v1, this is not actually the case because
the array of stencil patterns still needs to be created. However,
we can solve this by moving the stencil up to the first array.
We do this by introducing a new operation, maps, with its
corresponding rewrite rule:

s t e n c i l s (map f) = map (maps f) (s t e n c i l s)

With this new operation, we can rewrite the example as

v 2 = map l o o p k e r n e l 2
(map (maps l o o p k e r n e l 1) (s t e n c i l s 1 v 0))

v 2 = map (l o o p k e r n e l 2 . (maps l o o p k e r n e l 1))
(s t e n c i l s 1 v 0))

What maps does is to apply f for every point in the stencil
s. In this way, we can replace intermediate arrays with addi-
tional computations. Because stencil codes are usually memory
bandwidth limited, this does not deteriorate the performance,
on the contrary, it can even lead to improved performance, as
shown in our evaluation.

A further operation scomb, with its own rewrite rule, lets
us combine stencils:

s t e n c i l s 2 (s t e n c i l s 1 v 1)
= s t e n c i l (scomb s 2 s 1) v 1

TABLE I: Resource usage of evaluated FPGA kernels: a manual implementation, direct translation, and our reduced approach.

Code Approach BRAMs ALMs REGs DSPs Frequency
(MHz)

Initiation
interval Max. domain size DRAM usage

relative to direct
Domain size
bottleneck

ve
lf

g manual 1,834 197,674 498,219 216 182 1 100× 100× 90 0.25× BRAM
direct 821 158,256 220,571 217 204 1 900× 900× 90 1× DRAM

reduced 467 35,803 89,890 194 254 1 1, 900× 1, 900× 90 0.25× DRAM

sw
2d

manual 516 5,015 56,140 63 249 1 15, 000× 15, 000 0.73× DRAM
direct 587 59,351 95,751 76 237 1 12, 500× 12, 500 1× DRAM

reduced 449 29,971 103,945 258 251 1 15, 000× 15, 000 0.73× DRAM

There are several more rules to deal with grouping and
ungrouping of vectors etc., but the above rules are the key
ones. For the sake of brevity, we gloss over reductions (fold),
as they are simpler to handle than maps because a reduction
results conceptually in a scalar. In general, the final program
consists of a number of folds and a final map on composed
functions on composed stencils on groups of input vectors:

r 1 = f o l d comp kerne l 1 c o m p s t e n c i l i n p u t s 1
r 2 = . . .
o u t p u t s = map (comp kerne l 2 r 1 r 2 . . .)

c o m p s t e n c i l i n p u t s

The composed kernel functions only perform scalar opera-
tions and therefore all intermediate arrays are eliminated.

IV. EVALUATION

A. Methodology

Our approach is specific to automatic acceleration of legacy
scientific Fortran codes, targeting programs where multiple
heterogeneous stencils are chained together – a common
pattern in climate models. It is the shift-register (delay buffers),
commonly found in-between the stencil applications on FP-
GAs, that our rewrite rules aim to eliminate. We evaluated our
approach on two stencil codes found in mainstream physics
simulators written in Fortran:

• velfg: a 3D force calculation kernel from the Large Eddy
Simulator (LES) for Urban Flows, a hurricane simulator
[18]. The program consists of 3 stencil applications, and a
combined 138 single precision operations per grid point.

• sw2d: a 2-D shallow water model (wave simulator) from
[7]. The program consists of 4 stencil applications, and a
combined 90 single precision operations per grid point.

Prior work allows us to make the code type safe, and extract
computational kernels in the form of side-effect free functions
[12]. From this point, we applied our rewrite rules to remove
intermediate arrays. We evaluate three kernel types on an Intel
Arria 10 GX 1150 FPGA board (8 GB DRAM, 64 MB on-chip
capacity):

• direct: a direct syntactic translation from Fortran to SYCL
without applying rewrite rules. Basic FPGA idioms have
been applied to ensure an initiation interval of 1. Inter-
mediate arrays are stored in DRAM.

• reduced: a compiler based translation from Fortran to
SYCL using our memory reduction rewrite rules. Inter-
mediate arrays are replaced by additional computation.

• manual: a manually implemented kernel using best prac-
tices [5], [16]: separate kernels for memory accesses and
stencil applications, one streaming memory access per
array, pipes kernel communication, shift-registers for the
stencil windows in-between stencil applications.

B. Resource usage

The main goal of using our rewrite rules is to reduce the
usage of FPGA memory resources, most importantly BRAMs.
We demonstrate the results in table I.

velfg BRAM: We report a 78% reduction in BRAMs when
comparing our reduced approach to the manual implementa-
tion. The manual implementation uses a prohibitively large
amount of BRAMs to store the stencil reach in on-chip mem-
ory. There are 21 such shift-registers in total, which quickly
become a size bottleneck in a 3D domain; the domain size
100×100×90 cannot be increased. The BRAM consumption
in the reduced approach doesn’t scale with the domain size.

velfg DRAM: Our reduced approach automatically removes
all 18 redundant intermediate arrays in DRAM. The same
arrays were also removed in the manual approach. The in-
termediate arrays found in the original Fortran code were not
removed in the direct translation to SYCL. Thus, the direct
approach supports a smaller domain size of 900 × 900 × 90
compared to 1, 900 × 1, 900 × 90 achieved by our reduced
approach – a 4× reduction in DRAM usage from using our
rewrite rules.

sw2d BRAM: Our reduced approach uses 24% fewer
BRAMs than a direct Fortran to SYCL port. There were only
3 redundant arrays to remove in the sw2d code (compared
to 18 in velfg), making the reduction in BRAMs smaller.
There is a 18% reduction in BRAM usage when comparing
our reduced approach to the manual implementation (for the
same 15, 000 × 15, 000 domain). There are 12 shift-registers
in total in the manual sw2d implementation, and the stencil
reaches in a 2-D domain don’t grow as fast (DRAM becomes
the bottleneck before BRAM). We conclude that our approach
doesn’t offer big resource savings for 2-D stencil codes where
the domain size is limited by DRAM.

sw2d DRAM: In the sw2d code, there were only 3
redundant intermediate arrays to remove by our reduced
approach. This still increased the supported domain size from
12, 500 × 12, 500 to 15, 000 × 15, 000, compared to a direct
FPGA port. The manual implementation equally supports a
domain size of 15, 000× 15, 000.

C. Performance
Figure 1a shows that our reduced approach is competitive in

performance with the manual implementation, while reducing
BRAM utilization and supporting larger domain sizes. We
measured throughput of all approaches in points/ms, where
point is a single 32-bit float in the 2-D or 3-D domain.

velfg: Our reduced approach has the same performance
as the manual implementation (1% difference). A direct port
from Fortran to SYCL has poor performance on the FPGA -
9.7× worse than the reduced and manual approach.

sw2d: The manual implementation has 1.14× better per-
formance than our reduced approach. A direct port has again
very poor performance on the FPGA. The reduced approach
performs worse than the manual implementation because the
sw2d has a significantly lower compute intensity – DRAM
access has a bigger impact on performance.

D. Power efficiency
We verify that our reduced approach achieves better

performance-per-Watt compared to the original Fortran code
running on a single CPU2.

Methodology: We ran all versions of the velfg code for 1000
iterations (the runtime was at least 15 minutes in all cases). We
measured the whole FPGA board power (including DRAM)
using on-board power sensors accessed through the ’fpgainfo’
tool available in the Intel OPAE FPGA driver stack [1]. For the
CPU measurement, we used Intel’s Running Average Power
Limit (RAPL) technology measuring only the core power
consumption (excluding caches and DRAM), and subtracting
the baseline power consumed at idle. Thus, the performance-
per-Watt for a single core will be better than for all cores,
even when assuming linear multi-core speedup.

Results: In figure 1b we compare the energy efficiency of
all FPGA approaches to the original fortran code running
on a single CPU2. In the velfg code, our reduced approach
on FPGA is 8× more power efficient than fortran on CPU,
and 1.28× more efficient than the manual implementation on
FPGA. Finally, a direct Fortran to SYCL port on FPGA has
worse power efficiency than the original CPU code.

In the sw2d code, our reduced approach on FPGA is 3.8×
more power efficient than fortran on CPU. The manual im-
plementation has the best performance-per-Watt; 1.16× better
than our reduced approach. A direct Fortran to FPGA port has
much worse power efficiency than the CPU code.

We conclude that our memory reduction approach is more
beneficial to stencil codes operating in a 3-D (or higher)
domain, where one can scale the supported domain size much
more once BRAM buffers are removed. For smaller stencils,
the rewrite rules don’t give any measurable benefit beyond
a small domain size increase, as demonstrated by the sw2d
exemplar.

V. CONCLUSION

We have presented an algorithm to remove intermediate
arrays from stencil codes. We have incorporated this algorithm

2Intel® Xeon® Platinum 8260, with GNU Fortran (GCC) 4.8.5 with -Ofast

velfg sw2d

0.1

0.5

1

1.5

2

2.5

3

3.5

·105

T
hr

ou
gh

pu
t

(p
oi
n
ts
/
m
s)

manual
direct

reduced

(a) Performance of the FPGA approaches (number of processed
domain points per ms). Higher is better.

velfg sw2d

1

2

3

4

5

6

7

8

9

10.3 W

32 W

28 W

24.6 W

6.4 W

23.4 W

26.4 W

25 W

Pe
rf

or
m

an
ce

-p
er

-W
at

t
(n

or
m

al
iz

ed
to

Fo
rt

ra
n

on
C

PU
)

fortran CPU
manual FPGA
direct FGPA

reduced FPGA

(b) Energy efficiency of the FPGA approaches compared to the
original Fortran CPU code. Measured in thousands-of-points per
Watt, and normalized to Fortran. The throughput of the base
(Fortran) is 6947 points/ms for velfg, and 7789 points/ms
for sw2d. Average Wattage is annotated for each approach.

Fig. 1: Throughput and performance-per-Watt of a manual
FPGA implementation, a direct Fortran-to-SYCL translation,
and our memory reduced approach.

in our compilation toolchain from legacy Fortran code to
SYCL, with the effect of significantly reducing FPGA memory
resource usage. Our compiler expresses dataflow, parallelism
and stencil accesses in a functional, domain-specific language
(TyTraCL). We use a set of formal rewrite rules on the
primitives of the language to rewrite the program. The algo-
rithm extracts stencil point accesses from deep computational
pipelines and moves them to the start of the pipeline, an
exchanges the intermediate arrays used for stencil updates
for additional computation. From the transformed TyTraCL
program we can generate Fortran, OpenCL or SYCL.

ACKNOWLEDGEMENTS

This work was partly supported by the UK Engineer-
ing and Physical Sciences Research Council (EPSRC) grant
EP/L00058X/1. We thank Intel for access to FPGAs through
Intel DevCloud and The Edinburgh Parallel Computing Centre
for access to their FPGA cluster.

REFERENCES

[1] Open Programmable Acceleration Engine Intel. https://opae.github.io/.
Accessed: 2022-02-14.

[2] Tal Ben-Nun, Johannes de Fine Licht, Alexandros N. Ziogas, Timo
Schneider, and Torsten Hoefler. Stateful dataflow multigraphs: A
data-centric model for performance portability on heterogeneous ar-
chitectures. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, SC ’19,
New York, NY, USA, 2019. Association for Computing Machinery.

[3] Yuze Chi, Jason Cong, Peng Wei, and Peipei Zhou. Soda: Stencil with
optimized dataflow architecture. In Proceedings of the International
Conference on Computer-Aided Design, ICCAD ’18. Association for
Computing Machinery, 2018.

[4] Tomasz S. Czajkowski, Utku Aydonat, Dmitry Denisenko, John Free-
man, Michael Kinsner, David Neto, Jason Wong, Peter Yiannacouras,
and Deshanand P. Singh. From opencl to high-performance hardware on
fpgas. In 22nd International Conference on Field Programmable Logic
and Applications (FPL), pages 531–534, 2012.

[5] Johannes de Fine Licht, Maciej Besta, Simon Meierhans, and Torsten
Hoefler. Transformations of high-level synthesis codes for high-
performance computing. IEEE Transactions on Parallel and Distributed
Systems, 32(5):1014–1029, 2021.

[6] Johannes de Fine Licht, Andreas Kuster, Tiziano De Matteis, Tal Ben-
Nun, Dominic Hofer, and Torsten Hoefler. StencilFlow: Mapping
Large Stencil Programs to Distributed Spatial Computing Systems, page
315–326. IEEE Press, 2021.

[7] Jochen Kämpf. Ocean modelling for beginners: using open-source
software. Springer Science & Business Media, 2009.

[8] Tobias Kenter, Gopinath Mahale, Samer Alhaddad, Yevgen Grynko,
Christian Schmitt, Ayesha Afzal, Frank Hannig, Jens Förstner, and
Christian Plessl. Opencl-based fpga design to accelerate the nodal
discontinuous galerkin method for unstructured meshes. In 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 189–196, 2018.

[9] Jiajie Li, Yuze Chi, and Jason Cong. Heterohalide: From image
processing dsl to efficient fpga acceleration. In Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, FPGA ’20, page 51–57. Association for Computing Machinery,
2020.

[10] Syed Waqar Nabi and Wim Vanderbauwhede. Automatic Pipelining and
Vectorization of Scientific Code for FPGAs. International Journal of
Reconfigurable Computing, 2019:7348013, November 2019. Publisher:
Hindawi.

[11] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris,
Frédo Durand, and Saman Amarasinghe. Halide: A language and
compiler for optimizing parallelism, locality, and recomputation in
image processing pipelines. SIGPLAN Not., 48(6):519–530, jun 2013.

[12] Wim Vanderbauwhede. Making legacy Fortran code type safe through
automated program transformation. The Journal of Supercomputing,
78(2):2988–3028, February 2022.

[13] Wim Vanderbauwhede and Gavin Davidson. Domain-specific acceler-
ation and auto-parallelization of legacy scientific code in FORTRAN
77 using source-to-source compilation. Computers & Fluids, 173:1–5,
September 2018.

[14] Wim Vanderbauwhede, Syed Waqar Nabi, and Cristian Urlea. Type-
Driven Automated Program Transformations and Cost Modelling for
Optimising Streaming Programs on FPGAs. International Journal of
Parallel Programming, 47(1):114–136, February 2019.

[15] Wim Vanderbauwhede and Tetsuya Takemi. An analysis of the feasi-
bility and benefits of gpu/multicore acceleration of the weather research
and forecasting model. Concurrency and Computation: Practice and
Experience, 28(7):2052–2072, 2016.

[16] Dennis Weller, Fabian Oboril, Dimitar Lukarski, Juergen Becker, and
Mehdi Tahoori. Energy efficient scientific computing on fpgas using
opencl. In Proceedings of the 2017 ACM/SIGDA International Sympo-
sium on Field-Programmable Gate Arrays, FPGA ’17, page 247–256,
New York, NY, USA, 2017. Association for Computing Machinery.

[17] Michael Wong, Nevin Liber, Sanzio Bassini, Andrew Richards, Mark
Butler, Jeff McVeigh, Brandon Cook, Hideki Sugimoto, Cyril Cordoba,
Thomas Fahringer, and et al. Sycl - c++ single-source heterogeneous
programming for acceleration offload. https://www.khronos.org/sycl/,
Jan 2014.

[18] Toshiya Yoshida, Tetsuya Takemi, and Mitsuaki Horiguchi. Large-
eddy-simulation study of the effects of building-height variability on
turbulent flows over an actual urban area. Boundary-Layer Meteorology,
168(1):127–153, 2018.

[19] Hamid Reza Zohouri, Naoya Maruyama, Aaron Smith, and Satoshi
Matsuoka. Evaluating and optimizing opencl kernels for high per-
formance computing with fpgas. In International Conference for
High Performance Computing, Networking, Storage and Analysis (SC),
volume 2016. IEEE, November 2016.

https://opae.github.io/
https://www.khronos.org/sycl/

	Introduction
	Background & Related Work
	Related Work
	TyTraCL: A Functional Coordination Language

	Memory Reduction
	Evaluation
	Methodology
	Resource usage
	Performance
	Power efficiency

	Conclusion
	References

