
Journal of Pure and Applied Algebra 227 (2023) 107214
Contents lists available at ScienceDirect

Journal of Pure and Applied Algebra

www.elsevier.com/locate/jpaa

A note on the Kuznetsov component of the Veronese double cone

Marin Petković a, Franco Rota b,∗

a Department of Mathematics, University of Utah, Salt Lake City, UT 84102, USA
b School of Mathematics and Statistics, University of Glasgow, University Place, Glasgow, G128QQ, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 June 2021
Received in revised form 28 June 
2022
Available online 30 August 2022
Communicated by I. Coskun

MSC:
Primary: 14F08; secondary: 14J45; 
14D20

Keywords:
Derived categories
Bridgeland stability conditions
Fano threefolds
Moduli spaces
Veronese double cone

This note describes moduli spaces of complexes in the derived category of a Veronese 
double cone Y . Focusing on objects with the same class κ1 as ideal sheaves of 
lines, we describe the moduli space of Gieseker stable sheaves and show that it 
has two components. Then, we study the moduli space of stable complexes in the 
Kuznetsov component of Y of the same class, which also has two components. One 
parametrizes ideal sheaves of lines and it appears in both moduli spaces. The other 
components are not directly related by a wall-crossing: we show this by describing 
an intermediate moduli space of complexes as a space of stable pairs in the sense of 
Pandharipande and Thomas.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Let Y be a Fano threefold of Picard rank 1 and index 2, that is Pic (Y ) = 〈H〉 with −KY ∼ 2H ample. The 
manifold Y belongs to one of five families of deformations, indexed by their degree d := H3 ∈ {1, ..., 5} [10]. 
For all values of d, Db(CohY ) admits a triangulated subcategory Ku(Y ) - called the Kuznetsov component 
of Y [12] - which is the right orthogonal to an exceptional pair of line bundles.

The numerical Grothendieck group N(Ku(Y )) ⊂ N(Db(Y )) is a rank 2 lattice generated by the classes1

κ1 = 1 − H2

d
and κ2 = H − H2

2 − (6 − d)H3

6d .

* Corresponding author.
E-mail addresses: petkovic@math.utah.edu (M. Petković), franco.rota@glasgow.ac.uk (F. Rota).

1 We will use H to also indicate the class [H] in the numerical Grothendieck group and the Chern character ch(H) in the 
cohomology ring.
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Here we work with Y general of degree 1. In this case, Y is a hypersurface of degree 6 in the weighted 
projective space P (1, 1, 1, 2, 3) and is called a Veronese double cone. This paper studies moduli spaces of 
objects of class κ1: these are closely related to the geometry of lines in Y , since ideal sheaves of lines in Y
have class κ1.

Our first result is a description of the Hilbert scheme of lines in Y , denoted Hilb(Y, t + 1).

Theorem 1.1 (= (3.5) + (3.7)). Hilb(Y, t + 1) is isomorphic to the moduli space MG(κ1) of Gieseker-stable 
sheaves of class κ1.

It has two irreducible components M1 and M2. M1 is a smooth surface compactifying the locus of ideals 
of lines of Y . M2 has dimension 5 and its general points parametrize genus 1 curves union a point. It is 
smooth outside the intersection with M1. Points in M1 ∩M2 parametrize singular rational curves with an 
embedded point at the singularity.

The first very ample multiple of H is 3H, so M2 is analogous to the extra component in the Hilbert 
scheme of twisted cubics in projective space [20].

Two irreducible components also appear in moduli spaces of complexes in Ku(Y ). A general construction 
of Bayer, Lahoz, Macrí, and Stellari yields a stability condition σ on Ku(Y ) [3]. Therefore, moduli spaces 
of σ-semistable complexes in Ku(Y ) of class v are defined, and denoted Mσ(v). Combined with the rotation 
autoequivalence introduced in [14, Sec. 3.3], a construction of [23] induces isomorphisms of moduli spaces of 
σ-stable complexes in Ku(Y ) of different classes. When applied to the Veronese double cone, this isomorphism 
identifies Mσ(κ1) with Mσ(κ2), which has been studied in [1] and has a component M3 isomorphic to Y
itself.

Theorem 1.2 (= (4.6)). Let Y be a general smooth Veronese double cone. The moduli spaces Mσ(κ1), Mσ(κ2)
and Mσ(κ2−κ1) are isomorphic. They have two irreducible components M1 and M3, isomorphic respectively 
to the 2-dimensional component of MG(κ1) and to Y itself.

The objects parametrized by M3 are described explicitly in Section 4 and they are related to projections 
of skyscraper sheaves of points to Ku(Y ).

The moduli spaces MG(κ1) and Mσ(κ1) are related by deformations of (weak) stability conditions and 
wall-crossing. The interpolating stability conditions σα,β and σ0

α,β yield moduli spaces denoted respectively 
by M0

α,β(κ1) and Mα,β(κ1). Theorem 5.1 describes them set-theoretically, by classifying complexes that are 
stable for σα,β and σ0

α,β . As a consequence, σ0
α,β-semistable complexes can be interpreted as quotients of 

OY of class κ1, in a perverse (repeatedly tilted) heart on Y (Proposition 6.3). We also obtain the following 
moduli-theoretic description, which relates M0

α,β(κ1) and the moduli space P (κ1) of Pandharipande-Thomas 
stable pairs of class κ1 [22].

Theorem 1.3 (= (5.1) + (6.1)). The space Mα,β(κ1) coincides with MG(κ1).
The space M0

α,β(κ1) is identified with P (κ1), so it is a projective scheme. It contains M1 and a second 
irreducible component M̃3, which is the blow-up of M3 � Y at a point.

In summary, the spaces

Hilb(Y, t + 1) � MG(κ1) � Mα,β(κ1)

have two irreducible components M1 and M2, whose generic points parametrize lines and genus 1 curves 
union a point respectively. In the space M0

α,β � P (κ1) the component M2 is traded off with M̃3, which is 
related to projections of points to Ku(Y ) and is a blow-up of M3 � Y ⊂ Mσ(κ1) = M1 ∪M3.
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Related works and remarks

For degrees d > 1, [23] shows that the spaces Hilb(Y, t + 1) and Mσ(κ1) are isomorphic. They both 
coincide with an irreducible surface (smooth for d ≥ 3), called the Fano surface of lines of Y .2 Thus, the 
appearance of a second component is special to degree 1. As mentioned above, this is linked to neither H
nor 2H being very ample for Veronese double cones.

The unusual behavior of M0
α,β also appears only in degree 1. In fact, the authors of [23] show that the 

moduli spaces M0
α,β(κ1) and Mα,β(κ1) are all isomorphic to Mσ(κ1) for d > 1. The same happens for moduli 

spaces of class κ2 - studied for all degrees in [1] - and in the context of cubic fourfolds as well [3].
It is worth remarking that, in the cases of d > 1 and of cubic fourfolds, the heart A(α, β) of the stability 

condition σ has dimension ≤ 2, which is linked to results of smoothness of moduli spaces (e.g. in [23, Theor. 
1.2]) and is crucial to prove categorical Torelli theorems.3 As shown in Remark 4.5, however, A(α, β) has 
dimension 3 in degree 1.

More recently, the works [24] and [17] study moduli spaces of non-primitive classes and relate them to 
instanton bundles on Y .

Structure of the paper

After introducing preliminary notions in Section 2, we study the Hilbert scheme of lines on a Veronese 
double cone in Section 3. Section 4 is dedicated to the description of the moduli space Mσ(κ1). Section 5
contains the classification of semistable objects for the interpolating weak stability conditions, and Section 6
contains the description of the moduli space of stable pairs.

Acknowledgements

We are grateful to Laura Pertusi, Song Yang, Aaron Bertram and Arend Bayer for the fruitful discus-
sions on these topics. Both authors were partially supported by NSF-FRG grant DMS 1663813, PI: Aaron 
Bertram.

2. Preliminaries

2.1. Stability conditions

Here we give a short review of Bridgeland stability conditions, with the main purpose of fixing the 
notation for what follows. We direct the interested reader to the seminal work of Bridgeland [6] and to the 
survey [19] and references therein for a thorough description.

Definition 2.1. Let A be an abelian category and let K(A) be its Grothendieck group. A (weak) stability 
function is a group homomorphism Z : K(A) → C such that

Z(E) > 0 or Z(E) = 0 and �Z(E) < (≤)0

for any 0 �= E ∈ A. To a (weak) stability function Z, we associate a slope function

2 The statements about the Hilbert scheme are classical, see for example [11, §2.2] and references therein. The isomorphism 
between Hilb(Y, t + 1) and Mσ(κ1) is [23, Theor. 1.1]. If d = 1, the closure of the locus of smooth lines in Hilb(Y, t + 1) is a 
projective irreducible scheme, given by a smooth surface with an embedded curve [27, Theor. 4].
3 These are reconstruction results showing that Ku(Y ) determines Y up to isomorphism. Categorical Torelli theorems are known 

to hold for all degrees d > 1, but the question is open for d = 1. We direct the interested reader to [21], which surveys results and 
open problems in this area.
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μ(E) =
{−�Z(E)

�Z(E) if Z(E) �= 0
+∞ otherwise

We say that E ∈ A is stable if for all quotients E � F in A we have

μ(E) < μ(F ).

Similarly, E is said to be semistable if only the non-strict inequality μ(E) ≤ μ(F ) holds.

Definition 2.2. Let T be a triangulated category and v : K(T) � Λ a surjection from the Grothendieck 
group of T to a finite rank lattice. A (weak) stability condition on a triangulated category T (with respect 
to v) is a pair σ = (A, Z) consisting of

– a heart of a bounded t-structure A
– a (weak) stability function K(A) v−→ Λ Z−→ C

satisfying the following properties:

(i) (Harder-Narasimhan filtration) Any E ∈ A has a filtration in A with semistable quotients with de-
creasing slopes.

(ii) (Support property) There exists a quadratic form Q on Λ ⊗R which is negative definite on kerZ and 
for all semistable E ∈ A we have Q(E) ≥ 0.

We say an object E ∈ T is σ-(semi)stable if E[k] ∈ A for some k ∈ Z and E[k] is semistable with respect 
to Z.4

Definition 2.3. Let σ = (A, Z) be a weak stability condition on T. For β ∈ R, we define subcategories Aμ≤β

and Aμ>β consisting of objects E such that slopes of all Harder-Narasimhan factors of E are ≤ β and > β

respectively. The tilt of A is then defined as the extension closure of Aμ≤β[1] and Aμ>β and denoted

Aβ
σ =

[
Aμσ≤β [1],Aμσ>β

]
.

That is, objects E ∈ Aβ
σ are complexes with

H−1
A (E) ∈ Aμσ≤β

H0
A(E) ∈ Aμσ>β

Hi
A(E) = 0, for i �= −1, 0.

For a smooth projective variety Y with a hyperplane class H, define the map

v = (H3 ch0, H
2 ch1, H ch2) : K(Y ) → Q3

and let Λ � Z⊕3 be its image. In this paper, we will be working with the following weak stability conditions 
on Db(Y ).

4 Given a stability condition σ = (A, Z) and φ ∈ (0, 1], let P(φ) be the category of σ-semistable objects E ∈ A satisfying 
Z(v(E)) ∈ R>0e

iπφ. Then, define P(φ) for all φ ∈ R by imposing P(φ + 1) := P(φ)[1]. The collection P := {P(φ)}φ∈R defines 
a slicing of T. The datum of a slicing and a compatible stability function is in fact equivalent to that of a stability condition [6, 
Prop. 5.3], and it is sometimes convenient to identify σ with the pair (Z, P).
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2.1.1. Slope stability
σM = (Coh(Y ), −H2 ch1 +iH3 ch0) is a weak stability condition with respect to the rank 2 lattice defined 

as the image of (H3 ch0, H2 ch1) : K(Y ) → Z2. This stability condition is also called Mumford stability, or 
slope stability. We will denote the corresponding slope function with μM .

2.1.2. Tilt-stability
σα,β = (Cohβ(Y ), Zα,β), for α > 0 and β ∈ R, where

Cohβ(Y ) =
[
Coh(Y )μM≤β [1],Coh(Y )μM>β

]
and

Zα,β(E) = −H chβ
2 (E) + α2

2 H3 ch0(E) + i
(
H2 ch1(E) − βH3 ch0(E)

)
.

Here, chβ(−) := e−βH · ch(−) is the twisted Chern character. This is a weak stability condition with respect 
to the lattice Λ above [5,4], and is usually called tilt-stability. The corresponding slope function will be 
denoted with μα,β. The quadratic form satisfying the support property is [5, Cor. 7.3.2]:

Q(E) = (H2 chβ
1 (E)) − 2(H chβ

2 (E))(H3 ch0(E)).

For a class w ∈ Λ, the half-plane {(α, β) | α > 0, β ∈ R} admits a wall-and-chamber decomposition:

Definition 2.4. A numerical wall with respect to w ∈ Λ is the solution set in {(α, β) | α > 0, β ∈ R} of an 
equation μα,β(w) = μα,β(u) for some u ∈ Λ.

A subset of a numerical wall for w is an actual wall if there exists a short exact sequence of semistable 
complexes in Cohβ(Y ), 0 → F → E → G → 0, with v(E) = w and v(F ) defining the numerical wall.

Walls of tilt-stability satisfy Bertram’s Nested Wall Theorem (first proven for surfaces in [18]). In par-
ticular:

Theorem 2.5 ([26, Theor. 3.3]). Fix w ∈ Λ.

– numerical walls are nested semicircles centered on the β-axis, except for possibly one, which is a half-line 
with constant β;

– if two numerical walls intersect, then they coincide;
– if a point of a numerical wall is an actual wall, then the whole numerical wall is an actual wall.

We then define chambers as connected components of complements of actual walls. If (α, β) and (α′, β′)
belong to the same chamber, then an object E of class w is σα,β-semistable if and only if it is σα′,β′-
semistable.

2.1.3. Rotation of tilt-stability
σ0
α,β = (Coh0

α,β(Y ), Z0
α,β), for α > 0 and β ∈ R, where

Coh0
α,β(Y ) =

[
Cohβ(Y )μα,β≤0[1],Cohβ(Y )μα,β>0

]
and

Z0
α,β(E) = −iZα,β(E) (1)
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This is also a weak stability condition with respect to Λ ([3, Prop 2.15]). The corresponding slope function 
will be denoted with μ0

α,β .
Like for tilt-stability, one can define walls and chambers for σ0

α,β by replacing μα,β with μ0
α,β and Cohβ(Y )

with Coh0
α,β(Y ) in Definition 2.4.

2.2. Kuznetsov component

Let Y be a smooth Fano threefold of Picard rank 1 and index 2. The derived category of Y admits a 
semi-orthogonal decomposition

Db(Y ) = 〈Ku(Y ),OY ,OY (1)〉

where the admissible subcategory Ku(Y ) is called the Kuznetsov component [12]. The numerical 
Grothendieck group N(Ku(Y )) ⊂ N(Db(Y )) has rank 2 and is generated by the classes

κ1 = [I�] = 1 − H2

d
& κ2 = H − H2

2 − (6 − d)H3

6d .

In this basis, the Euler form writes (
−1 −1

1 − d −d

)
.

It is negative definite, and if d = 1 the only −1 classes are ±κ1, ±κ2 and ±(κ1 − κ2).
Recall that for E ∈ Db(Y ) exceptional, the left mutation LE(−) across E is the functor sending G ∈

Db(Y ) to the cone of the evaluation map ev:

R Hom(E,G) ⊗ E
ev−→ G → LE(G).

The inclusion Ku(Y ) ⊂ Db(Y ) has an adjoint projection functor π := LOY
◦ LOY (1).

The category Ku(Y ) admits an autoequivalence called the rotation functor

R(−) := LOY
(−⊗OY (1)),

and a Serre functor. In fact, the two are related:

Lemma 2.6. The Serre functor on Ku(Y ) satisfies

S−1
Ku(Y ) � R2[−3].

Proof. By [13, Lemma 2.7], we have that S−1
Ku(Y ) � π ◦ S−1

Y . It is then straightforward to check that

πS−1
Y (E) = π(E(2))[−3] = LO(LO(1)(E(2)))[−3] � R2(E)[−3]. �

One of the results of [3] is that Ku(Y ) supports stability conditions. Define the set

V =
{

(α, β) ∈ R>0 ×R | 0 < α < min{−β, β + 1},−1 < β < 0
}
, (2)

then we have:
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Theorem 2.7 ([3, Theor. 6.8]). For any (α, β) ∈ V , the weak stability condition σ0
α,β from Section 2.1.3, 

induces a Bridgeland stability condition σ(α, β) on Ku(Y ), with heart given by

A(α, β) := Coh0
α,β(Y ) ∩ Ku(Y )

and central charge Z0
α,β|K(A). We will denote the slope function of σ(α, β) with μ(α, β).

The set of stability conditions on Ku(Y ) is denoted Stab(Ku(Y )), it is a complex manifold and it admits 
the following group actions:

– The universal cover G̃L
+
2 (R) acts on the right: an element of G̃L

+
2 (R) is a pair g̃ = (g, M) where g : R →

R is an increasing function such that g(φ +1) = g(φ) +1, and M ∈ GL+
2 (R) satisfies Meiφπ ∈ R>0e

ig(φ)π. 
Given a stability condition σ = (Z, P) ∈ Stab(Ku(Y )), we define σ · g̃ = (Z ′, P ′) to be the stability 
condition with Z ′ = M−1 ◦ Z and P ′(φ) = P(g(φ)) (see footnote 4). Stability is preserved under this 
action: an object E ∈ Ku(Y ) is σ-stable if and only if it is σ · g̃-stable for all g̃ ∈ G̃L

+
2 (R).

– An autoequivalence Φ of Ku(Y ) acts on the left: for σ as above we set

Φ · σ := (Z(Φ−1
∗ (−)),Φ(P)),

where Φ∗ is the automorphism of K(Ku(Y )) induced by Φ.

Fix 0 < α < 1
2 . Denote by K the G̃L

+
2 (R)-orbit of the stability condition σ(α, −1

2 ) in Stab(Ku(Y )). Then 
we have:

Proposition 2.8 ([23, Prop 3.6]). For all (α, β) ∈ V , σ(α, β) ∈ K.

Another result of [23] is the following:

Proposition 2.9 ([23, Prop. 5.7]). If Y is a Fano threefold of Picard rank 1 and index 2, then there exists 
g̃ ∈ G̃L

+
2 (R) such that

R · σ(α,−1
2) = σ(α,−1

2) · g̃.

For σ ∈ K and κ ∈ N(Ku(Y )), we write Mσ(κ) the moduli space of σ-stable objects of class κ in Ku(Y ). 
As an immediate consequence of Proposition 2.9 we have:

Corollary 2.10. For all n ∈ Z, there is an isomorphism

Mσ(κ) � Mσ(Rn
∗κ).

3. Lines on a Veronese double cone

3.1. Veronese double cones

We fix some notation and recall some general results on Veronese double cones, following [10] and [9]. Let 
Y be a hypersurface cut out by a sextic equation in the weighted projective space P := P (1, 1, 1, 2, 3). Let 
x0, ..., x4 be coordinates of P , where x3 and x4 are those of weight 2,3 respectively. By completing a square, 
we can write the equation for Y as x2

4 = f6(x0, ..., x3) where f6 is a degree 6 polynomial. The linear series 
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H := OP (1)|Y has three sections and a unique base point y0 [10, Prop. 3.1], hence it induces a rational map 
φH : Y ��� P (H0(OY (1))) � P 2. On the other hand, 2H ∼ −KY is base point free, and induces a morphism 
φ2H : Y → P (H0(OY (2))) � P 6, whose image K � P (1, 1, 1, 2) is the cone over a Veronese surface with 
vertex k := φ2H(y0).

More precisely, for V := H0(OY (1)) we have

H0(OY (2)) = Sym2 V ⊕ 〈x3〉,

and the map

i : V ⊕ 〈x3〉 → Sym2 V ⊕ 〈x3〉
(v, r) �→ (v2, r)

(3)

embeds P (V ⊕ 0) as a Veronese surface and identifies the cone over P (V ⊕ 0) and vertex k = P (0 ⊕ 〈x3〉)
with K.

The morphism φ2H is smooth of degree 2 outside k and the divisor W := {f6 = 0} ∈ |OK(3)|. For 
this reason, Y is often referred to as to a Veronese double cone. We will denote by ι the involution on Y
corresponding to the double cover φ2H .

There is a commutative diagram

Y K

P 2

φH

φ2H

η
(4)

where η is the projection from k. Consider the blowup σK : K̃ → K of the vertex k with exceptional divisor 
E. Then, the blow-up Ỹ = Y ×K K̃ resolves the indeterminacy of diagram (4):

Ỹ K̃

Y K P 2

φ̃

φ2H

σY σK
η̃

η

where φ̃ : Ỹ → K̃ is a degree 2 cover ramified over the divisor E ∪ σ−1
K (W ).

The map η restricted to W is a 3-to-1 cover of P 2, and it ramifies at a curve C0. Throughout this 
section, we assume that Y is smooth and that C0 is irreducible and general in moduli (this is the generality 
assumption used in [27], whose results we will use).

3.2. Stable sheaves of class κ1 on Y

Let MG(v) denote the moduli space of stable sheaves of class v on Y . Objects in MG(v) are related to 
subschemes of Y with Hilbert polynomial t + 1, we start by studying those.

Definition 3.1. A line in Y is a smooth subscheme of pure dimension 1 with Hilbert polynomial t + 1.

In particular, for every line L we have H.L = 1. We say that the degree of a curve C ⊂ Y is the integer 
H.C: thus, lines are rational curves of degree 1 in Y .

A similar definition holds for lines and conics in K: let j : K → P 6 the embedding induced by the map i
of Eq. (3). We use the notation K◦ := K \ {k}.
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Definition 3.2 ([9, Def. 3.1]). A curve C in K is a line (resp. a conic) if the closure of its image j(C ∩K◦)
is a line (resp. a conic) in P 6.

Lines and conics in K are described in [9, Sec. 3]. Lines in K are the closure of fibers of the projection 
η : K◦ → P 2, conics of K are smooth (in which case they do not contain the vertex k), or the union of two 
lines (possibly doubled). For the rest of the section, we use the shorthand φ := φ2H .

Lemma 3.3. Let C be a degree 1 curve in Y . Then the image c := φ(C) is a conic in K, which intersects W
in three (possibly coinciding) points with multiplicity 2. There are two possibilities:

– pa(C) = 0: c is a smooth conic in K. In this case, C is a line, and φ−1(c) = C ∪ C ′ where C ′ is also a 
line.

– pa(C) = 1: c is a doubled line. Then C is a smooth curve of genus 1, or a singular rational curve.

Proof. Since φ is induced by the linear series |2H|, c = φ(C) must be a conic on K. Note first of all that 
if c is reducible then so is C, but this is impossible since C.H = 1. Hence, c is either smooth or a doubled 
line. In either case, c cannot be contained in W : otherwise φ|C is an isomorphism since φ branches over W , 
but this contradicts the assumptions on degree.

If c is smooth and it intersects W with odd multiplicity at a point, then φ−1(c) must be irreducible of 
degree > 1. This is not the case as C ⊆ φ−1(c). So c is tritangent to W , and φ−1(c) = C ∪ C ′ is the union 
of two lines.

If c = 2l is a doubled line with l a line in the ruling of K, then the restriction of φ : φ−1(l) → l is a 
covering map branched over the four points (l ∩ W ) ∪ k. Since k /∈ W , φ−1(l) must be irreducible. If the 
points in (l∩W ) are all distinct, then C = φ−1(l) is a smooth elliptic curve. If two points of l∩W coincide, 
then C has a double point. If all three coincide, C has a cusp. �

We can now classify Gieseker-semistable sheaves of class κ1:

Proposition 3.4. Semistable sheaves of class κ1 on Y are exactly ideal sheaves of subschemes Z with Hilbert 
polynomial χ(OZ(t)) = t + 1. There are three possibilities for Z:

(i) Z is a line in Y ;
(ii) Z is a non-reduced scheme supported on a curve of degree 1 and genus 1 with an embedded point;
(iii) Z is the union of a curve of degree 1 and genus 1 and a point which does not belong to the curve.

Proof. Ideal sheaves are torsion free of rank 1, and therefore stable. So, it suffices to show that a Gieseker-
semistable sheaf E of class κ1 is an ideal sheaf. This is a standard argument: since Y is smooth, E → E∨∨

is injective and E∨ is reflexive, so that E∨ � OY (−D) for some divisor D. Therefore E ⊗ OY (−D) is the 
ideal sheaf of a subscheme supported in codimension 2. Then, E � IZ ⊗ OY (D), and since [E] = κ1 we 
must have D = 0 and χ(OZ(t)) = t +1 (the Hilbert polynomial is that of OL for L a smooth rational curve 
in Y ).

The three possibilities for Z follow from the fact that H.Zred = 1 is the degree of the Hilbert polynomial, 
so Zred contains one of the curves described in Lemma 3.3. Then, the only possible cases are those listed, 
note moreover that all three can occur [27]. �

We will refer to the three possibilities listed in Proposition 3.4 as to subschemes of type (i), (ii), and (iii). 
Observe moreover that Proposition 3.4 implies the following:

Proposition 3.5. The moduli space MG(κ1) is isomorphic to the Hilbert scheme of lines Hilb(Y, t + 1).
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Proof. We argue as in the proof of [22, Theorem 2.7]. Let I be a flat family of semistable sheaves of class 
κ1 over a base B, normalized so that it has trivial determinant along B. The sheaf I has rank 1, and it is 
pure so it injects into its double dual

0 → I → I∨∨.

Flatness of I implies that I∨∨ is locally free, and I∨∨ has trivial determinant since I does. Therefore, 
I∨∨ � OY×B , and there is a short exact sequence

0 → I → OY×B → Q → 0,

where Q is a flat family of quotients of OY×B . Conversely, any such family of quotients gives rise to a family 
of ideal sheaves as those listed in Proposition 3.4.

This identifies the functors represented by MG(κ1) and Hilb(Y, t + 1). �
Remark 3.6. As mentioned in the introduction, 3H is the smallest very ample multiple of H. The embedding 
Y → P (H0(OY (3H))) maps the Hilbert scheme Hilb(Y, t + 1) to that of twisted cubics, which has two 
irreducible components whose intersection parametrizes non-reduced subschemes [7, Sec. 3].

We describe the Gieseker moduli space MG(κ1). We prove the theorem here, even if in the proof we apply 
Proposition 3.11, which is postponed to after some more technical computations:

Theorem 3.7. The moduli space MG(κ1) has two irreducible components M1 and M2.
M1 is a smooth surface compactifying the locus of ideals of smooth lines of Y . M2 has dimension 5, and 

its general object is a subscheme of type (iii). It is smooth outside the intersection with M1.
Points in M1 ∩M2 � C0 parametrize singular rational curves with an embedded point at the singularity.

Proof. The component M1 parametrizing ideal sheaves of lines is described in [27, Theorem 4]: M1 is a 
smooth surface intersecting the rest of MG(v) on the locus parametrizing singular curves with a nilpotent 
embedded at the singularity. This locus is isomorphic to the curve C0.

There is a 5 dimensional family of schemes of type (iii) (two parameters determine the one dimensional 
component, and three determine the point). Denote by M2 the component of MG(v) containing this family. 
By Proposition 3.5, the tangent space at Z = C ∪ p of type (iii) is

TZM2 � Hom(IZ ,OZ) � Hom(IC ,OC) ⊕ Hom(Ip,Op)

The spaces in the right hand side parametrize deformations of C and p respectively, so dimTZM2 = 5. This 
shows that dimM2 = 5 and that M2 is smooth at type (iii) points. Moreover, Proposition 3.11 shows that 
M2 is smooth at points of type (ii) for which the nilpotent is supported on smooth points.

Finally, there are no other components in MG(v), because we exhausted the possibilities in Proposi-
tion 3.4. �
Remark 3.8. The component M1 is sometimes denoted F (Y ) and called the Fano surface of lines of Y (e.g. 
in [27]).

Lemma 3.9. Let C be a curve in Y of degree 1 and arithmetic genus pa = 1. Then⎧⎪⎪⎨⎪⎪⎩
Ext0(IC , IC) = C

Ext1(IC , IC) = C2

Exti(I , I ) = 0 otherwise.
C C
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Proof. The curve C is cut out by the pull-back of two linear forms from P 2 via η : K◦ → P 2, denote them 
l, m. In fact, the Koszul complex in l and m is exact on Y :

0 → OY (−2)

(
m
−l

)
−−−−→ OY (−1)⊕2 → IC → 0. (5)

Applying the functor Hom(−, IC) gives the map:

H0(IC(1))⊕2 � Hom(OY (−1), IC)⊕2
·
(
m −l

)
−−−−−−−→ Hom(OY (−2), IC) � H0(IC(2)). (6)

It is straightforward to check that the map (6) has rank 3, and the conclusion follows. �
Lemma 3.10. Let Z be a subscheme of type (ii) with the embedded point p in the smooth locus of Zred. Then

Exti(IZ ,Op) =

⎧⎪⎪⎨⎪⎪⎩
C3 if i = 0, 1
C if i = 2
0 otherwise.

Moreover, applying Hom(−, Op) to the sequence

IZ → IZred → Op, (7)

we get a non-zero homomorphism α : Ext1(Op, Op) → Ext1(IZred , Op).

Proof. The groups Hom∗(Op, Op) are the exterior algebra on the tangent space at p, so they have dimensions 
1,3,3,1 for ∗ = 0, 1, 2, 3. Applying the functor Hom(−, Op) to the resolution (5) as in Lemma 3.9, we see 
that hom∗(IZred , Op) = 2, 1, 0, 0 for ∗ =, 0, 1, 2, 3.

Apply Hom(−, Op) to the sequence (7) and consider the corresponding long exact sequence: this shows 
immediately that

ext2(IZ ,Op) = 1 ext3(IZ ,Op) = 0.

On the other hand, we may consider a set of local coordinates around p given as {l, m, s}, where l, m
define Zred. Then, l, m2, and ms generate IZ locally around p. Resolving IZ using these generators we see 
that hom(IZ , Op) = 3, arguing as above.

Finally, observe that χ(IZ , Op) = χ(IZ , Oq) = χ(OY , Oq) = 1 where q ∈ Y \ Zred (since this quantity 
only depends on the numerical class of Op), which implies that ext1(IZ , Op) = 3.

The map α appears in the long exact sequence, and a simple dimension count shows that it does not 
vanish. �
Proposition 3.11. If Z is a subscheme of type (ii) with the embedded point in the smooth locus of Zred, then

ext1(IZ , IZ) = 5.

Proof. We may write IZ � [IZred → Op] where p is the embedded point. Then, RHom(IZ , IZ) may be 
computed with the spectral sequence

Ep,q
1 = Hq(K•,p) ⇒ Hp+q(K•). (8)

The first page is
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...
...

...
Ext1(Op, IZred) Ext1(IZred , IZred) ⊕ Ext1(Op,Op) Ext1(IZred ,Op)
Hom(Op, IZred) Hom(IZred , IZred) ⊕ Hom(Op,Op) Hom(IZred ,Op)

(p = −1) (p = 0) (p = 1)

with arrows pointing to the right and zeros in all other columns. We claim that the dimensions of the vector 
spaces above are given by

2 1 0
1 3 0
0 2 + 3 1
0 1 + 1 2

Indeed, the third column (and hence, by Serre duality, the first one) is computed in the proof of Lemma 3.10.
The contributions from Hom•(IZred , IZred) in the central column follow from Lemma 3.9, while the di-

mensions of Hom•(Op, Op) follow because p is a smooth point of Y , as in the proof of Lemma 3.10.
Our next claim is that the maps in the middle rows are non-zero, and that the map in the bottom row 

has one-dimensional image. Granting the claim, the second page of the spectral sequence reads

∗ ∗ 0
0 2 0
0 4 0
0 1 1

and hence ext1(IZ , IZ) = 5.
The map on the second row from the top is Ext2(Op, IZred) → Ext2(Op, Op). It is Serre dual to the 

homomorphism α (see Lemma 3.10), which is also the restriction to the second summand of the map on 
the third row:

Ext1(IZred , IZred) ⊕ Ext1(Op,Op) → Ext1(IZred ,Op).

It follows from Lemma 3.10 that these two maps do not vanish. Finally, observe that the map

Hom(IZred , IZred) ⊕ Hom(Op,Op) → Hom(IZred ,Op)

has one-dimensional image (the span of the natural map IZred → Op of (7)). �
4. Moduli spaces of objects of Ku(Y )

For the rest of this note, Y will denote a general Veronese double cone (we will follow the notation of 
Section 3.1). When a result holds for all Fano threefolds of Picard rank 1 and index 2, we will make it 
explicit. In this section, we construct three families of objects of Ku(Y ) and show that they are related by 
a rotation. More precisely, we show that the set {±κ1, ±κ2, ±(κ1 − κ2)} is an orbit of the action of R∗ on 
N(Ku(Y )).

As a result, Corollary 2.10 yields an isomorphism of the corresponding moduli spaces.
We start by defining the three families of objects:

(A) For any Fano threefold Y of Picard rank one, index 2, and degree d, we can consider projections of 
skyscraper sheaves to Ku(Y ): for p ∈ Y \{y0}, the projection π(Cp) of Cp is the complex Mp[1], defined 
as the cone
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Od+1
Y → Ip(1) → Mp. (9)

The projection of y0 on the other hand, is defined by

O3
Y ⊕OY [−1] → Iy0(1) → My0 .

We have [Mp] = κ2 − dκ1.
(B) A second family of objects are the complexes Ep studied in [1]. They have class κ2, and are defined by 

the distinguished triangle

OY (−1)[1] → Ep → Ip

for any point p ∈ Y .
(C) Assume now that Y has degree 1. Then, we can construct another class of objects as follows. For a 

point p ∈ Y \ {y0}, let x := φH(p) ∈ P 2 and let C := Cx be the corresponding genus 1 curve (notation 
as in Sec. 3). Then, H0(OC(p)) = C, and we consider the cone of the triangle

OY → OC(p) → Fp. (10)

Similarly, define complexes associated with y0: for all x ∈ P 2, y0 ∈ Cx and H0(OCx
(y0)) = C as above, 

so we write

OY → OCx
(y0) → Gx (11)

for the corresponding cones.

Remark 4.1.

– The numerical class of Fp and Gx is −κ1. In fact, OC(p) (and OCx
(y0)) has the same Hilbert polynomial 

as O� for any line � ⊂ Y , so [Fp] = [Gx] = −[I�] = −κ1;
– The objects Fp belong to Ku(Y ): the vanishing Hom(OY (1), Fp) = 0 follows from (10) and the ob-

servation that the sheaves OY (−1) and OC(p − y0) have no cohomologies. Similarly, the isomorphism 
R Hom(OY , OY ) � R Hom(OY , OC(p)) implies the vanishing of Hom(OY , Fp).

– On the other hand, the objects Gx /∈ Ku(Y ). Note, in fact, that for any curve Cx we have

OCx
⊗OY (1) � OCx

(y0),

since Cx is defined by two linear forms, and a third one will intersect Cx precisely at the base locus of 
|OY (1)|, which is y0. Then, by (11) we have

Hom(OY (1), Gx) � Hom(OY (1),OCx
(y0)) � Hom(OY ,OCx

(y0 − y0)) = C.

The three classes of objects (A), (B), and (C) are related by rotations:

Lemma 4.2. We have R(Ep) = Mp for every p ∈ Y . This holds for Y of any degree.

Proof. Twist the defining sequence of Ep:

OY [1] → Ep(1) → Ip(1)

and mutating across OY shows R(Ep) � LOY
(Ip(1)). Then, observe that (9) computes LOY

(Ip(1)). �
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Recall that ι : Y → Y is the involution corresponding to the double cover φ2H : Y → K. Then we have:

Lemma 4.3. For p �= y0, we have R(Mp) = Fι(p).

Proof. By its definition, the cohomologies of Mp(1) are those of the complex [O2
Y (1) ev−→ Ip(2)]. The kernel 

of the evaluation map is OY , and the cokernel is the cokernel of the inclusion IC(2) → Ip(2), which is 
OC(2y0 − p), where C := CφH(p). This shows that R(Mp) = LOY

(OC(2y0 − p)). One then checks that 
the divisor 2y0 − p on C is linearly equivalent to ι(p), by considering the Weierstrass equation for C in 
P (1, 1, 1, 2, 3) and observing that taking inverses coincides with applying ι|C . Therefore, R(Mp) = Fι(p). �

From Lemmas 4.2 and 4.3 we get:

Corollary 4.4. The matrix associated to R∗ in the basis κ1, κ2 is 
(

0 −1
1 1

)
. In particular, R∗ acts transitively 

on the set {±κ1, ±κ2, ±(κ1 − κ2)} of classes in N(Ku(Y )) with square −1.

Proof. By Lemma 4.2, we have R∗(κ2) = κ2 − κ1, and by Lemma 4.3 we have R∗(κ2 − κ1) = −κ1, the rest 
is straightforward. �
Remark 4.5 (Homological dimension). The heart A(α, β) has homological dimension 2 if d = 2, 3 [23]. This 
is false in the case d = 1. In fact, by Lemmas 4.2 and 4.3 above we have Eι(p) � R−2(Fp) for p �= y0 in Y . 
Then, by Serre duality and Lemma 2.6,

Ext3(Fp, Eι(p)) � Hom(Fp,R−2(Fp)[3]) � Hom(Fp, Fp)∗ �= 0.

We now recollect the results of this section in the following theorem (we use the same notation M1 for 
the copy of F (Y ) embedded as an irreducible component in MG(κ1) (Theorem 3.7) and in Mσ(−κ1)).

Theorem 4.6. Let Y be a general smooth Veronese double cone, and let σ be a stability condition in K
(see Section 2.2). The moduli spaces Mσ(−κ1), Mσ(−κ2) and Mσ(κ1 − κ2) are isomorphic. They have two 
irreducible components M1 and M3 isomorphic respectively to the Fano surface of lines F (Y ) and to Y
itself, intersecting along C0. The generic point of the component Y parameterizes, respectively, objects of 
form Fp, Ep, and Mp.

Proof. Corollaries 2.10 and 4.4 yield the isomorphism of moduli spaces. The description of the irreducible 
components is [1, Theor. 1.2]. The statement on the general objects follows again from Lemmas 4.2 and 
4.3. �

We conclude the section describing the objects Ey0 , My0 , and Fy0 := R2(Ey0): these correspond to the 
point y0 in the component Y of the three moduli spaces of Theorem 4.6, and they are of a different nature 
from the others.

Proposition 4.7 (Rotations at y0). We have R(Ey0) = My0 , a complex with cohomologies

H−1(My0) � coker(OY (−2) → OY (−1)⊕3)

H0(My0) = OY .

The complex Fy0 has three cohomologies, and it fits in a triangle

OY (−1)[2] → Fy0 → [O⊕3
Y → OY (1)]. (12)
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Proof. One shows as above that R(Ey0) = My0 , the (shift of the) projection of the skyscraper sheaf Cy0 to 
Ku(Y ). All hyperplane section of Y pass through y0. In other words, My0 is defined by an exact triangle

O⊕3
Y ⊕OY [−1] → Iy0(1) → My0

whose cohomology sequence is

0 → H−1(My0) → O⊕3
Y

ev−→ Iy0(1) → H0(My0) → OY → 0, (13)

where the evaluation map ev is surjective, and coincides with the last map of a Koszul complex on three 
linear forms. Therefore, H−1(My0) � coker(OY (−2) → OY (−1)⊕3) and H0(My0) = OY .

To compute Fy0 = R(My0), compute the cohomology sheaves of My0(1) by twisting (13), and write the 
cohomology sequence of the triangle

O⊕3
Y ⊕O⊕3

Y [1] → My0(1) → Fy0 .

It reads

0 → OY (−1) → O3
Y → coker(OY (−1) → O⊕3

Y ) 0−→ H−1(Fy0) → O3
Y → OY (1) → Cy0 → 0,

whence the claim. �
5. Set-theoretic considerations

5.1. Stable complexes of class κ1

In this section, we classify objects of class κ1 that are semistable with respect to σ0
α,β and σα,β . Here, σ

denotes one of the stability conditions of Theorem 2.7.
Our classification shows that following the strategy of [1] and [23] to describe Mσ(κ1) is more difficult 

in this setting. In those works, moduli spaces of σ-stable objects are related via wall-crossing to moduli 
spaces of complexes which are stable with respect to σα,β and σ0

α,β . More precisely, for v = κ2, or d > 1
and v = κ1, the three notions of stability coincide, and we have

Mσ(v) � Mσ0
α,β

(v) � Mσα,β
(v)

(this is also the case for cubic fourfolds, [3]). If d = 1 and v = κ1, there are objects in Db(Y ) that are 
σ-semistable but not σα,β-semistable, and conversely. We will show:

Theorem 5.1. Let E be a complex in Db(Y ) of class −κ1, fix β = −1
2 and α � 1. Then:

(1) E is σα,β-semistable if and only if it is a Gieseker stable sheaf in MG(κ1) (classified in Proposition 3.4);
(2) E is σ0

α,β-semistable if and only if E is isomorphic to:

(i) Fp, for p �= y0,
(ii) Gx, for x ∈ P 2, or
(iii) I�[1], where � ⊂ Y is a line.

We start the proof with some lemmas computing σα,β-walls in the (α, β)-plane for −κ1. Observe that, by 
definition of Z0

α,β (see Eq. (1)), the same equations define numerical walls for both weak stability conditions 
σα,β and σ0

α,β .
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Lemma 5.2. For β = 0, objects Fp and Gx are strictly semistable of infinite slope in Cohβ(Y ). In other 
words, the half-line β = 0 is a vertical wall for −κ1 in the (α, β)-plane.

Proof. The complex Fp fits into the exact triangle

OC(p) → Fp → OY [1].

Both OC(p) and OY [1] are semistable of infinite slope in Cohβ(Y ): it is straightforward to compute that 
Zα,β(−) vanishes on both OY and OC(p) since

chβ=0
≤2 (OY ) = (1, 0, 0) and chβ=0

≤2 (OC(p)) = (0, 0, H2). �
Lemma 5.3. There are no actual walls for −κ1 in the strip −1 < β < 0.

Proof. By Lemma 5.2, the line β = 0 is a vertical wall.
Next, we show that no actual walls intersect the line β = −1. Suppose otherwise that for some α > 0

there is an actual wall, realized by a sequence of σα,−1-semistable complexes

0 → E → F → G → 0 (14)

in Coh−1(Y ). Observe that for any α > 0 and any F of class −κ1, Zα,−1(F ) = 1 is the smallest positive 
value of

Zα,−1(−) = H2 ch−1
1 (−).

Then, either Zα,−1(E) = 1, and therefore Zα,−1(G) = 0, or Zα,−1(G) = 1 and Zα,−1(E) = 0. Assume 
the former: since G is σα,−1-semistable, the support property implies ch≤2 G = 0, which means that (14) is 
not an actual wall. The same argument works in the latter case swapping the roles of E, G.

By Theorem 2.5, walls are nested semicircles in the (α, β)-plane. Therefore it suffices to find a semicircular 
wall outside the strip −1 < β < 0. A standard computation (sketched below for the ease of reading) shows 
that the class [OY (−1)] defines a numerical wall on the semicircle with radius 1

2 and center (0, −3
2 ) We 

have:

chβ
≤2(OY (−1)) =

(
1,−H − βH,

H2

2 + βH2 + β2

2 H2
)
,

Zα,β(OY (−1)) =
(
α2 − β2

2 − 1
2 − β

)
− i (1 + β) ,

Zα,β(F ) =
(
α2 − β2

2 + 1
)
− iβ.

Then, the condition that μα,β(OY (−1)) = μα,β(F ) simplifies to

α2 +
(
β + 3

2

)2

= 1
4 ,

the desired semicircle. �
Lemma 5.4. Objects Fp and Gx are σ0

α,β-semistable for α > 0, −1 < β < 0.
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Proof. Lemma 5.2 implies that Fp is σ0
α,0-semistable in Coh0

α,0(Y ) of slope 0, arguing as in the proof of [3, 
Lemma 2.16].5

Suppose for the moment that −1 � β < 0 and α > −β. Then we have OY [1], OC(p) ∈ Coh0
α,β(Y ), and 

therefore Fp ∈ Coh0
α,β(Y ) (although Fp /∈ Cohβ(Y ) since OY [1] /∈ Cohβ(Y )). Since

μ0
α,β(OY [1]) > 0 = μ0

α,β(OC(p)),

Fp is σ0
α,β-semistable.

Since walls for σ0
α,β-stability coincide with those for tilt-stability, Fp remains semistable in the region left 

of the vertical wall β = 0 and outside of the largest semicircular wall of Lemma 5.3. In particular, Fp is 
σ0
α,β-semistable for all −1 < β < 0 and all α > 0. �

Proposition 5.5. Let β = −1
2 and α � 1. Then, the objects listed in Theorem 5.1 (2) are σ0

α,β-semistable.

Proof. The same argument as [23, Prop. 4.1] applies to the I�[1] and implies that they are σ0
α,β-semistable. 

The other objects are σ0
α,β-semistable by Lemma 5.4. �

Remark 5.6. If Z is one of the subschemes listed in Proposition 3.4, but not a line, the argument of [23, 
Prop. 4.1] still applies. However, it only implies that IZ is σα,β-semistable. In fact, in cases (ii) and (iii) of 
Proposition 3.4, IZ [1] fits into an exact triangle

Cp → IZ [1] → IC [1], (15)

where C is a degree 1 genus 1 curve, and p is a point embedded in (respectively, disjoint from) C. This is a 
destabilizing sequence in σ0

α,β .6
The tradeoff between σα,β-stable and σ0

α,β-stable objects behaves like a wall-crossing. Indeed, the exten-
sion group Ext1(Cp, IC [1]) in the direction opposite to (15) vanishes for disconnected schemes (type (iii) 
in Proposition 3.4) and is one-dimensional for non-reduced schemes (as computed in the proof of Propo-
sition 3.11). The corresponding non-trivial extensions are precisely the objects Fp (if p �= y0) and Gx (if 
p = y0). There are no evident walls crossed by the rotation from σα,β to σ0

α,β , but it should be possible to 
find a corresponding wall in the stability manifold of Y .

Next, we show that the objects listed in Theorem 5.1 are the only σ0
α,β-semistable objects.

Proposition 5.7. Let β = −1
2 and α � 1. Suppose F is σ0

α,β-semistable object of class −κ1. Then F is one 
of the objects (i), (ii) in Theorem 5.1(2), or F = IZ [1] where Z is a subscheme as in Proposition 3.4.

Proof. Follows from Lemmas 5.8 and 5.9 below. �
Lemma 5.8. For F as in Proposition 5.7, there is a triangle

F ′[1] → F → T

where F ′ ∈ Cohβ(Y ) is σα,β-semistable, and T is either 0 or Cp for some p ∈ Y .

5 A similar argument is used to show [8, Prop. 4.1], which directly applies to this case and implies that Fp is σ0
α,0-semistable.

6 It is noteworthy that this is a class of objects to which [8, Prop. 4.1] does not apply.
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Proof. Since F is in Coh0
α,β(Y ), there is a triangle

F ′[1] → F → T

with F ′ ∈ Cohβ(Y )μα,β≤0, T ∈ Cohβ(Y )μα,β>0. Since F is semistable with respect to μ0
α,β, Zα,β(T ) has to 

be 0. So, T is supported on points, that is, T has finite length m and hence Zα,β(F ) = Zα,β(F ′[1]). On 
the other hand, we claim that F ′ must be σα,β-semistable. Otherwise, suppose it is destabilized by some 
S ⊂ F ′ in Cohβ(Y ). Since Cohβ(Y )μα,β≤0 is closed under taking subobjects, S ∈ Cohβ(Y )μα,β≤0 and thus 
S[1] ∈ Coh0

α,β(Y ). Observe that the composition S[1] → F ′[1] → F is an inclusion in Coh0
α,β(Y ), therefore 

S[1] destabilizes F .
Next we prove that m ≤ 1. It suffices to show that ch3(F ′) ≤ 1, since ch(F ′) = (1, 0, −H2, mH3). By 

[15], [4, Conjecture 4.1] holds for F ′, for all (α, β) where it is semistable. In particular, since F ′ is semistable 
along the line β = −1

2 , the inequality holds for α = 0 and β = −1
2 , which gives

4 · 49
64 − 61

2 chβ
3 (F ′) ≥ 0

which simplifies to ch3 F
′ ≤ 3/2. This proves m ≤ 1 (in fact the inequality for β = −1 gives the exact bound 

ch3 F
′ ≤ 1). �

We now classify all possibilities for F ′ and T as in Lemma 5.8.

Lemma 5.9. In the setting of Lemma 5.8, F ′ is the ideal sheaf of a one-dimensional subscheme of Y . More 
precisely, there are two possibilities:

– if T = 0, then F ′ = IZ , for Z ⊂ Y a subscheme as in Proposition 3.4;
– If T �= 0, then F ′ = IC , for C ⊂ Y a genus 1 curve of degree 1 (see Lemma 3.3). In this case, F is Fp

if T = Cp, and F is one of the Gx if T = Cy0 .

Proof. Since ch≤2(F ) = ch≤2(F ′), Lemma 5.3 shows that there are no walls for F ′ in the −1 < β < 0 strip. 
Hence F ′ is σα,β-semistable for α � 0. It follows from [4, Lemma 2.7] that F ′ is a Gieseker-semistable sheaf.

If T = 0, then [F ′] = κ1 is one of the ideal sheaves IZ classified in Proposition 3.4.
Otherwise, F ′ is an ideal sheaf of a subscheme supported on a curve of degree 1. This is either a line or 

a genus one curve. It cannot be a line: otherwise, we would have H3 = ch3 F
′ ≤ 0. Hence F ′ is the ideal 

sheaf of a genus 1 curve C. The only complex with cohomologies IC [1] and Cp is Fp. Similarly, the Gx are 
all the complexes with cohomologies IC and Cy0 . �
Proof of Theorem 5.1. The statement about σα,β-semistable objects is proven with the same argument as 
[23, Prop. 4.1]: the authors show that σα,β-stability coincides with Gieseker stability for α � 1, and that 
there are no walls for objects of class −κ1 on the line β = −1

2 .
On the other hand, Propositions 5.5 and 5.7, combined with Remark 5.6, show that σ0

α,β-semistable 
objects are precisely those listed in the statement. �
Remark 5.10. A simple consequence of Lemma 5.4 is that every Fp is σ(α, β)-stable for all (α, β) ∈ V

(defined by Eq. (2)). In fact, Fp is actually σ0
α,β-semistable for all 0 < α, −1 < β < 0. Since this strip 

intersects V , Fp is also σ(α, β)-semistable, for some (α, β) ∈ V , and hence for all of them by Proposition 2.8. 
Having primitive numerical class, Fp must be σ(α, β)-stable. This proves that the Fp are σ-stable, giving 
an alternative argument than that of Theorem 4.6.
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Remark 5.11. Note that the object Fy0 ∈ Coh0
α,β(Y ) is not σ0

α,β-semistable. It is destabilized by the triangle 
(12). However, Fy0 is σ(α, β)-stable, since it is the rotation of the stable object Ey0 (see Theorem 4.6). 
There is no wall in the (α, β) plane which would make Fy0 stable. Nevertheless, the objects Gx defined in 
Sec. 4 are σ0

α,β-semistable, and they can be obtained from (12) as all the possible extensions in the other 
direction: in fact, the objects G fitting in a triangle

[O⊕3
Y → OY (1)] → G → OY (−1)[2] (16)

are all and only the Gx. Indeed, the complex [O⊕3
Y → OY (1)] fits in the Koszul complex

OY (−2) a−→ OY (−1)⊕3 → O⊕3
Y

b−→ OY (1) → Cy0 .

Then the cohomology sequence of (16) gives immediately

H0(G) � Cy0 ,

0 → OY (−1) c−→ K → H−1(G),
(17)

where K = ker(b) = coker(a) and H−2(G) = 0 because c �= 0. Considering the sequence O(−2) →
O(−1)⊕3 → K, one sees that c must lift to an inclusion O(−1) → O(−1)⊕3, and hence H−1(G) � coker(c) =
coker(OY (−2) → OY (−1)⊕2) = ICx

for some x ∈ P 2. In other words, G has cohomologies

ICx
[1] → G → Cy0

and hence G � Gx for some x (see Remark 5.6). Conversely, all Gx fit in a triangle (16).

6. Stable pairs and moduli of σ0
α,β-semistable complexes

In this section we show that there is a fine moduli space for σ0
α,β-semistable complexes. We recall that a 

stable pair on Y is a pair (P, s) where:

– P is a pure sheaf supported on a curve of Y ;
– s is a map

OY
s−→ P

with zero-dimensional cokernel (see [22]).

We say that OY
s−→ P has class κ1 if v(P ) = κ1 − v(OY ).

A family of stable pairs over a quasi-projective base scheme B is a pair (P, s) where P ∈ Coh(Y ×B) is 
flat over B and

OY×B
s−→ P,

with the property that the restriction (Pb, sb) is a stable pair on Y × {b} for all closed b ∈ B.
There is a fine moduli space P (κ1) representing the functor

P(κ1) : (Sch/C)op → Sets

whose value on a scheme B is the set of families of stable pairs over B of class κ1, and which maps morphisms 
to pull-backs of families (the space P (κ1) is constructed using GIT techniques and it is projective [16]). 
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Pandharipande and Thomas show that two stable pairs OY
s−→ P and OY

s′−→ P ′ are isomorphic if and only 
if they are quasi-isomorphic as complexes in Db(Y ) [22, Prop. 1.21]. As a consequence, they identify P(κ1)
with the moduli functor whose value in B is the quasi-isomorphism class of B-perfect complexes on Y ×B

that restrict to stable pairs of class κ1 on closed points of B [22, §2].
On the other hand, consider the weak stability condition σ0

α,β of Theorem 5.1. We can define a moduli 
functor

M0
α,β(κ1) : (Sch/C)op → Gpds (18)

whose value on a scheme B is the groupoid of all B-perfect complexes I ∈ D(Y ×B) such that for all closed 
b ∈ B, Ib ∈ D(Y × {b}) is σ0

α,β-semistable of class κ1 (as above, the value of M0
α,β(κ1) on morphisms is 

pull-back).
Observe that Theorem 5.1 classifies exactly all stable pairs of class κ1. In fact, one can argue as in [22, 

Lemma 1.6] and show that a stable pair of class κ1, viewed as a complex I := [OY
s−→ F ] ∈ Db(Y ), satisfies 

H0(I) � IC where C is a degree 1 curve, length(H1(I)) ≤ 1, and all other cohomologies vanish. Such 
complexes are precisely (shifts of) those in Theorem 5.1.

In other words, P(κ1) (interpreted as a moduli functor of complexes) is identified with M0
α,β(κ1), and 

therefore P (κ1) is a fine moduli space for M0
α,β(κ1).

Moreover (recall the descriptions of MG(κ1) and Mσ(−κ1) in Theorem 3.7 and Theorem 4.6) we have:

Theorem 6.1. The projective scheme P (κ1) is a fine moduli space of σ0
α,β-semistable objects, for σ0

α,β as in 
Theor. 5.1. P (κ1) contains the surface of lines F (Y ), and has a second irreducible component M̃3, which is 
the blow-up of M3 � Y at y0.

Proof. It follows from Theorem 5.1 that the universal family of MG(κ1), restricted to F (Y ), induces an 
inclusion F (Y ) → P (κ1). We denote by M̃3 the second irreducible component of P (κ1), it parametrizes 
complexes of the form Fp for y0 �= p ∈ Y , and Gx for x ∈ P 2.

Observe first of all that M̃3 is smooth outside the intersection with the other components, in fact, we 
have ext1(Fp, Fp) = 3 (by Theorem 4.6) and ext1(Gx, Gx) = 3 by Lemma 6.2 below. Then, the locus D′

parametrizing the objects Gx lies in the smooth locus of M̃3, and hence D′ is a Cartier divisor in M̃3. Set 
D = D′ × Y and write iD : D → M̃3 × Y for the inclusion.

Let I ∈ Db(M̃3 × Y ) be the universal family of P (κ1) restricted to M̃3. We will use a modification of I
to construct a family of objects of Ku(Y ) supported on M̃3. Consider the triangle

I(−D) → I r−→ I|D

and the relative version of (16) over the projection pD : D → Y :

p∗D[O⊕3
Y → OY (1)] → I|D

u−→ p∗DOY (−1)[2]

(we denote A := [O⊕3
Y → OY (1)] in what follows). We abuse notation and we use the same letter u for the 

map iD∗I|D
u−→ iD∗p∗DOY (−1)[2] obtained by pushing forward. The octahedral axiom applied to u ◦ r yields 

a triangle

I(−D) → I ′ → iD∗p
∗
DA, (19)

where I ′ is the (shift of the) cone of u ◦r. By tensoring iD∗p
∗
DA with the sequence OM̃3×Y (−D) → OM̃3×Y →

iD∗OD we obtain a triangle on D:
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p∗DA(−D) 0−→ p∗DA → Li∗DiD∗p
∗
DA, (20)

where Li∗DiD∗p
∗
DA is the derived restriction of iD∗p

∗
DA to D.

On the other hand, restriction of (19) to a fiber [Gx] × Y of D, gives a triangle

Gx → (Li∗DI ′)[Gx] → (Li∗DiD∗p
∗
DA)[Gx]. (21)

The cohomologies of (Li∗DiD∗p
∗
DA)[Gx] can be computed from (20), using that the cohomologies of A

(and those of Gx) are computed in Remark 5.11. Then, taking cohomologies of (21), we see

Gx → (Li∗DI ′)[Gx] → (Li∗DiD∗p
∗
DA)[Gx]

0 → H−2((Li∗DI ′)[Gx]) → K →
ICx

f−→ H−1((Li∗DI ′)[Gx]) → M →
Cy0

g−→ H0((Li∗DI ′)[Gx]) → Cy0

where K = h−1(A) and M is an extension of Cy0 by K. By construction, the connecting map K → ICx

coincides with that in (17). So H−2((Li∗DI ′)[Gx]) � OY (−1) and f = 0. Similarly, the map M → Cy0 is 
surjective, so that H−1((Li∗DI ′)[Gx]) � K and g = 0, which implies H0((Li∗DI ′)[Gx]) � Cy0 .

Therefore there is a triangle

OY (−1)[2] → (Li∗DI ′)[Gx] → A,

which shows that (Li∗DI ′)[Gx] � Fy0 by Lemma 4.7 (and because ext1(A, OY (−1)[2]) = 1).
Then, I ′ ∈ D(M̃3 × Y ) defines a flat family of σ-stable objects of Ku(Y ) of class κ1, and therefore a 

morphism M̃3 → M3 which maps D′ to y0. �
Lemma 6.2. For x ∈ P 2, we have ext1(Gx, Gx) = 3.

Proof. We compute this applying the spectral sequence (8) to the complex Gx � [OY → OCx
(y0)]. The 

first page has spaces of dimension

0 0 0
1 * 0
0 0 + 2 0
0 1 + 1 1

Since the map in the bottom row

Hom(OY ,OY ) ⊕ Hom(OCx
(y0),OCx

(y0)) → Hom(OY ,OCx
(y0))

is non-zero, ext1(Gx, Gx) ≤ 3. But every Gx fits in a three dimensional component (there are two dimensions 
for deforming Cx and one to move y0), so ext1(Gx, Gx) ≥ 3 and equality holds. �
6.1. P (κ1) as a generalized Quot scheme

In Section 3 we showed that MG(κ1) is isomorphic to the Hilbert scheme of lines on Y . Here, we give 
a similar interpretation for the moduli space P (κ1) of σ0

α,β-semistable objects as quotients of OY in an 
appropriate heart of Db(Y ).

Consider the sheaves of the form OC(p), where p ∈ Y (possibly p = y0) and C = Cx for some x ∈ P 2. 
By Riemann-Roch we also have



22 M. Petković, F. Rota / Journal of Pure and Applied Algebra 227 (2023) 107214
χ(OC(p)(t)) = 1 + t.

However, the OC(p) are not sheaf quotients of OY and do not represent points of the Hilbert scheme of 
lines of Y .

In this section, we consider a different space of quotients, and show that the distinguished triangles

I� → OY → O�

Fp[−1] → OY → OC(p)

Gx[−1] → OY → OCx
(y0)

(22)

are all short exact sequences in an appropriate abelian category (the notation here is the same as that of 
Theorem 5.1).

More precisely, define Bθ
α,β as follows: pick (α, β) ∈ V so that the chain of inequalities

β

−
(

α2−β2

2 + 1
) = μ0

α,β(Fp) > 0 = μ0
α,β(OC(p)) > μ0

α,β(OY ) = 2β
−(α2 − β2)

is satisfied. By the wall computation of Lemma 5.3, we may pick 0 < ε � 1 so that, if F is any unstable 
object of class −κ1, then any destabilizing quotient G satisfies μ0

α,β(G) < θ := μ0
α,β(F ) − ε.

Then, consider the torsion pair in Coh0
α,β(Y ) consisting of the categories Coh0

α,β(Y )μ0
α,β≤θ and 

Coh0
α,β(Y )μ0

α,β>θ generated by σ0
α,β-semistable objects of slope ≤ θ and > θ respectively. Denote by Bθ

α,β

the (shift of the) corresponding tilt:

Bθ
α,β :=

[
Coh0

α,β(Y )μ0
α,β≤θ,Coh0

α,β(Y )μ0
α,β>θ[−1]

]
.

Since IZ [1], Fp, and Gx are σ0
α,β-semistable of phase > θ, their shifts by −1 belong to Bθ

α,β . Similarly, 
by the choice of θ we have that O�, OC(p), OCx

(y0), and OY belong to Bθ
α,β as well. Then, the triangles in 

(22) are short exact sequences in Bθ
α,β. The converse is true:

Proposition 6.3. Quotients of OY of class κ1 in Bθ
α,β are precisely the objects O�, OC(p), and OCx

(y0) listed 
in (22).

Proof. First, we claim that if

F → OY → Q (23)

is a short exact sequence in Bθ
α,β with χ(Q(t)) = t + 1, then F is σ0

α,β-semistable of class κ1. Indeed, the 
statement about the numerical class is immediate. As for semistability: a destabilizing quotient G of F must 
have μ0

α,β(F ) > μ0
α,β(G) > θ, otherwise G /∈ Bθ

α,β . But this contradicts our choice of θ.
So, F must be (a shift of) the objects classified in Theorem 5.1, and the sequence (23) must be one of 

those listed in (22). �
Remark 6.4. The arguments above identify the moduli functor M0

α,β(κ1) with the generalized Quot functor 
defined in [2, Sec. 11] and [25].

References

[1] Matteo Altavilla, Marin Petkovic, Franco Rota, Moduli spaces on the Kuznetsov component of Fano threefolds of index 
2, Épij. Géom. Algébr. 6 (2022).

http://refhub.elsevier.com/S0022-4049(22)00211-0/bib38DA65DE0ED8B894D1F26C7EBDFAFAB7s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib38DA65DE0ED8B894D1F26C7EBDFAFAB7s1


M. Petković, F. Rota / Journal of Pure and Applied Algebra 227 (2023) 107214 23
[2] Arend Bayer, Martí Lahoz, Emanuele Macrì, Howard Nuer, Alexander Perry, Paolo Stellari, Stability conditions in families, 
Publ. Math. Inst. Hautes Études Sci. 133 (2021) 157–325, MR 4292740.

[3] Arend Bayer, Martí Lahoz, Emanuele Macrì, Paolo Stellari, Stability conditions on Kuznetsov components, arXiv e-prints, 
arXiv :1703 .10839, 2017.

[4] Arend Bayer, Emanuele Macrì, Paolo Stellari, The space of stability conditions on abelian threefolds, and on some Calabi-
Yau threefolds, Invent. Math. 206 (3) (2016) 869–933, MR 3573975.

[5] Arend Bayer, Emanuele Macrì, Yukinobu Toda, Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type 
inequalities, J. Algebraic Geom. 23 (1) (2014) 117–163, MR 3121850.

[6] Tom Bridgeland, Stability conditions on triangulated categories, Ann. Math. (2) 166 (2) (2007) 317–345.
[7] Kiryong Chung, Young-Hoon Kiem, Hilbert scheme of rational cubic curves via stable maps, Am. J. Math. 133 (3) (2011) 

797–834, MR 2808332.
[8] Soheyla Feyzbakhsh, Laura Pertusi, Serre-invariant stability conditions and Ulrich bundles on cubic threefolds, arXiv 

e-prints, arXiv :2109 .13549, 2021.
[9] Jun-Muk Hwang, Hosung Kim, Varieties of minimal rational tangents on Veronese double cones, Algebr. Geom. 2 (2) 

(2015) 176–192, MR 3350155.
[10] Vasily A. Iskovskih, Fano threefolds. I, Izv. Akad. Nauk SSSR, Ser. Mat. 41 (3) (1977) 516–562, 717, MR 463151.
[11] Alexander G. Kuznetsov, Yuri G. Prokhorov, Constantin A. Shramov, Hilbert schemes of lines and conics and automor-

phism groups of Fano threefolds, Jpn. J. Math. 13 (1) (2018) 109–185, MR 3776469.
[12] Alexander G. Kuznetsov, Derived categories of Fano threefolds, Tr. Mat. Inst. Steklova 264 (Mnogomernaya Algebraich-

eskaya Geometriya) (2009) 116–128, MR 2590842.
[13] Alexander G. Kuznetsov, Semiorthogonal decompositions in algebraic geometry, in: Proceedings of the International 

Congress of Mathematicians—Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, 2014, pp. 635–660.
[14] Alexander Kuznetsov, Calabi-Yau and fractional Calabi-Yau categories, J. Reine Angew. Math. 753 (2019) 239–267, MR 

3987870.
[15] Chunyi Li, Stability conditions on Fano threefolds of Picard number 1, J. Eur. Math. Soc. 21 (3) (2019) 709–726, MR 

3908763.
[16] Joseph Le Potier, Systèmes cohérents et structures de niveau, Astérisque 214 (1993) 143, MR 1244404.
[17] Zhiyu Liu, Shizhuo Zhang, A note on Bridgeland moduli spaces and moduli spaces of sheaves on X14 and Y3, arXiv 

e-prints, arXiv :2106 .01961, 2021.
[18] Antony Maciocia, Computing the walls associated to Bridgeland stability conditions on projective surfaces, Asian J. Math. 

18 (2) (2014) 263–279, MR 3217637.
[19] Emanuele Macrì, Benjamin Schmidt, Lectures on Bridgeland stability, in: Moduli of Curves, in: Lect. Notes Unione Mat. 

Ital., vol. 21, Springer, Cham, 2017, pp. 139–211, MR 3729077.
[20] Ragni Piene, Michael Schlessinger, On the Hilbert scheme compactification of the space of twisted cubics, Am. J. Math. 

107 (4) (1985) 761–774, MR 796901.
[21] Laura Pertusi, Paolo Stellari, Categorical Torelli theorems: results and open problems, arXiv:e-prints, arXiv :2201 .03899, 

2022.
[22] Rahul Pandharipande, Richard P. Thomas, Curve counting via stable pairs in the derived category, Invent. Math. 178 (2) 

(2009) 407–447, MR 2545686.
[23] Laura Pertusi, Song Yang, Some remarks on Fano three-folds of index two and stability conditions, Int. Math. Res. Not. 

(2021), https://doi .org /10 .1093 /imrn /rnaa387.
[24] Xuqiang Qin, Bridgeland stability of minimal instanton bundles on Fano threefolds, arXiv:e-prints, arXiv :2105 .14617, 

2021.
[25] Franco Rota, Moduli spaces of sheaves: generalized Quot schemes and Bridgeland stability conditions, Ph.D. thesis, 

University of Utah, 2019.
[26] Benjamin Schmidt, Bridgeland stability on threefolds: some wall crossings, J. Algebraic Geom. 29 (2) (2020) 247–283, MR 

4069650.
[27] Alexander S. Tihomirov, The Fano surface of the Veronese double cone, Math. USSR, Izv. 19 (2) (1982) 377–443.

http://refhub.elsevier.com/S0022-4049(22)00211-0/bibE338F9FDEEB3FB720A8AC5E9F41AE8F9s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibE338F9FDEEB3FB720A8AC5E9F41AE8F9s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibD6B09B68CC8C6E4FCE41F77ABC71A472s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibD6B09B68CC8C6E4FCE41F77ABC71A472s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib48F338CD5D5301FFDE65ACBB779C9971s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib48F338CD5D5301FFDE65ACBB779C9971s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib518BDEA4CA134266266D63E4986F677Cs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib518BDEA4CA134266266D63E4986F677Cs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib665A7C0E4D63FCCA02367581356AECD4s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib076DB86B69BA2D3A05F4902B7FB2C665s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib076DB86B69BA2D3A05F4902B7FB2C665s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibFDBAD2E326CA6D3503F6DD2AC4587BCEs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibFDBAD2E326CA6D3503F6DD2AC4587BCEs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib47F2CF12630A7CB0F04A715484E3CDBDs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib47F2CF12630A7CB0F04A715484E3CDBDs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib0BFE9F68E134AE6213F585855689AE8As1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib9882755516886B107A2E7973987E857Bs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib9882755516886B107A2E7973987E857Bs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib0D2F2EA260C3F6F813F0890B48D0B1CAs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib0D2F2EA260C3F6F813F0890B48D0B1CAs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibAC964B8B52720FAC68CBF05AC07269F0s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibAC964B8B52720FAC68CBF05AC07269F0s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibC18867BEB81CC59D5579F13EB40FCF6Bs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibC18867BEB81CC59D5579F13EB40FCF6Bs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib47D7E8DB98CE4F77F90EF950F9C42697s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib47D7E8DB98CE4F77F90EF950F9C42697s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibDCE89E58D5FA586D99F14322096F266Ds1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib44DE25B970A6F22D370AC93E7F90AD65s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib44DE25B970A6F22D370AC93E7F90AD65s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib57C208665BC248EE282E1397A8175D49s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib57C208665BC248EE282E1397A8175D49s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib866E2F8C60DFBCED9598A2D7E5AD7BACs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib866E2F8C60DFBCED9598A2D7E5AD7BACs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib9FF5DB960BD575C7CA619934AAA49206s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib9FF5DB960BD575C7CA619934AAA49206s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib19C94643CEE52B2E832C3DD457DF9DACs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib19C94643CEE52B2E832C3DD457DF9DACs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib58509C1B8D67B14D8E39088C6A4B787Fs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib58509C1B8D67B14D8E39088C6A4B787Fs1
https://doi.org/10.1093/imrn/rnaa387
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib8FA1DD1731D3635A38ECC6CE75CBD1B8s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib8FA1DD1731D3635A38ECC6CE75CBD1B8s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib3FE6BB362DCA10947D37EFA09938557Fs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bib3FE6BB362DCA10947D37EFA09938557Fs1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibBCAD79E7742E940C380B210A7B463952s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibBCAD79E7742E940C380B210A7B463952s1
http://refhub.elsevier.com/S0022-4049(22)00211-0/bibDF108C69600C33FF72110F59930ED6D9s1

	A note on the Kuznetsov component of the Veronese double cone
	1 Introduction
	Related works and remarks
	Structure of the paper
	Acknowledgements

	2 Preliminaries
	2.1 Stability conditions
	2.1.1 Slope stability
	2.1.2 Tilt-stability
	2.1.3 Rotation of tilt-stability

	2.2 Kuznetsov component

	3 Lines on a Veronese double cone
	3.1 Veronese double cones
	3.2 Stable sheaves of class k1 on Y

	4 Moduli spaces of objects of Ku(Y)
	5 Set-theoretic considerations
	5.1 Stable complexes of class k1

	6 Stable pairs and moduli of sigma-a,b-semistable complexes
	6.1 P(k1) as a generalized Quot scheme

	References


