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Abstract—A typical indoor localization system relies on the
availability of infrastructure such as Wi-Fi Access Points, blue-
tooth beacons or antenna arrays. This increases the overall
system cost and it may not be feasible for deployment in
real environments such as shopping malls. A practical indoor
localization system should be one that can function with mini-
mum existing infrastructure. The proposed system in this paper
leverages on the embedded sensors in off-the-shelf Internet of
Things (IoT) devices such as smartphone in conjunction with
Quick Response (QR) codes which are widely deployed under
the authorities requirement due to COVID-19 pandemic. Our
proposed stationary inertial measurement unit (IMU) feature is
implemented through a first order finite impulse response (FIR)
filter that works along with the QR codes. It has successfully
reduced the drift errors suffered by IMU. The performance was
evaluated in the testing environment at an university campus.
From the evaluation results, the proposed method outperformed
the conventional method (IMU only) and hybrid model (IMU +
QR code) by 94.9% and 57.7% respectively, making the proposed
method a promising technique that can be readily applied to
other indoor environments.

Index Terms—inertial measurement unit (IMU), Quick Re-
sponse (QR) code, finite impulse response (FIR) filter, indoor
localization and navigation, Internet of Things (IoT)

I. INTRODUCTION

In current days, location-based services (LBS) have become
an important part of people’s daily lives. Global Positioning
Systems (GPS) has been utilised extensively for outdoor local-
ization purposes for decades. The applications using GPS do
not provide a satisfactory result for indoor localization. With
the recent advancement of Internet of Things (IoT) sensors and
devices such as smartphone, indoor localization has become a
key enabling technology for IoT applications to meet demands
for LBS in indoor environments such as indoor navigation,
marketing purposes, entertainment and information retrieval
in an indoor context. Most indoor localization systems are
implemented with various technologies such as Wi-Fi [1], [2],
Line of Sight based (LOS) [3] and Non-LOS based identi-
fication [4]–[6], Bluetooth Low Energy (BLE) beacons [7],
Ultra-wide band (UWB) [8], [9], Radio Frequency Identifica-
tion [10], [11], Geomagnetic field and Inertial measurement
unit [12]–[14]. This various indoor localization approaches
produces multiple sets of small positioning data, which can
be consolidated into a main server via 5G technology. These
data can then be analyzed for purposes such as producing
a big data heat-map to trace the movement of people in

an indoor location such as in a building or shopping mall.
These various technologies however incur high costs due
to the need for additional infrastructure to be present and
also suffers from various different problems. In [15], a Wi-
Fi based indoor positioning system with an improved hybrid
ToA/AoA mechanism has been proposed by applying a round-
trip time approach to obtain the distance without requiring
time synchronization between transmitter and receiver. Even
though the proposed method in [15] can reduce the number of
antennas with superior performance improvement, the heavy
reliance on nearby anchors still remains and hence increases
the cost of deployment. Similarly, there is a limitation of
available spaces to deploy nearby anchors which leads to the
accuracy of the system being affected [15]. In [16], a Blue-
tooth based approach is implemented. Two novel approaches
namely the Low-Precision (LIL) and High-Precision (HIL)
Indoor localization with RSSI have been compared with the
HIL approach having much higher accuracy. However, it still
relies heavy on the Received Signal Strength Indicator (RSSI)
measurements which is susceptible to multi-path fading that
can cause signal fluctuation in the RSSI readings [16].

In [17], Poulose et al. proposed an indoor positioning esti-
mation algorithm relying on smartphone Inertial Measurement
Unit (IMU) sensors data to implement a Pedestrian Dead
Reckoning (PDR) algorithm. It leverages firstly on the IMU’s
3D accelerometer and gyroscope data with a kalman filter
to estimate the pitch and roll. It then performs step detection
using the pitch estimation followed by a step length estimation
through a first-order linear regression model on the pitch
amplitude. The heading of the smartphone is then derived
from the gyroscope and magnetometer values and passed
through a noise removal kalman filter. The two components
namely the step length and the orientation are then fused
to estimate user’s position. Even though the results show
promising accuracy as compared to conventional methods, the
proposed method still suffers from accumulating drift error
[17] which is one of the shortcomings on using IMU for
navigation.

Hybrid approaches have also been suggested to resolve
indoor positioning problems. In [18], Chirakkal et al. proposed
a QR based assistance approach with smartphone IMU to
perform indoor localization. Its PDR algorithm makes use
of the filtered sensor values to perform step detection and
step length estimation to estimate the user’s location. The QR



Fig. 1: Proposed method architecture

code is then used as an error compensator to the drift errors
suffered by the IMU. The smartphone is equipped with a
blueprint of the building. It utilizes a database to store the QR
code’s location with respect to the blueprint. While walking,
the application will detect the nearest QR code and prompt
the user to scan the code and hence correct the user’s drift
position. However, even with a much lower average error rates
as compared to conventional approaches, the distance between
each placed QR code is significantly short, forcing the user to
scan the QR code frequently [18]. The need to scan multiple
QR codes over a short distance is neither user-friendly nor
resource effective as it drains smartphone battery whenever a
scan is performed.

In order to reduce the required number of scans, this
paper proposed a novel stationary IMU feature through a first
order finite impulse response (FIR) filter that leverages on
the smartphone IMU sensors in conjunction with QR codes.
As the smartphone sensors suffer from an accumulating drift
error over time, the proposed method using stationary IMU
feature during movement pause period and QR code scanning
at reference locations has outperformed conventional method
(IMU only) and hybrid method (IMU + QR code) by 90.9%
and 41.3% respectively. Our novel stationary IMU feature also
managed to reduce the number of QR code deployed in the
area compared to current hybrid method. This rest of this
paper is organized as follows. Section II outlines the system
overview of the proposed method while Section III explains
the experiment set up and evaluation followed by conclusion
and future work in Section IV.

II. SYSTEM OVERVIEW

The proposed system and architecture which is developed
using the Android’s operating system is shown in Figure 1.
It consists of various components namely, PDR, QR code
scanning as well as the proposed stationary IMU feature that is
implemented using first order FIR. The localization of the user
will be done via the PDR methodology with the stride length
calculation, step detection algorithm and the orientation of
the smartphone device. The QR code is used to determine the
initial location of the user and serves as resetting mechanism
to counteract against the drift error caused by the smartphone
sensors by re-positioning the user. On the other hand, the
proposed stationary IMU feature prompts the user to perform
a momentary pause for n seconds to allow for the sensors to
be reset. This is computed through a first order FIR filter.

A. Quick Response Code

The QR codes in the proposed method consists of two
different types – initial QR code and re-positioning QR code.
The initial QR code is encoded with an initial keyword,
followed by the starting 2D location coordinates (x, y) and
the floor level of the evaluated building. It provides the user’s
initial location and marks his/her entry into the building. This
now becomes a standard implementation for every shopping
mall and office building in Singapore due to the outbreak of
COVID-19 virus. The re-positioning QR code is encoded with
the re-positioning keyword, followed by the corresponding re-
spective 2D coordinates (x, y) at that location. Upon scanning
this QR code, the user will be re-positioned onto the correct
location. This is also implemented at each store’s entrance in
all shopping malls. The keyword encoded in both QR codes
aids in differentiating against the initial and the re-positioning
QR code.

B. Stride length estimation

Everyone’s stride length can vary due to several factors
such as height, gender, age, injury, illnesses or terrains. In
the proposed method, information provided by the user such
as their gender, height and a constant that will be used to
compute the stride length. The constant varies for different
gender and is derived empirically. The formula for estimating
stride length is as follows [19]:

σ =
ηκ

2.54
(1)

where σ is the stride length, η is the height input by the
user and κ is a constant parameter according to the gender
of the user. The value 2.54 cm is used as we need to
calculate the pixel density or dots per inch (DPI). The model
used in (1) is suffice for the experimental campaign in this
paper. However, a more general and elaborated stride length
parameter estimation can be further developed in future work.
Another way to estimate the stride length is to use real-time
accelerometer readings and calibrated step constant parameter
[20]. This method requires less empirical data and is adjusted
to the real time user acceleration. However this method needs
monitored calibration process which is less practical compared
to [19]. In fact, both [19] and [20] has similar performance
when user is assumed to hold the smartphone in hand at
normal walking pace and does no other unusual actions such
as jumping during walking. Hence the method in [19] is used
in this paper.

C. Step Detection Algorithm

For the proposed method, a step detection algorithm was
applied to perform step counting to determine the stride. The
base values for the step detection algorithm arises from the
raw accelerometer sensor. When a person is walking, there is a
spike pattern in the raw accelerometer readings. The readings
are very crude and hence there is a need to smooth out the line
by passing the raw linear accelerometer measurments through



Fig. 2: Step condition detection

a low pass filter with a pre-selected cutoff frequency at nyquist
frequency via the following formula [21]:

υ [i] = f [i] + δ (υ [i− 1]− f [i]) (2)

where υ[i] is the output accelerometer values at time instance
i after going through the low pass filter, υ [i− 1] is the
previous output accelerometer values and f [i] is the input
accelerometer values before going through the low pass filter.
The δ is the pre-selected cutoff frequency and was chosen to
be 0.9.

To detect each step phase, the algorithm will maintain four
different thresholds defined by top line, top check line, bottom
check line and bottom line. Figure 2 shows the threshold
and acceleration value over time. The walking motion can
be split into a transient phase, a lifting phase and a stepping
phase. A transient phase is the phase in between the lifting
and stepping phase. Lifting phase occurs when the user lifts
his/her leg off the ground. The lifting of the leg will cause
a synchronised movement to the user’s hand as well. This
motion of lifting is against the gravity and thus will arise a
negative acceleration value which passes through the lower
threshold. When the user put his/her leg down, the stepping
phase will be activated and this result an alignment with
gravitational force. Hence, it produces a positive acceleration
value which passes through the upper threshold. The step
detection algorithm detects that a step is taken when the
value of the acceleration goes downwards through the upper
threshold which is from a stepping phase towards transient
phase which is denoted in Figure 2.

D. Orientation of device

The orientation computation of the smartphone device is
based on the accelerometer and magnetometer’s sensor values.
As the sensors reside within the smartphone itself, it makes
use of the local coordinate systems (LCS) as shown in Figure
3. However, in order to translate the smartphone’s LCS to a
global coordinate system (GCS), a coordinate transformation
must be performed. The transformation is accomplished by
the rotations about the X , Y and Z axes shown in Figure
3. When the smartphone is being held with screen facing
upwards. The rotations can be represented in Euler angles
and a rotation matrix is a convenient manner to represent and

Fig. 3: Global coordinate system (left) and smartphone local
coordinate system (right)

describe these rotations. The rotation matrices along each of
the axes at time t are as follows [13]:

Rt = Rψ,tRθ,tRφ,t

=

 cψcφ− sψsθsφ −sψcθ cψsφ+ sψsθcφ
−sψcφ− cψsθsφ −cψcθ −sψsφ+ cψsθcφ

−cθs sθ cθcφ


(3)

where c stands for cos and s stands for sin functions,
roll = φ = rotation angle about X denoted by Rφ,t,
pitch = θ = rotation angle about Y denoted by Rθ,t, and
yaw = ψ = rotation angle about Z denoted by Rψ,t.

These Euler angles are called roll, pitch and yaw respec-
tively. The rows of rotation matrices are the projections of
GCS on LCS and the columns are those of LCS on GCS.
One of the main properties of the rotation matrices is its
orthogonality. This means that any pair of the columns or rows
in the matrix is perpendicular and the sum of all squares of
the element in each column or row is unity. Using Android’s
getRotationMatrix method, it computes the inclination matrix
I and the rotation matrix R by transforming a vector from
the smartphone LCS coordinate system to the GCS which is
being defined as a direct orthonormal basis. With the rotation
matrix (R) computed from the getRotationMatrix formula,
the rotation matrix R is used in the Android’s getOrientation
method which computes the orientation of the device and
returns an array of values with the first value being the
azimuth, angle of rotation around the Z axis, the second value
being the pitch which is the angle of rotation around the Y
axis and the third value being the roll which is the angle of
rotation around the X axis. The azimuth values is used to
determine the smartphone’s orientation as the azimuth angle
defines the angle between a celestial body (sun, moon) and
the north, measured clockwise around the observer’s horizon.
It determines the direction of the celestial body. Hence, using
the azimuth value determines the angle of the smartphone
and then determines the direction the smartphone is pointing
towards to.



Fig. 4: Finite impulse response filter [21]

E. Stationary IMU

The novelty of this proposed method is the proposed
stationary IMU feature that overcomes the IMU drift while
at the same time reduces the leverage on QR code. As the
smartphone embedded IMU sensors suffer from accumulating
drift error over time, QR code will be required to counter act
against the drift and re-position the user. However, to scan the
QR code unless mandatory at shorter intervals may be more of
a hassle than an aid which is not practical. In order to counter
this issue, the momentarily stationary accelerometer can help
to remove the drift. This can be achieved by prompting the
user for momentary pause to allow for the accelerometer
sensor to reset before proceeding to next movement. Hence,
this allows the minimization on the reliance of QR code to
reset the drift since the QR code may not be in visual view of
the user. There are two types of momentary pause. The first
type is the pause when user stopped at QR code’s location
and perform the scanning action. The user normally hold
smartphone steady when perform scanning option. The other
type of pause happens when the user is prompted to pause
if there is no QR scanning action after walking for a period
of time to allow the sensor to be reset. The moving period
between pauses is flexible and it can be set as an input by
user. In general it should be under 60 seconds depending on
the scenarios to ensure accurate localization result. The pause
duration is designed to be the same for both pause types and
their start can be detected via the proposed stationary IMU
feature with FIR filter described below.

The stationary IMU feature is developed using a first order
FIR filter as shown in Figure 4 where N = 1. A FIR filter is
a filter whose impulse response is of finite duration because
it settles to zero in finite time. The output of the FIR filter
can be calculated via the following:

γ [τ ] = βᵀa

β = [(1− ω), ω]ᵀ

a = [f [τ ] , f [τ − 1]]
ᵀ

(4)

where τ is the filter time, γ [τ ] is the output value, f [τ − 1]
and f [τ ] are previous and current accelerometer reading
shown in (2), ω is value of impulse response at τ − 1 time
instant.

In the proposed method context, ω is set to a value of 0.9,
placing a higher weight on the previous accelerometer reading
value, ζ [τ − 1]. When the user enters the momentary pause,
the FIR starts to work at τ − 1 = 1 second with a weight of
0.9 while the weight of 0.1 is applied at τ = 2 second. The
user is required to stop for n seconds. At τ = n− 1 second,
the accelerometer value is 0 as there is no acceleration due to
the fact that the user is not moving while at τ = n second,
the user may start to have some undesired motion. With the
ω being set to 0.9, the weight of the previous accelerometer
value reading is heavier, implying that the previous reading
value will influence the output value more than the current
reading value. Hence FIR filter will help to mitigate the effect
of undesired motion and smooth out noise from the beginning
to the end of pause period.

III. EXPERIMENTS AND EVALUATION

To evaluate the performance and accuracy of the proposed
algorithm, we conducted an experimental campaign on the
proposed method with existing algorithms in the campus
building as shown in Figure 5. The data collected are from
the campus building at level 2 and 4. During the experiments,
the user held the smartphone device in his hand and walked
according to the reference path as shown in Figure 5 where
the dashed lines serve as references. Single and multiple loops
around the reference line are covered by users for localization
performance comparison. Level 2 consists of multiple discus-
sion rooms which contained students alongside with laptops
and various devices. There are two lifts, one at the front
and one at the back of the level. Level 4 consists of various
laboratories containing multiple magnetic devices. There are
also two lifts in level 4, one in the front and one at the back.
Before conducting the experiments, an external application
was used to measure the level of electromagnetic interference
(EMI) in level 2, level 4. From Figure 6, electromagnetic
field strength fluctuates in indoor environment due to the
presence of magnetic objects in the vicinity. Such magnetic

Fig. 5: Campus building level 2 (left) and campus building
level 4 (right)



Fig. 6: EMI readings in indoor environment

Fig. 7: Experiment results - Single loop

objects produces changing electrical currents and voltages that
can cause EMI and affects the smartphone sensors which
can cause drift errors. Therefore, this necessitates the need
to reset the IMU sensors constantly. The proposed method
of using IMU with QR code and the novel stationary IMU
feature was compared against two conventional methods with
minimum infrastructure - IMU only approach [17] and IMU
with QR Code approach [18] under a straight walking path
as well as single and multiple loops experiments. The real-
time IMU measurements for different methods are carried
out sequentially. As a result, the measurements are different
even though the walking trajectories remain the same. Hence
multiple loops are introduced to fairly evaluate localization
performance despite the measurement differences. In our
experiment, a 5 seconds momentary pause is imposed to
ensure the user stops completely in order for the FIR filter
to work as intended. Figures 7 and 8 show that the usage of
QR code increases the accuracy of the IMU only approach in
terms of lower drift error suffered. The effect of the stationary
IMU feature in the proposed method is very evident in the
multiple loop experiment conducted shown in Figure 8 as the
results show a more consistent trajectories as compared to
conventional method with just QR code.

From Figures 9 and 10, it can be seen that the introduction
of the stationary IMU is able to produce better accuracy results
since the IMU sensors are reset during the stationary period.
The overall drift errors are calculated by the total deviation of
the calculated trajectories from the true one over the span of
100 m and 600 m in a single and multiple loops respectively,

Fig. 8: Experiment results - Multiple loops

Fig. 9: Comparison of conventional approach with QR Code
against proposed method - single loop

Fig. 10: Comparison of conventional approach with QR code
against proposed method - multiple loops

which can be calculated via the following:

||ε||2 =

[∑̀
i=0

(xoi − xi)
2
+ (yoi − yi)

2

]1/2

(5)

where (xoi , y
o
i ) and (xi, yi) are the true and measured posi-

tion coordinates provided by existing/proposed localization
algorithm respectively, ` is the distance of 100 m and 600
m for single and multiple loops respectively and i is the
measured points from start to end with 1 meter interval.



Fig. 11: Improvement of proposed method compared against
existing approaches

When the user is prompted to perform momentary pause, the
sensor values drops to a 0 sequentially aligning to a stationary
IMU. Single path is defined as the path from starting point
to the returning point in one loop. Multiple path is the
repetition of the single straight path multiple times. Based
on the results garnered from the experiments, the accuracy
improvements can be computed as shown in the table in
Figure 11. With the proposed method, results show maximum
accuracy improvement of proposed method (Stationary IMU
+ QR Code) by 94.9% - level 2 (91.0% - level 4) and 42.9%
- level 2 (57.7% - level 4) over conventional method (IMU
only) and hybrid method (IMU + QR code), respectively.

IV. CONCLUSION AND FUTURE WORK

This paper has proposed a low cost novel stationary IMU
feature with QR code for indoor localization using smart-
phone embedded sensors with minimum extra infrastructure.
The proposed stationary IMU feature not only outperformed
existing algorithms by 94.9% and 57.7% as compared with
conventional method (IMU only) and hybrid model (IMU +
QR code) respectively. It helps to extend the distance between
each placed QR code in strategic locations and highlights the
practicality of the proposed method implementation since sub-
stantial amount of QR codes are deployed after the outbreak of
COVID-19 pandemic globally for safe entry check. In future,
the proposed method can also be evaluated at more complex
indoor environments including shopping malls. Augmented
and virtual reality with the Field of Vision (FOV) can also be
introduced to detect the most optimal angle of user scanning
the QR code navigation.
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