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Abstract—Node failure is a commonly seen threat in dis-
tributed Machine Learning systems. It is hard to predict having
a huge negative impact on system availability to provide e.g.,
predictive analytics. Considering the benefits obtained from re-
duced latency and bandwidth overhead in Edge Computing (EC),
invocation of the Cloud should be avoided. Hence, finding the
best substitute nodes at the network edge to be invoked instead
of failing nodes, evidently, builds the system’s resilience upon
node failures. To achieve this goal, we contribute with a resilience
mechanism that relies on several data-mixing strategies that build
enhanced models in each node. Such models have satisfactory
prediction capabilities to handle failing nodes’ predictive tasks,
thus, ensuring resilience in predictive services. Furthermore,
we propose a graph-driven approach to guide node invocation
minimising the performance loss upon node failures. Our per-
formance evaluation and comparative assessment showcase the
applicability of our model resilience approach in intelligent EC.

Index Terms—Edge Computing, Edge Intelligence, resilience,
Machine Learning

I. INTRODUCTION

The Internet of Things (IoT) prevalence raises the demand
for pushing Artificial Intelligence (AI) at the network edge
shaping the Edge-AI synergy (Edge AI). As data are produced
by IoT devices, local processing and learning at the edge of
the network, e.g., local predictive model training for outlier
detection, classification, and clustering, cuts down significant
costs brought by transmitting and storing data to Cloud [1].
In an Edge-AI environment, edge nodes locally build Ma-
chine Learning (ML) models to provide predictive services
like novelty detection, forecasting and classification. Edge
Computing (EC) is aimed to address the limitations of the
Cloud in supporting delay-sensitive, real-time decision mak-
ing, and context-aware services [2]. Due to spatial and tem-
poral differences that edge nodes naturally have, the statistical
characteristics of their data significantly vary [3]. Typically,
edge nodes equipped with ML models perform predictive
tasks solely on local data. Therefore, one node’s models could
perform well on local data, while not being accurate enough
on other nodes’ data. This is expected as local models are not
intended to be highly generalizable due to training over local
data. Though, such a local model learning strategy achieves
ideal performance in terms of predictability. However, in real
EC systems, nodes can e.g., go offline due to intermittent
communication with IoT devices or fail and interrupt their
services [4]. This situation leads to nodes’ unavailability and
Service Level Objective (SLO) violations that can interrupt

critical services and seek significant financial losses. In these
cases, the Edge-AI environment should not cease its predictive
services dealing with the potential lack of generalizability of
the nodes’ local models. Establishing a resilient distributed
mechanism to continue supporting predictive services at high
predictive quality standards is deemed appropriate even if
failed nodes’ services become unavailable.

We focus on an Edge-AI paradigm that selectively chooses
data and statistics to be disseminated among peer nodes
and, accordingly, adapts their models ensuring resilience in
predictive services in case of nodes unavailability. In the
case of a (temporarily) unavailable node, its data could be
transferred to other nodes for processing and model training
or to Cloud imposing extra communication costs and delays.
However, due to the local model learning strategy and inherent
lack of appropriate model generalizability, the substitute nodes
tend to have less than ideal performances when dealing with
‘unfamiliar’ data coming from failing/unavailable nodes. This
turns out to be a challenging problem to deliver robust and
resilient services. A baseline solution to tackle this problem
would be to add part of (training) data from other nodes
to each node. Then, one could anticipate nodes’ models’
ability to process other nodes’ data in light of increasing
models’ robustness and generalizability. This would render
the system resilient for predictive services, where available
nodes’ models could provide predictive services on behalf
of unavailable nodes. However, it is unknown which nodes
and data (or which part of data) should be transferred that
could obtain satisfactory model accuracy and a high level of
resilience. Moreover, statistical diversity in datasets and data
split strategies further add uncertainty to that problem.

In this paper, we contribute with a universal approach
that aims to investigate data and statistics mixing strategies
for nodes to build robust models supporting resilience in
predictive services in case of node failures/unavailability. Our
method tackles the lack of generalizability of nodes’ local
models via novel training data and statistics mixing strategies
that adapt to the diversity of data characteristics. This yields a
trade-off between the locality of modelling and the generaliz-
ability of locally adapted models (i.e., their ability to support
failing nodes). Furthermore, our method leads to minimizing
response time and networking latency to communicate from
the edge to the Cloud and vice versa to serve queries/predictive
analytics tasks. The experimental results showcase that our



resilience strategy help EC systems to maintain close or attain
even better predictability performance than baseline solutions
(data transfer to Cloud followed by centralized model building)
at a fairly high level of node failure probabilities. The paper is
organized as follows: Section II reports on the related work and
our technical contribution, Section III formulates our problem,
while Section IV introduces our predictive model resilience
mechanism in Edge-AI environments. Section V reports on
the performance evaluation and comparative assessment, and
Section VI concludes the paper.

II. RELATED WORK & CONTRIBUTION

The reliability of a system is concerned with the system’s
ability to perform its intended function correctly for a specified
time period. At the same time, resilience is aimed at the ability
to recover, mitigate and survive a particular failure. Therefore,
resilience in a system mainly refers to the system’s resistance
to external attacks or tolerance to internal failures [5]. We
focus on an EC system deployed across nodes being robust
in providing predictive analytics services upon node failures.
Similarly, such failures could be caused by internal factors
like hardware malfunction, energy depletion, link failure and
system crash or external adverse environment [6], [7] or even
external malicious attacks [8]. Such cases render nodes of the
system unavailable until specific solutions and mitigation are
in place. Consider an EC system that serves prediction queries
using ML models based on local data. System reliability refers
here to the system’s ability to serve queries/tasks performed
by nodes along the time. In contrast, system resiliency is
interpreted as the ability to mitigate a failure that compromises
system reliability, i.e., when a failure occurs to the node
required to serve the query. In our context, we leverage an
approach aiming to provide predictive services while nodes
become unavailable continuously. The idea is to enhance each
node’s model(s) by including unfamiliar training examples
from other nodes’ datasets (e.g., akin to adversarial training
for improving robustness [9]). This is expected to enhance
the generalizability of local nodes’ models in light of being
capable of providing predictions at the same accuracy as that
would be achieved by the unavailable nodes. Our approach
offers an ensemble of strategies to tackle queries to unavailable
nodes by selecting the most appropriate alternative nodes to
process these queries helping to improve the system’s re-
silience. Nevertheless, models from alternative nodes may not
be optimal ones in terms of accuracy compared to unavailable
node’s models. However, these models must be robust in
tackling unfamiliar data providing similar accuracy in a system
with failures as in the absence of failures.

From the domain adaptation perspective, models adapt to
new but similar ‘target’ domains [10], [11] by solving the
problem that training and testing data do not come from the
same distributions [12]. Our approach is partially inspired by
domain adaptation to ensure resilience upon failing nodes. Our
strategies handle the local nodes’ models (source domain) by
enhancing them with unfamiliar data coming from other nodes
(target domains). Particularly, such unfamiliar data are selected

to be the most representative of the target domains to ensure
high accuracy of the enhanced nodes’ models. Such models
are used as substitute models in case node failure occurs.

Moreover, our approach reassures consistency of the local
models and controlled generalizability of the enhanced models
tailored to be substitutes for unavailable nodes by avoiding
training a global model for all nodes. This would jeopardize
the local knowledge derived from local models per node and,
evidently, the tailored capacity of the enhanced models to
be accurate substitutes to unavailable nodes’ local models.
This is in principle different from Federated Learning (FL)
paradigm fundamentals. In FL, the training processes are
repeatedly achieved via data center-nodes communication for
model aggregation, thus, deriving a global model for all [13].
Instead, in our approach, we build enhanced models being
appropriate to substitute the local models of those nodes
being unavailable to tackle incoming predictive analytics tasks.
This way, the system supports predictive services upon node
failures. To the best of our knowledge, this is a first attempt
to introduce strategies for building accurate and tailored sub-
stitute models in EC environments that are used upon node
failures/unavailability. Our technical contributions are:

1) We introduce a novel and systematic approach to ex-
pand the predictability capability of local models over
selective training data and statistics across nodes with
different strategies and appraise their performances to
generalize such models upon node failures.

2) We propose strategies to guide the node invocation
prediction services based on the predictability capacity
of the enhanced models in the case of node failures to
improve systems’ resilience.

3) We provide comprehensive experimental evaluation and
comparative assessment of our approach over real data
against baseline solutions showcasing the resilience
achieved in Edge-AI environments.

III. RATIONALE & PROBLEM DEFINITION

Consider an EC system with n distributed nodes: N =
{N1, . . . , Nn}. Node Ni has its own local data Di =
{(x, y)ℓ}Li

ℓ=1, with Li input-output pairs (x, y) ∈ X ×Y . The
input x = [x1, . . . , xd]

⊤ ∈ Rd is a d-dim. feature vector,
which is assigned to output y ∈ Y used for regression (e.g.,
Y ⊆ R) or classification predictive tasks (e.g., Y ⊆ {−1, 1}).
In the regression case, given a query input x to node Ni,
the error of the predicted outcome fi(x) = ỹ is defined as
ỹ− y, where y is the actual output. The neighborhood of Ni,
Ni ⊆ N \ {Ni}, is a subset of nodes which communicate
directly with Ni. Without loss of generality, we assume that
each Ni has its local model fi(x) trained on local data Di.

Our rationale is based on the idea of training enhanced
substitute models on nodes by introducing our strategies used
in case of failures. In each strategy s ∈ S = {S1, . . . , S|S|},
certain training data and/or statistics on a node come from
neighboring nodes; we coin these externally received training
data as unfamiliar data (or statistics). A strategy s results in
a set of enhanced local models {f̃s

i } on node Ni, which are



expected to be more generalizable than the local model fi
in terms of predictability due to the fact that they attempt
to capture the statistical features of unfamiliar data from
neighboring nodes Nj ∈ Ni. The enhanced models of Ni

will be used to provide predictive services in case of failures
of nodes Nj ∈ Ni. Given an unavailable node Nj (having a
local model fj) with a prediction query input x, we seek an
alternative available node Ni (with enhanced models {f̃s

i }),
such that the prediction of the most appropriate model f̃s∗

i on
node Ni for query x is as accurate as that of the node Nj , i.e.,
f̃s∗

i (x) ≈ fj(x). In that case, Ni invokes its enhanced model
f̃s∗

i for servicing prediction requests directing to node Nj for
as long Nj remains unavailable.

Problem 1: We seek for the best mixture of enhanced models
{f̃s

i }s∈S across all available nodes Ni ∈ N \ {Nj} and
strategies S to be used in order to achieve the same quality of
predictions as that of the failing node Nj ensuring resilience
without engaging data transfer to the Cloud. Our objective is
to minimize:

Jj(S,N ) = min
(s,Ni)∈(S×N ),i̸=j

E[(f̃s
i (x)− fj(x))

2]. (1)

Let us focus on Ni with local model fi and neighbors
Nj ∈ Ni. Given a strategy s ∈ S, we get specific data
and/or statistics of subsets of the datasets {Dj}, Γ({Dj}), and
include them to Di, as it will be elaborated later. This results
in an enhanced training dataset D̄i = Di ∪ Γ({Dj}), j ∈ Ni.
Then, we use D̄i to train the enhanced model f̃s

i for strategy
s. Different strategies yield different enhanced models in
Ni. The difference lies on how we select subsets of Dj or
specific statistics from Nj to train the enhanced models in Ni.
Γ({Dj}) can be either real data or certain statistics derived
from other nodes’ datasets which are used to generate the D̄i

per strategy s. Once the enhanced models {f̃s
i }s∈S in Ni are

built, then, a methodology for selecting the best strategy s
for Ni is introduced given the unavailability of Nj . Once Nj

receives a predictive service request and is unavailable, then
the system advises on the most appropriate substitute Ni given
the performance of its enhanced model f̃s

i per strategy s.

IV. PREDICTIVE MODEL RESILIENCE STRATEGIES

A. Global Sampling Strategy (GS)

Consider node Ni and its neighbors Nj ∈ Ni. GS is based
on random sampling node Nj’s dataset, i.e., Γ(Dj) ⊂ Dj .
Ni receives samples from neighbors’ datasets and expands
its dataset as D̄i = Di ∪ {Γ(Dj)}, ∀j, j ̸= i. The size of
sample |Γ(Dj)| and sample mixing rate α =

|Γ(Dj)|
|Dj | ∈ (0, 1)

is controlled by Ni, which affects the generalizability of
enhanced model f̃S

i .

B. Guided Sampling Strategies

GS gives a relatively average summary of Dj , making it
ideal for datasets distributed evenly, i.e., it does equally count
all the samples. However, sampled data can convey a variety
of characteristics, thus, feeding the enhanced models with such
data without taking into account these characteristics cannot

boost the generalizability of the enhanced models. To allow
control on the sampling process of {Dj}, we introduce guided
sampling strategies that exploit data clustering to selectively
capture data which will be included during the training of the
enhanced models. We rely on vector quantization (clustering)
of Dj ,∀j in light of exploiting the information derived by the
corresponding clusters (representatives). Such representatives,
a.k.a., centroids wjk, k = 1, . . . ,K, partition Dj into K
disjoint subsets Dj ≡ ∪K

k=1{Djk} with ∩K
k=1Djk = ∅. The

way such centroids are used yields in certain variants.
1) Nearest Centroid Guided Strategy (NCG): In NCG

strategy, we quantize only the input space X ⊆ Rd of Dj .
The centroids wjk ∈ X convey representative information
to the enhanced model’s input. The number of clusters K
depends on the size Li = |Dj | and mixing rate α. Each
of the centroids wjk is used to select the m closest input-
output pairs (x, y) ∈ Djk from the k-th cluster with Ljk

pairs. Such m pairs represent the input data subspace in
each cluster. We select training examples representing the
input space of Dj across all clusters obtaining the sample
Γ(Dj) = {∪K

k=1Γ(Djk)}:

Γ(Djk) = {(x, y)ℓ ∈ Djk : d(ℓ) = ∥x−wjk∥}, (2)

with d(ℓ) be the ℓ-th order statistic of the Euclidean distance
between input vector x and centroid wkj , for ℓ = 1, . . . ,m <
Ljk; note d(1) = min∥x−wjk∥ and d(Ljk) = max∥x−wjk∥.

2) Centroid Guided Strategy (CG): In CG strategy instead
of selecting the nearest pairs to centroids wjk w.r.t. input, we
select the centroids of clusters that partition the input-output
space X × Y of Dj , i.e., centroids wjk ∈ Rd+1 are samples:

Γ(Dj) = ∪K
k=1{wjk}. (3)

{Dj} samples contain only representatives across the input-
output space. CG strategy is adopted to applications with
restrictions in data privacy as it avoids evidently actual data
transfer among nodes.

3) Weighted Guided Strategy (WG): The unfamiliar sam-
ples Γ({Dj}) for Ni’s enhanced model f̃i might negatively
affect its generalizability due to certain anomalies. If they
exist, they cause enhanced models to fit abnormally. This
problem worsens when Γ({Dj}) are contaminated by a large
amount of anomalies. To tackle this challenge, we introduce
a weighted guided strategy to eliminate the probability of
selecting anomalous samples based on the cluster density.
Similar to CG, data clustering in WG quantises both input X
and output Y of Dj . Smaller clusters in size are more likely
to contain anomalies, thus, we assign higher probabilities of
selecting samples from relatively bigger clusters than smaller
ones. We define this probability pjk to be proportional to
the number of input-output pairs Ljk in cluster Djk, i.e.,
pjk =

Ljk∑K
κ=1 Ljκ

. Hence, given a rate α of the data size |Dj |,
we randomly select α · pjk samples from cluster Djk along
with centroid wjk, i.e.,

Γ(Dj) = ∪K
k=1{wjk ∪ {(x, y) ∈ Djk : |Djk| = α · pjk}}. (4)



V. PERFORMANCE EVALUATION

Experimental Setup: We test our strategies in a realistic
EC environment using the real dataset [14] collected during
the experiments of our project GNFUV1. The dataset contains
readings of temperature and humidity from sensors mounted
on four Unmanned Surface Vehicles (USVs), i.e., four edge
nodes, monitoring the sea surface in a coastal area in Athens,
Greece. The local data Di, i = 1, . . . , n = 4, recorded by
the USVs exhibit different distribution while bearing some
spatiotemporal correlation. We used ‘temperature’ as the input
variable x ∈ R to predict the output variable ‘humidity’ y ∈ R.
We adopted the Support Vector Regression (SVR) regression
model in our experiments. Note: other ML models could be
also adopted, which does not spoil the evaluation methodology.

A. Model Performance Assessment

Upon nodes (USVs) failure, our method seeks the most
appropriate substitute node Ni and strategy s ∈ S =
{GS, NCG, CG, WG} given a mixing rate α to train the en-
hanced models on the substitute node. We devised a systematic
approach to access the performance of the enhanced models
trained with different parameters for each node adopting grid
search for tuning. For each node Ni and strategy s ∈ S,
we set mixing rates α ∈ {0.02, . . . , 0.2}. The corresponding
datasets D̄i,s are built based on Di and the n − 1 Γ({Dj})
derived from {Dj} for each strategy s. Then, we trained the
enhanced SVR models f̃s

i for each D̄i,s and evaluated the
models’ performance in terms of the Root Mean Square Error
(RMSE) between actual output y and model prediction ŷ.

For each node Ni, the data we evaluated the models on
include the enhanced data D̄i and the raw data Dj from the
neighboring nodes. We obtain an insight into the influences
brought by applying our approach to the node’s capabilities to
handle its own data and data from others. The evaluation was
conducted using 3-fold cross-validation and the data included
in {Dj} are excluded from the models’ evaluation on Dj .
Moreover, to compare and contrast the influence brought by
our approach, we evaluated the performance of (i) the (Global)
Cloud model, i.e., the model that was trained on all the
nodes’ data (DG) transferred from USVs to Cloud (denoted
by fG), which serves as the baseline model, and (ii) the local
models, i.e., models trained only on local data Di (denoted
by fi) on the same kind of data they were trained with.
We obtained fG(DG) (the baseline) and four local models
fi(Di), i = 1, . . . , 4. We expect prediction error for some
f̃s
i (Dj) to fall above fG(DG) and for some to fall below
fG(DG). Prediction error below or close to that of fG(DG)
is desired as it indicates that the parameters corresponding
to these models provide more accurate predictions than the
Cloud. Furthermore, the accuracy of f̃s

i (Dj) is expected to be
less than fi(Di) as local models have ideal performance on
local data. Due to space limitations, we only provide in Figure
1 the results of the enhanced model f̃s

3 of node N3; similar
results are obtained for the rest nodes. Figure 1 shows the

1http://www.dcs.gla.ac.uk/essence/funding.html#GNFUV
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Fig. 1. Sensitivity analysis of the α (mix rate) on the performance evaluation
of the local model f3(D3), Cloud model fG(DG) and the enhanced models
f̄s
3 (Di) in N3 under the four strategies (GS,NCG,CG,WG).

performance (RMSE) of local, Cloud and enhanced models
against different mix-rate values across all strategies. One
could observe that N3 is not a good candidate as a substitute
node for N1 and N4 because the errors of f̃s

3 (D1) and f̃s
3 (D4)

are above the baseline fG(DG). However, as evidenced, N3

is an appropriate substitute for node N2, if N2 fails. As
with NCG and CG, for certain α values, the corresponding
enhanced model f̃3 of N3 outperformed the baseline on D2

(accuracy is higher than that of fG(DG)). This indicates that
given our strategies, when N2 fails, N3 can take over N2’s
predictive tasks without needing to transfer to N2’s data to
Cloud (for building a new model therein). More importantly,
substitute N3 gives better predictions than the Cloud. This
denotes the resilience capacity of the system adopting our
strategies.

B. Deployment to Intelligent Edge Computing

We have first identified the best strategy s and mix-rate α
for every pair of potentially failing node Ni and potentially
substitute node Nj . Then, in an EC system with n nodes
(n = 4 USVs in our scenario), we obtain adequate information



to guide the invocation of substitute nodes in the case of node
failures. We introduce a directed graph G(V, E) to guide the
node invocation and visualize the guidance as illustrated in
Figure 2. The vertices V represent edge nodes; we introduce
one extra vertex referring to Cloud (G). A directed edge
eϵ,sij ∈ E starts from node Ni and ends with Nj attached with
an RMSE value ϵ and strategy s ∈ S (the mixing rate α
was omitted for clearance). The semantics of eϵ,sij is that: if
a predictive task request is received to failing node Nj , then
a potential substitute node Ni could, at its best, provide an
RMSE ϵ from its enhanced model f̃s

i given the best selected
strategy s. For instance, the edge e42 in Figure 2 indicates
that upon N2’s failure, the best substitute node N4 can invoke
its enhanced model f̃GS

4 given the best strategy GS obtaining
RMSE 2.13. The edges e12 and e32 indicate N1 and N3 can
serve N2’s requests when it fails both with NCG as the best
strategy obtaining RMSE 7.98 and 3.95, respectively. Thus,
the second best substitute for N2 is N3 offering the second
lowest RMSE. If the best substitute N4 is unreachable (or
e.g., overloaded), then N3 can be reached next and so on.
If none of the candidate substitutes are reachable, then the
request goes to Cloud G as a last resort. A recursive edge eϵ,sii

indicates the RMSE achieved by Ni’s enhanced model over
its best strategy s. The graph is disseminated to all nodes for
localized decision-making. In our experiments, we investigate
the system’s performance when the best substitute is available
to serve the directed requests from the failing nodes.
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N3

G4.10
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Fig. 2. Directed graph G(V, E) guiding the decision making for the most
appropriate substitute node and strategy upon node failures.

With the directed graph, the system is fully operable in EC
environments where node failures happen. To further better
understand the benefits brought by our approach, we evaluated
the system’s performance with full, half and no guidance at
all with node failing probability p from 0% to 100%. To avoid
the ”chain reaction” of the substitute nodes failing one after
another and allowing clearer insight into the system’s behavior,
we assume that when a node fails, its substitute node(s) will
work. Specifically, at every predictive task request to a node
Ni, we draw with probability p its status. If Ni is not failed,
then the node processes the request locally using its local
model. Otherwise, i.e., Ni fails/unavailable, then, we consider
the following node assignment resilience policies:

1) Random Substitute Assignment: The request is as-
signed to a randomly chosen non-failing node, which
locally processes the task using its local model. This
is a baseline policy to investigate what happens with-
out the graph guidance of our approach and without
invoking the enhanced models on substitute nodes (zero
guidance).

2) Random Substitute Assignment with best Enhanced
Model: The request is assigned to a randomly chosen
non-failing node, which locally processes the task using
its best enhanced model given the provided graph (half
guidance).

3) Guided Substitute Assignment: The request is as-
signed to the most appropriate substitute node as per
graph, which locally processes the task using its best
enhanced model as per graph (full guidance).

Remark: in Figure 2, none of the edges are associated with
WG. Compared to other strategies, WG did not achieve a
single best on arbitrary pairs of failing Ni and substitute Nj .
WG is designed for special anomalous datasets yielding sub-
optimal performance. Our test results using the Local Outlier
Factor (LOF) algorithm do conform with that, as the resulting
anomaly rate is 7.6%, which is normal for LOF.

The prediction accuracy results of the above-mentioned
resilience policies are shown in Figure 3 against node failure
probability p. We compare the results obtained from these
assignment policies including: (i) the Cloud-based assignment
policy, i.e., sending the predictive tasks to the Cloud (which
maintains a global model trained over all nodes’ data) and (ii)
the average non-failing nodes assignment policy, where we
obtain the average prediction by invoking the best enhanced
models (with the best selected strategy) over the expanded
datasets of all non-failing nodes, i.e., f̃0 = 1

n−1

∑n−1
i=1 f̃s

i (D̄i).
One could observe that the system’s predictability with the
guided substitute assignment always outer performs the Cloud-
based policy even when p reaches 100%. This indicates that
our approach helps the system to maintain better performance
than the Cloud even when a node is unavailable all the
time. Moreover, when p < 20%, the system performance is
quite close to the best local enhanced models. This denotes
that our resilience method supports the system to maintain
performance equivalent to the cases of no failures at all,
especially when p is at a relatively low level. This further
proves its potency in improving the system’s resilience in EC
environments. Furthermore, the performance of the random
substitute assignment with the best enhanced model (half
guidance) helps to keep the system predictability capacity
at relatively higher levels than that of the baseline until p
reached around 50%. That is, even if nodes fail half of the
time, exploiting the enhanced models of the non-failing nodes
provides better predictability than directing the requests to the
Cloud. In addition, by comparing the half guidance with the
random substitute assignment (zero guidance), the former was
able to reduce the RMSE by half. This evidences that our
resilience approach endows the system with a fair amount



of flexibility: even if we do not direct the predictive task
requests to the best substitute node due to reasons like load
balance all the time, it still can contribute to boosting the
system’s predictability performance via using the enhanced
models from randomly chosen substitute nodes. Evidently, the
full guidance policy exploits the full information in graph G,
thus, resilience is achieved without needing requests to be
directed to Cloud even if with high node failure probabilities.
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Fig. 3. System performance against node failure probability p across different
node assignment resilience policies.

We investigated the impact of the substitute assignment
policies on the number of invocations on each node, i.e., extra
load. Figure 4 shows that with the full guidance policy, node
extra loads are relatively balanced. Although we expect node
imbalance given tasks workloads; requests to failing node Ni

are directed to the same best substitute Nj . If multiple nodes
have the same best substitute node Nj , upon their failures, all
the requests will be directed to Nj , thus, causing imbalanced
loads. In systems that are susceptible to node imbalance, this
could be alleviated e.g., by directing a percentage β% of
requests to the best substitute node and directing the rest
(1 − β)% to the second best substitute node. Evidently, the
challenge to find the optimal β to achieve load balance and
system performance is on our future research agenda.
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Fig. 4. Extra load per node in the system with full guidance assignment
policy and half/zero guidance policy.

VI. CONCLUSIONS

We propose a predictive model resilience framework relying
on strategies to build enhanced models handling requests on
behalf of failing nodes. Our framework seeks the best strategy
for pairs of failing and substitute nodes to guide invocations
upon failures. The best strategies are represented in a directed
graph. We assess the system performance over certain node
assignment guidance policies and compared it with baseline
approaches over real data in a realistic EC environment. Our
framework maintains the system’s predictability performance
higher than the baselines even with high failure probability
and offers flexibility in load balancing problems.
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