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A B S T R A C T   

Predictive species distribution models (SDMs) are becoming increasingly important in ecology, in the light of 
rapid environmental change. However, the predictions of most current SDMs are specific to the habitat 
composition of the environments in which they were fitted. This may limit SDM predictive power because species 
may respond differently to a given habitat depending on the availability of all habitats in their environment, a 
phenomenon known as a functional response in resource selection. The Generalised Functional Response (GFR) 
framework captures this dependence by formulating the SDM coefficients as functions of habitat availability. The 
original GFR implementation used global polynomial functions of habitat availability to describe the functional 
responses. In this study, we develop several refinements of this approach and compare their predictive perfor-
mance using two simulated and two real datasets. We first use local radial basis functions (RBF), a more flexible 
approach than global polynomials, to represent the habitat selection coefficients, and balance bias with precision 
via regularization to prevent overfitting. Second, we use the RBF-GFR and GFR models in combination with the 
classification and regression tree CART, which has more flexibility and better predictive powers for non-linear 
modelling. As further extensions, we use random forests (RFs) and extreme gradient boosting (XGBoost), 
ensemble approaches that consistently lead to variance reduction in generalization error. We find that the 
different methods are ranked consistently across the datasets for out-of-data prediction. The traditional sta-
tionary approach to SDMs and the GFR model consistently perform at the bottom of the ranking (simple SDMs 
underfit, and polynomial GFRs overfit the data). The best methods in our list provide non-negligible improve-
ments in predictive performance, in some cases taking the out-of-sample R2 from 0.3 up to 0.7 across datasets. At 
times of rapid environmental change and spatial non-stationarity ignoring the effects of functional responses on 
SDMs, results in two different types of prediction bias (under-prediction or mis-positioning of distribution hot-
spots). However, not all functional response models perform equally well. The more volatile polynomial GFR 
models can generate biases through over-prediction. Our results indicate that there are consistently robust GFR 
approaches that achieve impressive gains in transferability across very different datasets.   

1. Introduction 

As the complexity of questions related to conservation and ecosystem 
management begins to outstrip our ability to collect detailed spatial and 
temporal data (Fordham et al., 2016; Kindsvater et al., 2018), we have 
come to rely on more sophisticated statistical methodologies for inter-
polating between locations, times and taxonomic groups and for pre-
dicting into the future. Predictive models of species distributions, in 
particular, play an increasingly important role as organisms respond to 
accelerating changes in climate and land use (Evans et al., 2012; 

Houlahan et al., 2017; Maris et al., 2018; Mouquet et al., 2015; Sequeira 
et al., 2018; Travers et al., 2019; Yates et al., 2018). 

The demand for transferable models (i.e. models that can predict 
accurately in environments very different to those used for model fitting 
- Yates et al., 2018) has led to the realisation that statistical species 
distribution models (SDMs) are currently not fit-for-purpose, particu-
larly in the case of animal species (Austin, 2002; Bahn and McGill, 2013; 
Barbet-Massin et al., 2018; Márcia Barbosa et al., 2009; Dormann, 2007; 
Ehrlén and Morris, 2015; Randin et al., 2006; Tessarolo et al., 2021; 
Torres et al., 2015; Zurell et al., 2009). A key challenge with the 
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transferability of SDMs is that species, particularly animals, respond 
differently to a particular habitat depending on the availability of other 
habitats in their environment (Boyce and McDonald, 1999; Mysterud 
and Ims, 1999). Fig.1 in Matthiopoulos et al. (2011) illustrated this 
problem when a generalized linear model was applied using a simple 
animal in a particular environment. The model fits well in the same 
environment, but provides poor predictions of habitat use when placed 
in a different environment. This process, termed a functional response in 
habitat selection, is the result of complex mechanistic interactions be-
tween habitat availability and animal behaviour (Matthiopoulos et al., 
2011; Mauritzen et al., 2003; Mysterud and Ims, 1998). This is difficult 
to capture with standard statistical models because the estimated pa-
rameters of SDMs are specific to the environmental settings where these 
models were fitted. The consequence of functional responses is that 
unless the environmental context is explicitly taken into account, spatial 
predictions can be increasingly inaccurate as the prediction settings 
diverge from the model fitting environmental profiles (Paton and Mat-
thiopoulos, 2016). Functional responses in habitat selection are detect-
able in real datasets. Fig.6 in Bjørneraas et al. (2012) shows how moose 
in Norway used nine different habitat types based on relative habitat 
availability. Two species of birds show positive functional responses to 
three treatments of habitat (see Fig.2 and Table3 in Gillies and St. Clair 
(2010)). Functional responses to pastures were detected in a telemetry 
dataset containing 62 red deer in Norway (Godvik et al., 2009). When 
pasture was rare, the selection of pastures was increased, but the se-
lection of pasture decreased with increasing pastures availability 
(Godvik et al., 2009). Functional responses are detectable by many 
different methods, but the exact nature of the response depends on the 
statistical methodology that is used to capture it. For example, two 
species of conservation concern, Canada lynx in the United States and 
woodland caribou in Canada, were used to evaluate four different 
functional response approaches (Holbrook et al., 2019). Habitat use in 
the additive scale, habitat use model in the multiplicative scale, habitat 
selection with resource selection function RSF, and habitat selection 
with the interaction of RSF. There was a variation among these ap-
proaches with regard to evaluating the functional response (see Fig.3 in 
Holbrook et al., 2019). Some approaches show increases in habitat use 
by Canada lynx with increasing advanced regenerating forest avail-
ability while other approaches show the opposite effect. Some ap-
proaches demonstrated no functional response. The same variation in 
results occurred when testing woodland caribou habitat use in response 
to linear features. Differences resulting from different implementations 
highlight the importance of investigating the robustness of functional 
response models, our objective in this paper. 

Different approaches have been proposed to model functional re-
sponses in habitat selection, ranging from single-habitat models of usage 
as a function of availability (Mysterud and Ims, 1998) to writing SDM 
coefficients as functions of the availability of all habitats (Boyce and 
McDonald, 1999). The need to account for functional responses is clearly 
demonstrated by the efficacy of approaches that do not use any model of 
functional response but simply recognise the distinction between 
different environmental scenarios by means of random effects (Gillies 
et al., 2006). The generalized functional response GFR approach (Mat-
thiopoulos et al., 2011) uses a function of availability to represent the 
SDM’s coefficients. The coefficients of the GFR are modeled by functions 
of local habitat availability using a polynomial function approach 
(Matthiopoulos et al., 2011; Matthiopoulos et al., 2019). The GFR model 
is ultimately structured using the local value of the habitat covariates, 
moments (e.g., the means) from the distribution of the habitat cova-
riates, and the pairwise interactions between these terms (Matthiopou-
los et al., 2011). The GFR is an example of a varying-coefficient model, 
an extension of generalized regression models with coefficients written 
as functions of other variables (Hastie and Tibshirani, 1993). 

The approach taken in Matthiopoulos et al. (2011) was to model 
changes in each of the SDM coefficients via a global polynomial, moti-
vated by the fact that under fairly general regularity conditions, any 

smooth function can be approximated by a Taylor series. The practical 
problem, however, is that this power series expansion with its poly-
nomial coefficients has to be learned from data. Taking a high poly-
nomial order leads - for limited and noisy data - to potential over-fitting 
(and poor transferability). Standard approaches therefore aim to find the 
adequate degree of model complexity, e.g. via cross-validation or based 
on information criteria, such that for small data sets and high noise 
levels, less complex models are preferred. 

However, for a global polynomial function, controlling model 
complexity e.g. by restricting the number of adjustable model parame-
ters, implies a truncation of the polynomial order and a limitation of the 
degree of non-trivial differentiability. This is methodologically incon-
sistent: the highest polynomial order and the degree of non-trivial 
differentiability are an intrinsic feature of the systems under investiga-
tion and must not be dictated by the quantity and quality of the available 
data. The aim of the present paper is to build on the GFR approach 
proposed by Matthiopoulos et al. (2011), by replacing the global poly-
nomial expansion by several more recent methods from multivariate 
statistics and machine learning such that the logical inconsistency out-
lined above is avoided. 

To address the limitations of the original GFR model proposed in 
Matthiopoulos et al. (2011), we adapt three state-of-the-art flexible 
regression paradigms to model the habitat selection coefficients. The 
first approach is based on a radial basis function (RBF) expansion, as e.g. 
reviewed in Chapter 5 of Bishop (1995), and we refer to this model as the 
RBF-GFR model. Next, we combine classification and regression trees 
(CART), reviewed e.g. in Chapter 9 of Hastie et al. (2008) or Section16.2 
in Murphy (2012), with both the original GFR model and our RBF-GFR 
model. We refer to these models as GFR-CART and RBF-GFR-CART, 
respectively. We finally create model ensembles, based on random for-
ests (RFs) trained with bagging (see Chapter 15 in Hastie et al., 2008) or 
boosting (see e.g. Chapter 16 in Hastie et al., 2008 or Section16.4 in 
Murphy, 2012). We refer to these ensembles with the suffix “RF” or 
“XGBoost”. An overview of our methods can be found in Fig. 1. The 

Fig. 1. A diagram showing the relationship between all models proposed in this 
study. The orange boxes refer to the GFR model and the extensions of the GFR 
model while the pink boxes are the RBF-GFR model and its extensions. The gray 
boxes are the methods that were used to combine to the GFR and RBF- 
GFR models. 
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current work is based on preliminary work published in two conference 
proceedings (Aldossari et al., 2020; Aldossari et al., 2021) with sub-
stantial methodological expansion and new applications. 

Our article is structured as follows: We review the original GFR 
model from Matthiopoulos et al. (2011) in Section 2 and describe our 
new methods in Section 3. Details of study design, investigations and 
performance evaluation can be found in Section 4. Section 5 provides an 
overview of two simulated and two real-world data sets used for a 
comparative evaluation of the various methods. The results of this 
evaluation are presented in Section 6. We finish with our general 
dissection and conclusions in Section 7. To keep the main text suffi-
ciently concise, we have relegated some methodological details along 
with more comprehensive simulation results to the online Supplemen-
tary material. 

2. Background 

To explain GFRs more precisely, we need to introduce this class of 
models mathematically, starting from the basic form of modern SDMs. 
Both of the dominant methods for modelling species distributions 
Maximum Entropy (Phillips et al., 2006) and Resource Selection Func-
tions (Boyce and McDonald, 1999) use the exponential formulation of a 
predictor function of environmental covariates x = (x1,…, xI) to 
describe the association between a species and its environment: 

h

(

x

)

= exp

(
∑I

i=1
βixi

)

(1)  

where h(x) denotes habitat preference and the coefficients βi are 
assumed fixed. Although the summand shown above is the prototypical 
expression for a linear predictor, the approach may be augmented with 
customary extensions such as higher-order polynomial terms, in-
teractions, or generalised additive terms. The coefficients of the linear 
predictor are either estimated by likelihood (e.g., RSFs) or entropy 
criteria (e.g., MaxEnt), and they are fitted to different types of data (e.g., 
telemetry, survey etc.) by different link functions. Modern inference has 
unified all the existing approaches to different types of data under the 
framework of Inhomogeneous Point Processes (IPP), and has therefore 
tended to interpret the quantity in Eq. (1) as the intensity function of the 
IPP (reviewed in Matthiopoulos et al., 2020a). 

Habitat selection models formalized in this way are known to have 
low transferability to new environmental scenarios (Boyce and McDo-
nald, 1999; Mysterud and Ims, 1999). The predictions from Eq. 1 rely on 
the assumption that organisms use habitats in proportion to their pref-
erence and that preference does not change when habitat availability 
changes. This assumption is born of statistical convenience, not bio-
logical reality. In practice, any changes in habitat availability lead to 
disproportionate changes in a species’ response, a phenomenon known 
as a functional response in resource selection (Mysterud and Ims, 1998). 

Boyce and McDonald (1999) argued that functional responses could 
be captured by relaxing the stationarity of the fixed coefficients βi ∈ R. 
They proposed in particular that multiple sampling instances (e.g., 
different home ranges from multiple individuals) are examined, to see 
how the coefficients of the SDM shift in response to changes in habitat 
availability from one sampling instance to the other. Hence, in their 
original GFR model, Matthiopoulos et al. (2011) pooled data from 
multiple sampling instances and allowed the βi to vary as flexible 
functions γi(x) weighted by habitat availability fb(x). In the case of 
continuous environmental space: 

βi,b =

∫

γi

(

x
)

fb

(

x
)

dx, (2)  

where fb(x) is a probability density function describing the availability 
of habitat x in the bth sampling instance. A sampling instance represents 
an environmental scenario defined in a biological way as the environ-

ment experienced by the study animals during an appropriate spatio-
temporal frame of accessibility (Matthiopoulos et al., 2020b). For 
example, a sampling instance could represent the spatial domain of a 
well-mixing subpopulation during a given year. A sampling instance 
could represent different years for the same population or different sub- 
populations in the same year (i.e., a space-for-time substitution in 
sampling effort is possible). An approximate, discretised version of this 
formulation, uses summation: 

βi,b =
∑N

n=1
γi

(

xn

)

fb

(

xn

)

, (3)  

where n encodes for a specific habitat. Intuitively, the function γi(x)
describes the change in the SDM’s slope for the ith covariate (i.e., βi,b), 
generated by a unitary increase in the availability of the nth habitat type. 

Matthiopoulos et al. (2011) used a polynomial function to formulate 
the γi(x) for each environmental variable (x): 

γi

(

x

)

=
∑I

j=1

∑Mj

m=0
δ(m)

i,j xm
j (4)  

where the coefficient of γi(x) for the mth power of the jth variable is δ(m)

i,j . 
This derivation leads to the following expression for the β’s: 

βi,b = γi,0 +
∑I

j=1

∑Mj

m=0
δ(m)

i,j E
[
Xm

j

]

b
(5)  

where Mj is an integer order parameter and E[Xm
j ]b is the mth moment of 

the covariate j calculated for the conditions prevailing in the bth sam-
pling instance. Furthermore, γi,0 is an intercept corresponding to the 
scenario of zero expectations. If at least the first two moments of X are 
zero (corresponding to zero mean and variance for X), this implies that 
the environmental variable has its baseline value, uniformly across 
accessible space. 

Let z denote a vector composed of all elements {xm
j } and {E[Xm

j ]b}. 
Using the polynomial function approach described above, habitat pref-
erence h(z) can be expressed as a function of fixed effects of covariates 
and pairwise interactions between covariates and their moments: 

h

(

z; θ

)

= exp

{

γ0,0 +
∑I

i=1

(
∑Mi

m=0
δ(m)

0,i E
[
Xm

i

]

b + γi,0xi + xi

∑I

j=1

×
∑Mj

m=0
δ(m)

i,j E
[
Xm

j

]

b

)}

(6)  

where θ is a parameter vector composed of the parameters γi,0 and δ(m)

i,j . 
The vector z combines habitat variables xi and their expectations E[Xm

i ]. 
Although the GFR model has been shown to achieve better predictive 
performance than the conventional GLM model of Eq. (1), it suffers from 
various limitations. The degree of nonlinear complexity and smoothness 
is restricted in advance: the functions in Eq. (6) are only Mj times 
differentiable, where the Mj

′s are the highest polynomial orders. A 
complex function with a high degree of differentiability thus requires a 
large number of parameters, which renders the approach susceptible to 
over-fitting. Restricting the maximum polynomial order commensu-
rately with the training set size leads to the paradox situation that the 
functional complexity of the habitat preference coefficients, which is an 
inherent property of the species and the habitat under investigation, 
becomes contingent on the arbitrariness of the data acquisition process. 
Moreover, while the degree of smoothness and model complexity is 
allowed to vary with respect to the choice of environmental variable, it 
is assumed to apply globally to the entire input domain. 
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3. Methods 

The shortcomings described in the previous section are well-known 
in the statistics and machine learning communities, and various flex-
ible regression methods have been developed to address them (see e.g., 
Hastie et al., 2008). In the following section, we review three such so-
lutions, based on basis function expansions, regression trees and model 
ensembles. We then describe how we have adapted them to improve the 
transferability of SDMs. 

3.1. A Radial Basis Function (RBF) model 

A radial basis function (RBF) expansion is a widely used flexible 
regression approach that disentangles the number of adaptable param-
eters (defined by the number of basis functions) from the degree of 
differentiability (determined by the functional form of the basis func-
tions). For a review, see e.g. Chapter 5 in Bishop (1995). 

Instead of the polynomial function that was used in the original GFR 
model, we use a basis function expansion to model the generalised 
functional response coefficients γi(x) : 

γi

(

x

)

=
∑

j

∑Mj

m=0
δ(m)

i,j ϕ

(

xj, θj,m

)

=
∑

j

∑

m
δ(m)

i,j ϕ

(

xj, θj,m

)

(7)  

where ϕ is a basis function (e.g. splines, wavelets, basis functions of a 
reproducing kernel Hilbert space, etc.) with parameters θj,m, chosen to 
represent known functional characteristics, and the sum over m going 
from 0 to Mj. 

We choose the following standard radial basis function (RBF) for 
γi(x) (see Bishop, 1995): 

γi

(

x

)

=
∑

j

∑

m
δ(m)

i,j exp

(

−
1
2

(
xj − ξj,m

)2

σ2
j,m

)

(8)  

where ξj,m is the center of the mth basis function for the jth covariate and 
σj,m is its bandwidth parameter. We follow Matthiopoulos et al. (2015) 
and model the probability distribution f(x) (i.e., the habitat availability 
characterising a sampling instance) with a Gaussian mixture model: 

f

(

x

)

=
∑K

k=1
wkN

(

x|μk,Ck

)

(9)  

where K is the number of mixture components, wk is the mixing weight 
of the kth component, μk defines its centre and Ck is the covariance 
matrix. We assume that it is implied that f , wk, μk and Ck are all specific 
to a sampling instance, and therefore that the subscript b is omitted for 
all these quantities, to simplify notation. 

These modelling choices for γi(x) and f lead to the following 
expression for the habitat selection coefficients of the SDM (see Sup-
plementA.1 for a derivation): 

βi = γi,0 +
∑

j

∑

m
δ(m)

i,j Ij,m (10)  

A comparison with Eq. (6) shows that the new RBF-GFR model replaces 

E
[
xm

j

]

b 
from the original GFR model in Matthiopoulos et al. (2011) by 

Ij,m: 

Ij,m =
∑

k
wk

σj,m
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
σ2

j,j + σ2
j,m
)√ ⋅exp

[

−
1
2

((
μj,k − ξj,m

)2

σ2
j,j + σ2

j,m

)]

(11)  

Defining z sightly differently from before in order to account for that, 
namely composed of all elements in {xi} and {Ij,m}, and inserting Eq. 
(10) into (1), we get the following model of habitat preference: 

h

(

z; θ

)

= exp

{

γ0,0 +
∑I

j=1

∑Mj

m=0
δ(m)

0,j Ij,m +
∑I

i=1

(

γi,0 +
∑I

j=1

∑Mj

m=0
δ(m)

i,j Ij,m

)

xi

}

(12)  

The parameters of the RBFs, ξj,m and σj,m, need to be determined in 
advance to find Ij,m in Eq. (11). Various methods have been suggested in 
the literature; see e.g. Bishop (1995). We set the centres of the basis 
functions ξj,m’s of the jth environmental covariate to be the quantile of 
the jth environmental covariate. The bandwidth parameter σj,m is the 
larger of the differences between the m-quantile and (m − 1)-quantile 
and the difference between the (m + 1)-quantile and m-quantile. For 
example, if the number of basis functions is 3, then the first quantile, 
median, and the third quantile are the centres of the basis functions. 
Specifically, σj,2 is the larger of the difference between the first and 
second quantiles and the difference between the second and third 
quantiles. We note that the vector z, which characterizes the habitat, is 
usually given a separate subscript, zk, where k denotes a particular plot 
or geographical patch where species counts are taken. We have avoided 
this subscript in the present section to avoid clutter in the notation, but 
will make use of it in subsequent sections. 

3.2. Calibration and regularization 

The original GFR and RBF-GFR models are types of GLMs whose 
parameters can be estimated via maximum likelihood (ML) (Hastie 
et al., 2016). In the GFR and RBF-GFR models, the ML approach aims to 
maximize the likelihood function L(θ, z, y) where θ is a parameter vector 
composed of the parameters γi,0 and δ(m)

i,j in Eq. (6) for the GFR model and 
Eq. (12) for the RBF-GFR model. Note that z is a vector combining 
habitat variables xi and either their expectation values, E

[
Xm

i
]
, or the 

derived quantities Ii,m defined in Eq. (11). The variables zi are readily 
available from the observed data. On fitting a Gaussian mixture model to 
the explanatory data, we obtain the quantities Ii,m from Eq. (11). The 
vector y = (y1,…, yN) contains species observations, where N denotes 
the number of patches where species counts are taken. Depending on the 
study, the elements of this vector, yn, can be binary use/availability 
indicators or count data. The equivalence between grid count, use- 
availability and point-process data has been demonstrated in the liter-
ature, on the basis of their corresponding likelihood functions (Aarts 
et al., 2012; Renner and Warton, 2013; Warton and Aarts, 2013; Warton 
and Shepherd, 2010). Although some of the datasets we used in this 
study took the form of binary (0/1) values, they were nevertheless 
equivalent to abundance models. Our analyses stayed firmly in the area 
of abundance rather than occupancy models. Occupancy models (the 
recording of the presence of a species, regardless of its abundance) also 
results in binary data, but involve loss of information on abundance and 
although they are a widely used type of analysis (MacKenzie et al., 
2017), they pose additional analytical challenges that were outside the 
remit of this paper. 

To optimize the vector parameter θ in Eq. (6) for the original GFR 
model and Eq. (12) for the RBF-GFR model using the maximum likeli-
hood estimator, we have to find the values of the model parameters that 
maximize the likelihood function L(θ, z,y). 

If the response variable for a data set is a binary species use/avail-
ability indicator, that is yn ∈ {0,1}, the Bernoulli model is used in each 
site with probability of use p = Pr(y = 1|z; θ) and probability of avail-
ability 1 − p = Pr(y = 0|z; θ) where: 

p = Pr(yn = 1|zn; θ) =
1

1 + e− h(zn ;θ) ;

Pr(yn = 0|zn; θ) = 1 − p
(13)  

where the subscript n denotes a geographical patch or plot where species 
counts are taken. The log likelihood is: 
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l

(

θ, z, y

)

=
1
N

∑N

n=1
logPr

(

yn|zn; θ

)

(14)  

For species abundance levels, the Poisson distribution is used with mean 
parameter equals to h(z; θ) in Eq. (6) for the GFR model and Eq. (12) for 
the RBF-GFR model. If yn is the number of species in cell n, then the log 
likelihood is: 

l

(

θ, z, y

)

=
∑N

n=1
log
(

h(zn; θ)yn e− h(zn ;θ)

yn!

)

(15)  

Further note that for GLM-type models the ML equations have no closed- 
form solution, and an iterative optimization algorithm is therefore 
applied; see e.g. Section 4.3.3 in Bishop (2006) for details. 

Parameter estimation with ML can be susceptible to over-fitting, 
especially for sparse and noisy data. This can be addressed with regu-
larization, where a penalty term that quantifies model complexity is 
added to the log likelihood; see e.g. Section 3.2 in Bishop (2006). A 
particular form of regularization is ridge regression, where the model 
coefficients are shrunk towards smaller values by altering the ML cri-
terion to include a penalty term based on the weighted L2 norm of the 
parameter vector: 

l
(
θ, z, y

)
− λ‖θ‖2 (16)  

The weighting factor λ is a regularization parameter (see e.g. Platt, 
1999) which needs to be optimized. In the present work, we repeated the 
iterative optimization of the objective function in Eq. (16) for 100 
discrete candidate values of λ chosen from a vector of equidistant values 
(Hastie et al., 2016), and then selected the value that minimizes the 
Bayesian information criterion (BIC) (Schwarz, 1978) as an established 
model selection score. 

3.3. Classification and Regression Trees (CART) 

To increase the flexibility of the previously discussed models, we 
integrate them into a classification and regression tree (CART). CARTs, 
originally proposed by Breiman et al. (1984), are based on a divide-and- 
conquer strategy, whereby the data space is divided into subsets defined 
by the decision rules of a bifurcating tree. The inner nodes of the tree, 
also called decision nodes, compare the values of selected input vari-
ables against certain decision thresholds. This confers a cybernetics-like 
interpretable logical structure to the model, which aids interpretability 
and explainability. All the decision rules, including the selection of 
variables and decision thresholds, are systematically learned from the 
data. For the corresponding statistical inference methods and regulari-
zation techniques (to prevent overfitting), we refer the reader to the 
statistical literature (e.g. Breiman et al., 1984 and Hastie et al., 2008). 
We also include a more detailed summary in SupplementA.2. 

3.4. Random forests, bagging and boosting 

We can combine classification and regressions trees into a model 
ensemble called a “random forest”. This is based on the insight that the 
expected out-of-sample prediction error can be decomposed into a bias 
and a variance component (see e.g. Section 3.2 in Bishop (2006)), that 
for a flexible model, like CART, the main contribution to this error comes 
from the variance term, and that this variance term can be reduced in a 
model ensemble, provided the models are sufficiently uncorrelated (see 
e.g. Section14.3 in Bishop, 2006). 

To reduce the correlations between the individual members of the 
ensemble, we follow the “bootstrapping and aggregating” procedure 
proposed by Breiman (2001), also called “bagging”, whereby CART 
models are repeatedly trained on different independent bootstrap rep-
licates, and then aggregated in a model ensemble, via voting (for clas-
sification) or averaging (for regression). To further decrease the 

correlation between the individual CART models, the split rules at the 
inner nodes of the trees are limited to randomly selected subsets of the 
features as candidate sets. For further details, see Breiman (2001) and 
Chapter 15 in Hastie et al. (2008). In our work, we propose a new variant 
of random forests, where each leaf node of the trees in the ensemble is a 
GFR or GFR-RBF model. 

An alternative to bagging is boosting, where the models in the 
ensemble are trained sequentially, using a weighted form of the data, 
where the weights depend on the previous model such that misclassified 
or poorly predicted instances get greater weights. For further details, see 
e.g. Section14.3 in Bishop (2006) or Chapter 10 in Hastie et al. (2008). 
The boosting variant we use in our work is extreme gradient boosting 
(XGBoost), proposed by Chen and Guestrin (2016). 

While the ensemble size for bagging is not particularly critical, 
provided it is sufficiently large (500 is a widely used default value), it 
does matter for boosting. In XGBoost, large ensemble sizes can cause 
over-fitting because the gradient technique focuses on the most difficult 
cases, which can be due to noise. To avoid the over-fitting issue in 
XGBoost, we use a nested k-fold cross-validation scheme. We split each 
dataset into 3 subsets: the tuning set (k-2 folds), validation set (1-fold), 
and test set (1-fold). For each choice of number of iterations and each 
fold, we train the model on the tuning set and monitor the performance 
on the validation set by calculating the out-of-sample prediction accu-
racy and taking the median of k-1 folds. This gives us k medians for each 
number of iterations, as explained in Algorithm1 and shown in Fig.S2 in 
SupplementA.3.  

Algorithm1 Optimize the iteration number 

1: procedure SPLIT THE DATASET TO K FOLDS (state)
2: for each k-1 folds do 
3: for each number of iterations do 
4: Split the dataset to datasets: k-2 folds (tuning set), and 1-fold (validation 

dataset) 
5: Train the model using the tuning set and the number of iterations. 
6: Predict using the 1-fold validation set. 
7: Calculate the out-of-sample R2. 
8: Calculate the median of k-1 out-of-sample R2’s for each number of iterations to 

pick the best number of iterations. 
9: return a matrix of medians for each fold (k folds) in rows and each number of 

iterations in columns.  

4. Simulations and evaluation 

4.1. Study design and investigations 

In the first part of the comparative model assessment study, the 
original GFR model, reviewed in Section 2, was compared with the 
proposed RBF-GFR model described in Section 3.1. Both models depend 
on different complexity parameters. For the GFR model, it is necessary to 
define the polynomial order, as seen from Eq. (5). For the RBF-GFR 
model, we need to decide on the number of Gaussian mixture compo-
nents, see Eq. (9), and the number of RBF basis functions, as seen from 
Eq. (11). We repeated the iterative optimization of the objective func-
tion from Eq. (12) for different choices of these complexity parameters, 
and then picked the one that minimized model selection score (BIC). For 
the number of Gaussian mixture components, we found the number of 
components that minimize the BIC score for each block, then used the 
average of the number of components of all blocks as the optimal 
number of Gaussian mixture components for the RBF-GFR model and its 
extensions. 

For the best parameters thus selected, we compared the test set ac-
curacies, quantified in terms of out-of-sample R-square scores, for the 
original GFR and the proposed RBF-GFR model. 

CART and RF models were combined with the original GFR and RBF- 
GFR models, and all models were then compared against the original 
GFR and RBF-GFR models, as shown in Fig. 1. A standard CART algo-
rithm, where each leaf is a separate GFR model or RBF-GFR model, was 
applied in each case, and the cost function in Eq. (27) in SupplementA.2 
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was used to grow the tree and find the best split variable for each iter-
ation of the optimization algorithm. The tree was then pruned using 10- 
fold cross-validation based on the training set. The habitat usage of the 
test set was then predicted to measure the out-of-sample prediction 
scores. For the RF model, the number of trees had to be selected, as 
described in Section 3.4. In this case, a baseline of 500 trees was set, 
where each leaf in each tree was a separate original GFR model or RBF- 
GFR model. 

The XGBoost model was used in combination with the original GFR 
and RBF-GFR models over several different numbers of iterations {2, 5, 
10, 15, 20, 40, 80, 100, 200, 300, 400, 500}; Algorithm1 was then used 
to determine the best number of iterations of XGBoost for use in all 
subsequent applications. 

A comprehensive comparative evaluation of the methods discussed 
in this paper was carried out, with results as shown in Fig. 1 and TableS1 
in SupplementA.4. 

To summarise the comparative model assessments study, the models 
were then ranked by performance for each of the four data sets in turn, 
generating a “league table” of models. This table thus offers the ranks of 
all the models included in the study, as shown in Fig. 1. Based on the 
need to assess the quality of predictions, the predictions of animal 
habitat usage derived from the models used were presented in spatial 
maps and further visualisations of species abundance were generated. 

4.2. Performance evaluation 

To measure the out-of-sample performance (and hence, the trans-
ferability) of different models, we used the standard out-of-sample R2 

score, obtained by splitting the data set into two parts, for training and 
testing. The metric is defined as: 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)2

, (17)  

where yi are the observations in the test set, y is their mean, and ŷi are 
the model predictions. We used k-fold cross-validation to calculate the 
R2 score in this way, and summarised the performance by calculating the 
median out-of-sample R2 score, obtained from all folds, as a more robust 
alternative to the mean (Leys et al., 2013). For species abundance 
counts, the following modified score based on the residual deviance is 
preferred, as discussed in Colin Cameron and Windmeijer (1996): 

R2
DEV = 1 −

∑n

i=1

{

yilog
(

yi
/

ŷi

)

−

(

yi − ŷi

)}

∑n

i=1
yilog

(

yi
/

y
) , (18)  

In addition, the median-absolute deviation (MAD) of the out-of-sample 
R2 scores was used to measure the variability of the R2’s obtained 
from each fold. MAD is more robust to outliers than the more widely 
used standard deviation. To aid interpretability, we follow the standard 
approach and apply a scale factor of c = 1.4826 to make the MAD 
identical to the standard deviation for normally distributed data (Leys 
et al., 2013): 

MAD = median
(⃒
⃒
⃒R2 − R2

∼ ⃒
⃒
⃒

)
× c  

where R2
∼

is the median of out-of-sample R2 scores. 
Finally, we used the pseudo R2 score to measure the proportion of the 

total variability explained by the model as follows: 

R2
P = 1 −

Residual Deviance
Null Deviance

= 1 −
2l(θc, z, y) − 2l(θ, z, y)
2l(θc, z, y) − 2l(θ0, z, y)

, (19)  

where Residual Deviance is twice the difference between the log- 
likelihood of the full model l(θc, z, y) and the proposed model l(θ, z, y)
whereas Null Deviance is twice the difference between the log- 
likelihood of the full model and the null model l(θ0, z, y) (Smith and 
McKenna, 2013). The null model consists of the intercept only where it 
corresponds to the scenario of zero expectations for the GFR model or Ij,m 

in Eq. (11) for the RBF-GFR model. The full model is where the number 
of parameters is equal to the number of data points. 

5. Data 

We applied all modelling approaches to four distinct datasets, out-
lined in Table 1. 

5.1. Simulated datasets 

5.1.1. Simulated dataset in Matthiopoulos et al. (2015) 
Test data for this paper were derived from multiple simulated in-

stances, each representing subpopulations of a species living in different 
landscapes. Each instance was obtained from a realisation of an 
individual-based simulation within a small (50x50 cell) spatial arena, 
where rudimentary energetics gave rise to simple demographic pro-
cesses and population dynamics. Two spatially autocorrelated environ-
mental variables (food, designated as a resource and temperature, set as a 
condition) were distributed across the arena. Individuals were pro-
grammed to move up gradients of environmental profitability (i.e., food 
richness moderated by temperature) and their movement was subject to 
perception error. The population size (N) associated with the entire 
sampling instance was also included to capture any density-dependent 
effects on the distribution of the animals. 

The data set contained 20 landscape scenarios whose dynamics were 
modelled over 20 years, yielding 400 different sampling instances. 
Different subsets of this data set could thus be used to emulate realistic 
scenarios for sample size across time and space. 

5.1.2. Simulated dataset from Matthiopoulos et al. (2011) 
This dataset contains a simpler version of the above individual-based 

data that looks at only two resources (e.g., food and cover), deemed to be 
required in alternation. This simulation considered no demography or 
density-dependence. The simulated animals in this simplified version of 
the IBM climbed up gradients of food when they were hungry and then 
climbed up gradients of cover when they were sated. Feeding occurred 
through a Holling type II model (Matthiopoulos, 2011). 

Table 1 
Overview table of the datasets including the habitat variables, number of sample instances, and data size.  

Dataset Habitat variables Sample number Data size 

Simulated Dataset in Matthiopoulos et al. (2015) Food, temperature, and population size 400 200,000 
Simulated Dataset in Matthiopoulos et al. (2011) Food, and cover 20 50,000 
Sparrow Grass, bush, roof, and colony size 32 1,280 
Wolf Distance to high human use, distance to edge, slope, burnt, alpine, shrub, rock and herbaceous 11 18,042  
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5.2. Real-life datasets 

5.2.1. Sparrow population dataset 
The sparrow data set comprised habitat use and population size data 

first analysed in Matthiopoulos et al. (2019). These data were collected 
by the UK Royal Society for the Protection of Birds (RSPB) and the 
University of Glasgow during the breeding season in 2014 from 32 
colonies in the United Kingdom. The sparrow habitat use variable in the 
data is represented by values of 1 and 0 based on the presence of a 
sparrow in each cell (strictly, a count, not an occupancy variable). The 
three main variables in the dataset, the estimated percentages of grass, 
bush, and roof for each cell were captured from Google Earth images. The 
response variables for this data set are binary count data, and the 
binomial log likelihood seen in Eq. (14) was thus used when fitting the 
original GFR model and the RBF-GFR model to the data using the habitat 
variables grass, bush, and roof as the main covariates in the models, along 
with colony size, set as count of the maximum number of males measured 
in each colony, which was used as an additional explanatory variable. 

5.2.2. Wolf dataset 
The dataset on telemetry of habitat use by wolves was used in 

Mathiopoulos et al. (2011) to fit the original GFR model. The analysis 
employed a use-availability approach representing response data as 
either 0 or 1. These data cover 11 wolves, that were members of five 
different packs. The dataset comprised three continuous variables, dis-
tance to high human use, distance to edge, and slope, and represented 
landcover as a factor with levels for burnt, alpine, shrub, rock, and 
herbaceous. 

6. Results 

The results from applying all the models included in the study, as 
shown Fig. 1 for the first simulated, second simulated, sparrow and wolf 
datasets are summarized in Fig. 2 and the details can be found in 
SupplementsA.5–A.8. 

6.1. Model ranking 

The models were then ranked by performance for each of the four 
data sets in turn, as shown in Fig. 2. This table thus offers the ranks and 
the detailed out of data performance of all the models included in the 
study, as shown in Fig. 1. While none of the individual models consis-
tently outperformed all other models across all data sets, a pattern did 
emerge whereby the ensemble methods, which use bagging or boosting 

for the creation of random forests, tend to outperform all other models as 
a class (namely the “class” of ensemble methods, as opposed to indi-
vidual models). In particular, the combination of the proposed RBF-GFR 
and GFR models with bagging, as represented by the two models shown 
in the top rows of Fig. 2, consistently achieve ranks in the top 40% of the 
performance spectrum. This offers evidence of more stable performance 
than the non-ensemble models, while the latter show higher variability, 
as exemplified by the regularised RBF-GFR model, which appears as the 
best model for the second simulated data set, but as the third-worst 
model for the first simulated data set. Regularization was not applied 
to the individual models included in the ensembles, with the results thus 
suggesting that, in terms of improving out-of-sample generalisation 
performance, model averaging over ensembles offers an alternative to 
regularisation, confirming similar findings in Machine Learning litera-
ture (Sollich and Krogh, 1996). The combination of the proposed RBF- 
GFR model with random forests (RBF-GFR-RF) produced the best 
model overall, consistently achieving a place in the top three perfor-
mance rankings. An important additional finding was that almost all the 
methods proposed in this study outperform the original GFR model from 
Matthiopoulos et al. (2011), which was the initial aim motivating the 
present work. As shown in Fig. 2, the GFR model never achieves a rank 
better than 6. R2

DEV in Eq. (18) is generally a better behaved measure-
ment than R2 in Eq. (17) for count data as described in Section 4.2. We 
used R2

DEV to calculate the out-of-sample predictive performance in these 
datasets as shown in Fig.S9 in SupplementA.9. However, the overall 
ranks using R2

DEV are not different from the overall ranks using R2 in Eq. 
(17) (comparing the average rank in Fig. 2 with ranks in Fig.S9 in 
SupplementA.9). 

6.2. Visualising spatial predictions of models 

The predictions of animal habitat usage derived from the models 
were presented in spatial maps and further visualisations of species 
abundance were generated using the second simulated dataset, which 
contained 20 sample instances, each containing 2,500 observations (50 
x 50 arena). One map was reserved from the cross-validation scheme 
and predicted from the rest of the data. Predictions for sampling instance 
# 1 is shown for illustrative purposes in the main text, along with further 
results in in SupplementA.12. 

Fig. 3 shows a heat map of species abundance and geographical 
predictions of abundance in terms of latitude and longitude for the 
ground truth and the various models shown in Fig. 1. 

These results suggest that the RBF-GFR-RF model, which is overall 

Fig. 2. Rank table of out-of-sample R2’s of the models using the two simulated, sparrow, wolf datasets and the average score of out-of-sample R2. The shading of 
colours indicates the ranks of the models. For each column, the colour shading ranges from yellow to dark red, with yellow indicating the lowest score in the 
respective column, and dark red indicating the maximum value. 
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the best model according to Fig. 2, also offers the best qualitative 
agreement with the ground truth for predicted spatial abundance pro-
files. The RBF-GFR-RF predictions faithfully reproduce the high- 
intensity hotspots near the top right corner of the map, around co-
ordinates (0.8,0.8), as well as those near the left margin, around co-
ordinates (0.2,0.4). The alternative models also tend to qualitatively 
capture the ground truth pattern, but these display larger deviations. For 
instance, the GLM model shows reasonable agreement with the ground 
truth, i.e. when plotted on the same scale as the ground truth; however, 
on its individually adjusted intensity scale (Fig. 4), the GLM predictions 
are systematically lower than the ground truth values, implying that the 
GLM model systematically underestimates extremes, while the GFR 
model shows an opposing trend, systematically overestimating ex-
tremes, as indicated by the white patches in Fig. 4. Furthermore, the out- 
of-sample R2 scores shown in Table 2 of sample instance # 1 for the 
various models used to predict the heat maps in Figs. 3 and 4 illustrate 
our finding from the heat maps where the RBF-GFR-RF score is higher 
than the scores of other models. 

6.3. Variable ranking 

Colony size, measured by the maximum number of males in each 
colony, is the most important feature for the sparrow population, which 
was determined using the best two models overall, the RF approach in 
combination with the GFR and RBF-GFR models. The percentage of bush, 
on the other hand, has the lowest importance score compared to the 
other main variables, as seen in Fig. 5. The importance scores were 
calculated using the mean decrease in accuracy from permuting out-of- 
bag data; the mathematical details for this calculation can be found in 
Han et al. (2016). Both features positively affect the habitat suitability of 
the sparrows based on the GFR and RBF-GFR models. 

For the wolf dataset, using the RF approach in combination with the 

RBF-GFR model, “distance to high human use” is the most important co-
variate, positively affecting the wolves’ habitat preference. The slope 
and distance to edges strongly influence habitat preference; decreasing 
the slope or increasing the distance to edge increases habitat preference. 
In contrast, rocks have the lowest impact on the wolves’ habitat pref-
erence, as seen in the right panel of Fig. 6. However, the slope is more 
important than the distance to human use based on the RF approach in 
combination with the GFR model, as seen in the left panel of Fig. 6. 

7. Discussion and conclusions 

Given their extensive applications to questions of anthropogenic 
change (Iturbide et al., 2018) it is imperative that the predictive ability 
of SDMs be assessed by transferring models built in one region or time to 
another spatiotemporal frame where the prevailing environmental 
conditions are different, and possibly outside the range of covariate 
values previously measured (Duque-Lazo et al., 2016; Elith and Leath-
wick, 2009). The discrepancy between phenomenological models and 
the complex biological mechanisms they try to capture leads to the ex-
istence of highly non-linear functional responses in species-habitat as-
sociations (Mysterud and Ims, 1998). These are especially complicated 
in the cases of animals with higher mobility and cognition. Despite the 
increasingly recognised challenges of model transferability (Petitpierre 
et al., 2017; Yates et al., 2018; Wenger and Olden, 2012; Peterson et al., 
2003; Randin et al., 2006; Townsend Peterson et al., 2007; Márcia 
Barbosa et al., 2009; Sundblad et al., 2009; Wenger et al., 2011), 
particularly for purely statistical models such as SDMs, there is a dearth 
of methods for functional responses in SDMs and a lack of comparative 
validation of such methods with synthetic and real data. 

Here, we have built on the suggestions of Boyce and McDonald 
(1999) and the early implementation of the GFR by Matthiopoulos et al. 
(2011). Our work addressed the lack of flexibility and control in the 

Fig. 3. A heat map of abundance and geographical predictions of the abundance of sample instance # 1 from the second simulated dataset in terms of geographical 
dimensions: latitude and longitude for the ground truth and the various models shown in Fig. 1. Light colours indicate low abundance levels, so that the abundance 
levels increase as the colour shading gets darker. We use the same output range for all models; all models were plotted on the same scale as the ground truth. The map 
with red borders is the best predictive model based on out-of-sample R2. 
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original GFR model and investigated how alternative models might be 
implemented within the broader GFR framework. Replacing the global 
polynomial functions of the original GFR with radial basis functions as 
well as using the Gaussian mixtures approximation to approximate 
habitat availability allowed the RBF-GFR model to be more flexible than 
the original GFR model. This flexibility poses the risk of overfitting, the 
opposite behaviour to the rigidity of classic SDMs (Paton and Matthio-
poulos, 2016). Overfitting is a fundamental issue for achieving trans-
ferable GFR models (Wenger and Olden, 2012). In this respect, we found 
regularization approaches to be effective in controlling overfitting in 
GFRs. 

We have also explored the suggestion made by recent publications 
that machine-learning methods achieve better results than traditional 
likelihood-based methods (Heikkinen et al., 2012; Elith* et al., 2006; 
Lawler et al., 2006; Prasad et al., 2006). We achieved this by combining 

the RBF-GFR and GFR models with CART methods and, as a further 
extension, we use ensemble approaches, random forests (RF) and 
extreme gradient boosting (XGBoost). Ignoring structure dependence in 
data increases the susceptibility to overfitting and causes autocorrela-
tions and non-independence of model residuals (Roberts et al., 2017). 
The block cross-validation approach addresses the autocorrelation of 
dataset structures (Roberts et al., 2017). We have implemented the block 
cross-validation approach to account for autocorrelation of dataset 
structures. The simulated dataset in Matthiopoulos et al. (2015) was 
simulated from multiple instances where each instance consisted of 500 
observations representing a sub-population in a different landscape. The 
dataset has a spatial structure based on these scenarios. We have used 
these scenarios as dataset blocks when we applied the models. We have 
used a cross-validation approach based on these blocks (10-cross--
validation where each fold contained 40 blocks) to measure the 
out-of-sample predicted performance. The simulated dataset in Mat-
thiopoulos et al. (2011) is a simpler version of the Matthiopoulos et al. 
(2015) dataset consisting of 20 blocks (sample instances). We set the 
blocks to be the folds, meaning that we have used a 20-block 
cross-validation approach. In the sparrow population dataset, we have 
used the 32 colonies as the blocks and folds, resulting in 32-block 
cross-validation. The wolf dataset has a grouping structure based on 
the five packs that the wolves belong to. We have used five-blocks 
cross-validation based on these five packs when applying the models. 

The resulting performance of the GFR, RBF-GFR and their extensions 
on four datasets showed that considerable gains could be achieved in 
predictive performance and that these gains were approximately 
consistent across data sets. Going from a global median regression GFR 
model to the radial basis function model, offered local flexibility in the 
functional response curves but generated only moderate improvements 
in out-of-sample R2 score. However, combining the ensemble approach 

Fig. 4. A heat map of abundance and geographical predictions of the abundance of sample instance # 1 from the second simulated dataset in terms of geographical 
dimensions: latitude and longitude for the ground truth and the various models shown in Fig. 1. The colour range may be different for different models but the 
minimum and maximum values for which colours should be plotted are limited by the minimum and maximum numbers of the true values and model outputs that are 
larger than the maximum value of the truth are treated as missing values and are shown in white. The map with red borders is the best predictive model based on out- 
of-sample R2. 

Table 2 
Out-of-sample R2 scores for the various models shown in Fig. 1 
of sample instance # 1 from the second simulated dataset.  

Models Out-of-sample R2 

GLM 0.612 
GFR − 3.6 
Reg GFR 0.695 
GFR-CART 0.327 
GFR-RF 0.673 
GFR-XGBoost 0.764 
RBF-GFR − 0.734 
Reg RBF-GFR 0.742 
RBF-GFR-CART 0.628 
RBF-GFR-RF 0.769 
RBF-GFR-XGBoost 0.713  
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using bagging and boosting with the GFR and RBF-GFR models sub-
stantially improved the out-of-sample R2 scores. In general, ensemble 
methods, such as bagging and boosting were consistently among the top- 
scoring models, with no evidence of overfitting, while for other models, 
performance varied more drastically. In essence, the original GLM model 
provides a much flatter version of the truth, while applying overly 
flexible extensions of the GFR model can increase the risk of exagger-
ating extremes in species distribution (i.e. over-predicting abundance 
hot-spots/peaks and under-predicting cold-spots/troughs). We also 
replicated the finding that model ensembles can perform the same role 
as regularization, buffering the models’ predictions from such biases of 
exaggeration. 

It has been clear that simple SDMs homogenise predictions (Paton 
and Matthiopoulos, 2016) and that polynomial GFRs can be overly 
volatile. The key message from our work is that using measures against 
overfitting (i.e. either regularisation or ensemble modelling) can give 
consistent and impressive improvements in out-of-data predictions, in 
some cases raising the R2 from 0.25 to 0.85 (typical gains were from 0.35 
to 80). This comes at a cost of implementation. The libraries required for 
fitting these models are not as user-friendly as the base GLM approaches, 
so we look forward to more automatic software workflows for functional 
responses in the future. A key advantage of such approaches is that 
regularisation is an efficient way of achieving parsimonious model so, in 
addition to GFR flexibility, it would simultaneously facilitate issues of 
covariate selection. 

The differences in performance between different datasets are as 

interesting as the consistent features of Fig. 2, but considerably harder to 
explain. Improvements in predictive performance were most dramatic in 
the two real data sets (the sparrows and wolves), despite the fact that 
simulated data sets were designed to offer better adherence to the spatial 
stationarity of covariates and distributional assumptions made by the 
models fitted to those data. Several reasons have been mentioned for 
poor transferability in the literature. For example, the poorer informa-
tion content of occupancy compared to abundance data (Yates et al., 
2018), the definition of the scale of habitat availability (Márcia Barbosa 
et al., 2009; Paton and Matthiopoulos, 2016; Beyer et al., 1550), the 
ranging behaviour of the study species (Vanreusel et al., 2007; Yates 
et al., 2018; Wogan, 2016). The suggestion of stratifying the data (Yates 
et al., 2018) as a solution to the problem of varying conditions is 
addressed more efficiently under the auspices of the GFR family of 
models. 

The work done here instills computational robustness into a method 
that has been previously shown to work and opens the avenue for further 
comparative studies and biological interpretation. Better visualisation 
methods for how regression coefficients in species-habitat association 
models adapt to changes in overall habitat composition provide a link 
between these de facto phenomenological models with some quintes-
sentially mechanistic fields of environmental sciences, particularly 
behavioural and landscape ecology. For example, the analysis of the 
functions γi(x) in Eq. (7), as derived from our GFR models, has clear 
parallels with models of consumer choice developed in the areas of 
ethology (Sih and Christensen, 2001) and the humanities (Raghavarao 

Fig. 5. Importance scores for the main variables in the sparrow population dataset, using the GFR-RF model in the left panel and the BF-GFR-RF model in the 
right panel. 

Fig. 6. Importance scores for the main variables in the wolf dataset, using the GFR-RF model in the left panel and the RBF-GFR-RF model in the right panel.  
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et al., 2010). 
Similarly, by extending the SDMs to account for regional environ-

mental context, the models might provide clues about more holistic 
processes at the level of landscape ecology. Therefore, the GFR, an 
approach that begun with the sole aim of trying to improve predictive 
performance may, through the generation of new hypotheses for habitat 
selection, lead to new insights about fundamental biology at the level of 
the individual and the landscape. 
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