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A Fine-Grained Attention Model for High Accuracy
Operational Robot Guidance

Yinghao Chu, Daquan Feng, Zuozhu Liu, Lei Zhang, Zizhou Zhao, Zhenzhong Wang, Zhiyong Feng, and
Xiang-Gen Xia

Abstract—Deep learning enhanced Internet of Things (IoT)
is advancing the transformation towards smart manufacturing.
Intelligent robot guidance is one of the most potential deep learn-
ing+IoT applications in the manufacturing industry. However,
low costs, efficient computing, and extremely high localization
accuracy are mandatory requirements for vision robot guidance,
particularly in operational factories. Therefore in this work, a
low-cost edge computing based IoT system is developed based
on an innovative Fine-Grained Attention Model (FGAM). FGAM
integrates a deep-learning based attention model to detect the Re-
gion Of Interest (ROI) and an optimized conventional computer
vision model to perform fine-grained localization concentrating
on the ROI. Trained with only 100 images collected from real
production line, the proposed FGAM has shown superior per-
formance over multiple benchmark models when validated using
operational data. Eventually, the FGAM based edge computing
system has been deployed on a welding robot in a real-world
factory for mass production. After the assembly of about 6000
products, the deployed system has achieved averaged overall
process and transmission time down to 200 ms and overall
localization accuracy up to 99.998%.

Index Terms—Internet of Things, Edge Computing, Deep
Learning, Attention Mechanism, Fine-grained Image Analysis,
Smart Manufacturing, Robot Guidance

I. INTRODUCTION

Deep learning enhanced Internet of Things (IoT) [1], [2] is
envisioned in order to play a vital role in the domain of smart
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manufacturing [3]–[6] to achieve substantial advancements in
terms of quality control, productivity, and efficiency [7], [8].
Representative deep learning enhanced IoT applications for
smart manufacturing include, but not limited to, automatic
fault diagnosis, defect prognosis, surface quality inspection,
and robot guidance [9]–[15]. Among these applications, smart
vision guidance system is capable of improving the perfor-
mance of identification accuracy, localization accuracy, obsta-
cle avoidance, and human-robot collaboration for manufac-
turing robots [15]–[18]. Development and deployment of the
vision guidance systems are usually based on edge comput-
ing enabled IoT systems [19]–[21]. Therefore, the deployed
systems are able to operate in isolated mode without internet
access and guarantee the production safety and data security
for factories [22]–[24].

However, there are several remaining challenges to develop
vision guidance method on edge computing based IoT system
for manufacturing users. First, factories demand low-cost
solutions to maintain their market competitiveness. Small-
scale machinery and manufacturing factories are particularly
sensitive to costs [25]. Second, the embedded algorithm of
an operational system must be highly computational effi-
cient [26]. The efficiency of the edge computing directly
affects the final hourly production rate and the revenue of
the factories. Third, a very high-level accuracy of vision
localization is mandatory for guided manufacturing operations
[15]. Guided robot movements using incorrect object positions
may not only increase the defective product rate, but also
are potentially dangerous to the system hardware and human
operators. Consequently, most manufacturing industries have
strict requirements on the accuracy of vision localization. For
example, the localization deviation from the true object for
spot welding should be less than 1 millimeter in automotive
industry [27]. However, available vision localization methods
may not completely suit the complex environments in facto-
ries. For example, conventional computer vision methods are
sensitive to variations in illumination and background noise
[28]. Similarly, the localization precision of deep learning de-
tection may degenerate due to jittering effects [29], [30]. More
details about the state-of-the-art vision localization methods
will be discussed in Section II.

Therefore in this work, a Fine-Grained Attention Model
(FGAM) is developed based on edge computing based IoT
to enable accurate, efficient, and low-cost 2D robot guidance.
FGAM first uses a deep learning based attention model for Re-
gion Of Interest (ROI) detections and then uses an optimized
conventional computer vision method for fine-grained pixel-
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level localizations. The attention model uses modified Tiny-
YOLOv3 backbone to optimize the computing efficiency. With
the predicted ROI from the attention model, a fine-grained
localization model is developed to consistently predict accurate
locations of the target object. Fine-grained methods are mostly
proposed to distinguish subordinate-level categories [31]–[33].
To the best knowledge of the authors, few researches have
investigated the fine-grained methods for localization tasks,
particularly for edge computing IoT system.

The major contributions of this work are summarized as
follows.

1) Instead of a proof-of-concept demo in laboratory envi-
ronment, a low-cost edge computing based IoT system
is developed for robotic vision guidance in a real-world
welding factory. On one hand, the automatic welding
solution can greatly reduce chance of health hazards due
to the tough working condition. On the other hand, it can
help to alleviate the pressure of the skilled labor shortage
that would adversely affect the production and revenue.
The developed system is capable of operating in a noisy,
complex, and hazardous environment but has shown
excellent and robust performance during the real-time
mass production. The deployed system can theoretically
assemble more than 1000 products each day, and this
productivity is equivalent to that of 2 full-time skilled
human workers.

2) An innovative fine-grained attention model is developed
for the IoT edge server to achieve highly accurate and
robust vision localization. This model integrates a deep-
learning object detection method for ROI detection and
an optimized conventional computer vision method for
fine-grained localization. The proposed model is capable
of operating in complex factory environments. Trained
using a small labelled dataset of only 100 images, this
proposed model has shown a localization accuracy up
to 99.998% in nearly 96000 vision guided welding
operations during the real-time mass production. This
proposed model is particularly useful for the manufac-
turing scenarios, in which data labelling is costly but a
high level of localization accuracy is mandatory.

3) A new object detection backbone is proposed for ROI
detection to maximize the computational efficiency.
Comparing to the original Tiny-YOLOv3 backbone,
the process and response speed of the new backbone
improve from about 20 FPS to 52 FPS (for 1024×1280
images) with the minimum compromise in the detection
accuracy.

The rest of the paper is organized as follows: the related
work is presented in Section II; the system model and problem
formulation are presented in Section III; the details to develop
the FGAM are presented in Section IV; the experiments and
results are presented and discussed in Section V and the
conclusions are presented in Section VI.

II. RELATED WORK

To achieve both accurate and robust vision localization for
robot guidance, different methods have been proposed and

discussed in the literature. For example, 3-D vision systems,
such as structured light sensors [34], laser tracker [35], stereo
cameras [36], and ToF camera [18], have been used in many
robot guidance applications. However, 3-D vision systems
are relatively expensive but small-scale factories (e.g. the
investigated scenario in this work) are particularly sensitive to
costs. Besides, the lifetime of 3-D systems will be noticeably
shortened in harsh factory environments, which will further
increase the maintenance and replacement costs. In addition, 3-
D based systems raise another concern over the production ef-
ficiency. Edge computing servers usually have limited resource
for sophisticated guidance algorithm. 3-D vision systems may
take over a second to generate the point cloud or depth map,
which will significantly decrease the hourly production rate
and the overall revenue of the factories.

Therefore, low-cost 2-D vision systems are competitive
solutions for scenarios with flat surfaces. 2-D vision systems
could capture and process an image in milliseconds. Tra-
ditional approaches to perform localization in 2-D images
include, but not limited to, template matching [37], shape
fitting [38], edge-based matching [39], Scale-Invariant Feature
Transform (SIFT) [40], Speeded Up Robust Features (SURF)
[41], Features from Accelerated Segment Test (FAST) [42].
These traditional methods are well-established, transparent,
and optimized for computational efficiency [43]. However, the
accuracy and robustness of these methods are still improvable
in the complex manufacturing environment.

In recent years, Convolutional Neural Network (CNN) dom-
inates the interests of computer vision researches [44]–[46].
For classification and detection applications, CNN have shown
superior performance over the above traditional methods in
terms of accuracy, generalization, and robustness [47]–[50].
To find the locations of target objects in input images, object
localization methods [51] have been proposed based on CNNs.
These object localization methods first implement CNNs to
extract image features and then apply boundary regressors to
derive object positions using the extracted image features [52].
However, object localization methods predict fixed number
of objects during the inference phase, and the number of
predictions is determined and fixed during the training phase.
To address this shortage, object detection methods are pro-
posed to localize and classify all objects in an image. There
are two major categories of object detection methods: region
proposal based methods and regression/classification based
methods [29]. Examples of region proposal based methods
include, but not limited to, R-CNN [53], SPP [54], Fast R-
CNN [55], Faster R-CNN [56], R-FCN [57], FPN [58], and
examples of regression/classification based methods include,
but not limited to, MultiBox [59], SSD [60], YOLO [61],
DSSD [62].

As one of the representative regression-based methods, You
Only Look Once (YOLO) method [61] predicts bounding
boxes and class probabilities of target objects directly from
an input image in one evaluation. As a result, YOLO achieves
extremely fast speed up to 45 Frames Per Second (FPS) [61]
when evaluated using the COCO dataset [63]. In addition,
YOLO can be optimized end-to-end directly on detection
performance, which is convenient for in-field deployments. In
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2018, YOLOv3 [64] is evolved from YOLO [61] and YOLOv2
[65]. YOLOv3 predicts bounding boxes on different scales
using feature pyramid networks [66]. Therefore, YOLOv3
mitigates the loss of fine features during the downsampling
of the input and is particularly useful to detect small objects.
YOLOv3 is a potential solution to operational localization
tasks because of its speed and ease of use. However, the
bounding boxes predicted by YOLOv3 or other object detec-
tion methods may jitter around the ground-truths. The jittering
effect is usually originated from inherent pixel noise of camera
sensor or improper aggregation of the proposed bounding
boxes [29], [30]. The bounding box jittering may result in
localization deviations. Therefore, the jittering effect is a major
challenge to apply object detection methods in high-precision
machining and manufacturing scenarios.

To further enhance the consistence and robustness of deep
learning models, attention mechanisms have been proposed.
Attention models mimic the attention mechanisms of the
human who focus on specific aspects of a complex input
[67]. Therefore, a complicated problem is divided by attention
models into smaller and simpler tasks that are processed
sequentially [68]. Attention mechanisms have been widely
employed in both natural language processing [68] and image
analysis researches [69]–[72]. For image analysis, there are
two main types of attention mechanisms: soft attention and
hard attention [73]. For soft attention, a sophisticated group of
filters is used to create a blurring effect that the ROI is in focus
while the surrounding is faded or blurred. For hard attention,
only the ROI is further analyzed and the entire background
is discarded. In this work, the hard attention mechanism [73]
is adopted to avoid the background noise (will be described
in Section V-A). At the request of the investigated factory,
the proposed attention model uses modified Tiny-YOLOv3
backbone to minimize the image analysis time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first introduce the system model and then
describe the optimization problem to maximize the localization
accuracy for vision robot guidance.

A. System model

For a typical vision guided manufacturing robot, the applied
edge computing system consists of 4 major components: an
edge computing server, an imaging system, a user interface,
and the executive manufacturing equipments (this work in-
cludes a manufacturing robot, a welder, and a rotary welding
positioner). The schematic diagram of the proposed system is
presented in Fig. 1. For operation, the edge computing server
first initializes the system based on the start signal and the set
parameters from the user interface. Then, the edge computing
server pushes orders to other system components, directs
operation of tasks, monitors and controls the process. The
vision localization and robot guidance tasks are operated by
the imaging system and the edge computing server. With the
start signal, the edge computer server will direct the imaging
system to capture the image x of the product to be processed.
The captured image x is an H ×W matrix, where H and W

are the height and width of the image, respectively. The value
of each matrix element Ih,w ∈ [0, 255] represents the pixel
intensity. Then, the imaging system forwards the captured im-
ages to the edge computing server. The proposed fine-grained
attention model is embedded in the edge computing system,
which analyzes x to generate the output ŷjh ∈ {1, H} and
ŷjw ∈ {1,W}. ŷjh and ŷjw are the coordinate predictions in the
directions of height and width, respectively. j ∈ {1, 2, ..., k},
and k denotes the total number of points of interest (in this
work is equal to 2) to be identified and localized in the image.

Fig. 1. The schematic diagram of the edge based IoT enhanced
vision guided welding robot system.

B. Problem description
This work develops a model to perform high-accuracy

vision localization based on a small dataset. In the following,
xi denotes an input image; X = {x1, x2, ..., xn} denotes
the training set of input images; n denotes the number of
images in the set X . For each xi, there are j sets of labels
(yjh,i, y

j
w,i) that describe the positions of the points to be

localized in xi. xnew /∈ X denotes a new image. (yjh,new, yjw,new)
denotes the corresponding sets of labels for the new image.
We consider an attention model f(·) to extract ROIs v̂ji from
xi, then v̂ji , f(xi). Similarly, v̂jnew , f(xnew). g(·) denotes
a fine-grained localization model that takes v̂ji as the input
and generates (ŷjh,new, ŷjw,new) as the final predictions. Then,
(ŷjh,i, ŷ

j
w,i) , g(vji ). Similarly, (ŷjh,new, ŷ

j
w,new) , g(vjnew).

Based on the given training set X , our objective is to develop
f(·) and g(·) in order to maximize the localization accuracy
by minimizing the difference between labels and predictions
(yjh,new − ŷjh,new)2 + (yjw,new − ŷjw,new)2. In the following, we
describe the proposed fine-grained attention model to solve
these problems.

IV. FINE-GRAINED ATTENTION MODEL

To localize the points of interest with extremely high
accuracy and speed, we propose a Fine-Grained Attention
Model (FGAM). FGAM integrates a modified Tiny-YOLOv3
method [74] with an Improved Template Matching Model
(ITMM) [37]. First, a modified Tiny-YOLOv3 is developed
as the attention model f(·) to detect the attention mask or
ROI patches vji from the original images xi. Then, the ITMM
g(·) concentrates solely on the ROI patches vji to perform
fine-grained localization for the points of interests (ŷjh , ŷjw).
Details of the model development procedures are described in
the followed subsections.
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Fig. 2. The schematic diagram of the proposed attention model. This attention model is based on the modified backbone of
Tiny-YOLOv3 and the modified layers are marked in the red dash box. The input image is marked by the blue box. The final
output tensors from the attention model are marked by the orange boxes.

A. Attention model based on modified Tiny-YOLOv3

The attention model in this work is developed based on
Tiny-YOLOv3, which is a simplified and fast version of
YOLOv3. Tiny-YOLOv3 has shown both high detection accu-
racy and speed for both large and small objects [75], [76]. As
discussed in Section V-A, the application scenario of this work
demands that the overall vision localization process should be
less than 200ms in real-time operation. However, the overall
process contains a series of sub-processes, such as image
capturing and transmission, image preprocessing, ROI local-
ization, fine-grained localization, coordinate derivation and
transformation. Therefore, only a small fraction of the 200ms
is available to the attention model, which should generate the
ROIs from each input image in 50ms based on preliminary
calculations. Besides, the computational resource of the edge
computing system is limited due to the consideration of costs.
As a result, the Tiny-YOLOv3 [64], [77] is one of the few
methods that could satisfy the efficiency demands of real-time
operation.

The architecture of the proposed attention model is pre-
sented in Fig. 2. Similar to other YOLO methods, Tiny-
YOLOv3 employs single neural network to directly predict
bounding boxes with class probabilities and confidences in
one evaluation [61]:

v̂ji = (p̂c, b̂h, b̂w, b̂H, b̂W, c)j , (1)

where j is the number of bounding boxes identified in the
image i, p̂c is the probability that the bounding box contains
an object, (b̂w,b̂h) is the center coordinate of the bounding
box, b̂H and b̂W are height and width of the bounding box,
respectively, c is the vector of object classes. Therefore, the

number of elements nv in v̂ji is equal to 5+number of classes
in c.

To perform detection, each input image is first divided into
S × S grids. S is equal to the size of input image divided by
a downsampling rate. For each grid cell, multiple bounding
boxes can be generated based on bounding box priors, which
are determined by k-means clustering [78] to improve the
detection accuracy [64], [76]. Therefore, the size of the output
detection tensor is

S × S × (B × (nv)), (2)

where B is the number of bounding boxes priors.
To reduce the loss of fine features during the downsampling,

feature pyramid network [66] is employed by the attention
model to predict bounding boxes on different scales [64].
Different scales are given by downsampling the dimensions
of the input image by the different downsampling rates. The
number of scales for the attention model is 2, which equals
to that of the Tiny-YOLOv3 [64]. Therefore, two detection
tensors will be generated by the attention model as shown in
the orange boxes in Fig. 2.

The Tiny-YOLOv3 backbone of the attention model has
been optimized in order to further improve the computational
efficiency and the detection accuracy. Implemented modifica-
tions are marked by the red box in Fig. 2 and are summarized
as follows.
• The downsampling rate for the two detection scales are

reduced from 32 and 16 to 8 and 4, respectively. As
a result, the Tiny-YOLOv3 backbone of the attention
model is further simplified, and the detection speed is
enhanced from about 20 FPS to 52 FPS when evaluating
on the 1024×1280 images from the vision system. The
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reduction of downsampling rate will adversely affect the
detection accuracy for large objects. Fortunately, the ROIs
of welding joints in this work are relatively small objects
in all captured images. Therefore, this new simplified
architecture is employed by the attention model to further
improve the computational efficiency.

• A few of layers with 1×1 convolution filters are added in
front of the upsampling, concatenate, and final detection
layers. The 1 × 1 layers add non-linearity and therefore
enhance the learning of deeper or more abstract features
without significant increasing of the computational cost
[79]. Therefore, these new layers are used to improve the
detection accuracy.

In this work, there is only 1 class that needs to be detected.
Therefore, the number of classes is set to 1 to represent the
ROI of the welding joints. Besides, the number B of bounding
box priors is set to 3 as suggested in [64]. Therefore, the
output detection tensors on two scales are 52 × 52 × 18 and
104× 104× 18, respectively. Eventually, bounding boxes are
derived from these two output detection tensors for each input
image. However, multiple bounding boxes might be predicted
for the same target. Therefore, Non-Maximum Suppression
(NMS) [80], [81] is employed to filter the boxes and output
the optimal one.

The implementation of NMS employs Intersection over
Union (IoU) as an important metric to evaluate the predicted
bounding boxes (the ROIs) and to select the best bounding box
[76]. IoU is defined as the overlap ratio between a predicted
bounding box and the ground-truth/labelled bounding box:

IoU =
So

Su
, (3)

where So is the area of the intersection between predicted
bounding box and the ground-truth bounding box, and Su is the
area of the union encompassed by both the predicted bounding
box and the ground-truth bounding box. Therefore, high IoU
indicates that the predicted bounding box well matches the
ground-truth bounding box.

To filter multiple prediction boxes with both high confidence
scores and IoUs, the process of NMS includes four steps
described as follows.

1) With a list of proposal boxes lp, remove the proposal v̂
with the highest confidence score from lp and append it
to the list of filtered boxes lf.

2) Compute the IoU of v̂ with all proposals that are still in
lp. If the IoU of a proposal is higher than a predefined
threshold θ, then discard this proposal from lp.

3) Find the next proposal v̂ with the highest confidence
score in the remaining lp, and repeat the above proce-
dures until lp is empty.

4) Output the lf.
In practice, threshold θ is usually set to 0.5 for NMS purpose
[61].

B. Training and optimization of the attention model

Back propagation training [82]–[84] is employed in this
work to estimate the parameters of the attention model

described above. The procedures for the back propagation
training is presented as follows.

1) Initialize the trainable parameters of the deep learning
network (weights w and bias b) randomly. Initialization
methods, such as the Xavier method [85] or the HE
method [86], can be employed to improve the robustness
and efficiency of the training process.

2) Calculate the outputs p̂ = f(w, b,X) based on the
initialized parameters and the training data input X .

3) Calculate the final output errors ε using data labels
and loss functions. The loss function for ROI detection
should consider both localization and classification ac-
curacies. Therefore, the YOLO Loss [61], [87] is used
in this work, which composes of the classification loss
Ecls, the coordinate loss Ecoord, and the confidence loss
Econ:

ε = Ecls + Ecoord + Econ. (4)

The classification loss is defined as:

Ecls =
S2∑
i=1

B∑
j=1

1objij

∑
c∈classes

(pi(c)− p̂i(c))2, (5)

where S2 is the number of grids in the output tensor,
B is the number of bounding boxes in each grid, 1objij

is 1 if the object falls in the i − th grid of the j − th
bounding box, otherwise 1objij =0, c is a target class to be
detected, pi(c) is the true probability that the object of
class c is in the grid i, and p̂i(c) is the predicted value
that the object of class c is in the grid i.
The coordinate loss is defined as:

Ecoord = λcoord

S2∑
i=1

B∑
j=1

1objij

[
(bih − b̂ih)2 + (biw − b̂iw)2

]

+λcoord

S2∑
i=1

B∑
j=1

1objij

[
(biH − b̂iH)2 + (biW − b̂iW)2

]
,

(6)
where λcoord is the weight of the coordinate loss,
b̂ih, b̂

i
w, b̂

i
H, b̂

i
W are the values of center coordinate, height,

width of the predicted bounding box, respectively,
bih, b

i
w, b

i
H, b

i
W are the values of center coordinate, height,

width of true bounding box, respectively.
The confidence loss is defined as:

Econ =
S2∑
i=1

B∑
j=1

1objij (Ci − Ĉi)
2

+λnoobj

S2∑
i=1

B∑
j=1

(1− 1objij )(Ci − Ĉi)
2,

(7)

where λnoobj is a weight factor reducing the loss when
the background is detected, Ci is the labelled confidence,
and Ĉi is the predicted confidence.

4) Based on the YOLO loss εT at the training timestep T ,
calculate the gradients δTw = ∂εT /∂w and δTb = ∂εT /∂b
for all neurons in the network, and update the weight
parameters wT+1 = wT − αδTw and the bias parameters
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bT+1 = bT − αδTb , where α is the learning rate
coefficient.

5) Repeat steps 2-4 recursively until the difference in error
changes ∆ε = εT − εT−1 less than a pre-defined
tolerance parameter or the training reaches the maximum
number of epochs. Afterward, output the weights and
bias determined in the final round.

Mini Batch Gradient Descent (MBGD) method with a batch
size of 32 is employed in this work to increase the training
efficiency [88]. To enhance the efficiency and robustness of
MBGD training, the ADaptive Moment Estimation (ADAM)
algorithm [89] is used as the optimizer for training. In practice,
ADAM is one of the most popular training optimizers [25]
and is described as follows. First, the 1st moment vector u1 is
calculated for trainable network parameters p (such as weights
w and biases b) using an exponential decay rate β1 that ranges
from 0 to 1:

uT1 = β1u
T−1
1 + (1− β1)δT , (8)

where δ = ∂ε/∂p is the gradient calculated using the loss
function for all neurons in the network, and T is the timestep.
Then, the 2nd moment vector u2 is calculated using another
exponential decay rates β2 that ranges from 0 to 1:

uT2 = β2u
T−1
2 + (1− β2)δT

2
. (9)

Then, the bias-corrected first moment vector û1 is calculated

ûT1 = uT1 /(1− βT
1 ). (10)

Afterward, the bias-corrected second moment vector û2 is
calculated

ûT2 = uT2 /(1− βT
2 ). (11)

Finally, the parameters are updated for the training of next
timestep

pT = pT−1 − α ûT1√
ûT2 + ε

. (12)

In practice, β1 is set to be 0.9, β2 is set to be 0.999, ε is
set to be 10−8, and the learning rate α is set to be 0.001 as
suggested in [89].

In order to further improve the training efficiency and
robustness, the pretraining and fine-tuning method [90], [91]
is employed. Different from training with randomly initialized
parameters (w and b), fine-tuning initializes using parameters
that are pretrained on very large dataset, such as ImageNet
[92] or COCO [93]. Therefore, these pretrained parameters
are expected to be capable of identifying numerous image
patterns or features for common objects. As a result, fine-
tuning is particularly useful for applications that have small
training data sets [94].

In this work, the unmodified front part of the attention
model is initialized using the COCO pretrained Tiny-YOLOv3
parameters while the modified parts are initialized using the
HE method. Then, the pretrained parameters of the attention
model are frozen, and the remaining parts of the attention
model are trained using the training data in this work. As
recommended in [64], [76] and the document files of the
YOLO projects, this training is performed using the MBGD

and the ADAM optimizer with a relatively large learning rate,
0.001. Once the learning error curve converges in about 50
epochs, all trainable parameters of the attention model are
unfrozen and fine-tuned using the same process but a smaller
learning rate, 0.0001, for 50 epochs.

C. Fine-grained localization method based on ITMM

With the ROIs predicted from the attention model, the
ITMM is employed to perform fine-grained localization for the
points of interest. Template matching is a classical computer
vision method for localization of objects [37], [95]. Due to its
simplicity, explainability, and ease of deployment, it is widely
employed for a lot of applications, such as object detection,
tracking, and image stitching. The process of template match-
ing method involves two major components: the source image
and the template patch. The template is a small image (H:40
pixels, W:30 pixels in this work) patch that clearly defines
the object to be detected in the much larger source image
(H:∼100 pixels, W:∼100 pixels in this work). In this work,
the source images are the ROIs predicted from the attention
model, and the template is obtained by averaging patches of
object pole tips in the training dataset. The pole tip/joint point
to be welded is located at the geometry center of the template
patch. Both the source images and the template patch are
converted into gray-scale for convenience of computation. In
the source image, the template patch slides one pixel each
time and calculates a value of similarity between the template
patch and the overlapped source patch. In this work, the value
of similarity is defined as the Normalized Cross-Correlation
(NCC):

NCC(patchs, patcht) =

1

Nσsσt

∑
(patchs − patchs)× (patcht − patcht),

(13)

where N is number of pixels in the patch, σ is the standard
deviation of patch pixel intensities, and the subscripts s and
t represent the source image patch and the template patch,
respectively, patch is the average pixel intensity of the patch.

The template matching will return to an NCC matrix, which
will be smaller than the source image. For example, if the size
of the source image is Ms×Ns and the size of the template is
Mt×Nt. Then, the size of the NCC matrix will be (Ms−Mt +
1) × (Ns − Nt + 1). Theoretically there is only one welding
joint point in each ROI detected by the attention model. As
a result, the position with the maximum NCC in the NCC
matrix will be identified as the matching position. However,
localization based on the maximum NCC may be sensitive to
unexpected image noise. Therefore, a 2 × 2 average pooling
filter is applied to the NCC matrix for more robust localization
performance. The element with the highest value in the filtered
matrix will be found and its corresponding coordinates in the
source image will be calculated as the object location.

Scale invariance is one of the greatest challenges to the
ITMM. Changes in the size or orientation of the objects in
the source image will adversely affect the accuracy of the
algorithm [37]. Fortunately, the objects, such as the metal
sleeves and the shelf frames, are firmly hold in fixed orienta-
tions by the fixtures, and the attention model will exclude the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2022.3206388

© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.



7

noisy backgrounds. Other potential fine-grained localization
methods, such as shape fitting [38], edge-based matching
[39], and Scale-Invariant Feature Transform (SIFT) [40], are
investigated. However, these advanced methods do not show
significantly better performance in term of either accuracy
or computational efficiency when validated using the training
data. Therefore, the ITMM is selected in this work as the fine-
grained localization model due to its simplicity, consistency,
and extremely high precision [96].

D. Method summary

In summary, the training and the inference methods of
the FGAM are presented in Algorithm 1 and Algorithm 2,
respectively. With the deep learning based attention model,
the proposed FGAM first detects ROIs to minimize the
background noise. The backbone of the attention model is
optimized based on Tiny-YOLOv3 for fast computation. Fol-
lowed by an ITMM, the FGAM then precisely localizes the
points of interest without being adversely affected by the ROI
jittering. Together with multiple optimization strategies, such
as modifications in network architecture, initialization with
pretrained weights, average pooling filter for NCC matrix,
the FGAM can be fine-tuned for specific tasks using a small
dataset. Therefore, the proposed FGAM is able to achieve
fast, highly accurate, and robust vision localization for robot
guidance in dynamic manufacturing environments.

In a dynamic environment, the conventional deep learning
models have to be frequently retrained and optimized in order
to accurately identify new types of defects. In comparison,
the hybrid learning method detects new types of defects with
a relatively satisfactory accuracy. Therefore, the efforts of
iterative model optimization and corresponding maintenance
costs can be notably reduced.

Algorithm 1 FGAM training

1: Build the attention model (the modified Tiny-YOLOv3);
2: Initialize the trainable parameters of the attention model,

the unmodified Tiny-YOLOv3 layers are initialized using
the pretrained COCO parameters and the modified layers
are initialized using the HE method;

3: Set the loss function as YOLO loss;
4: Fine-tune the modified layers of the attention model based

on the training data {xi, (yjh,i, y
j
w,i)} using the MBGD and

the ADAM optimizer with a relatively large learning rate
of 0.001;

5: Fine-tune the all trainable parameters of the attention
model based on the same training data using the MBGD
and the ADAM optimizer with a smaller learning rate of
0.0001;

6: Develop the ITMM model and prepare the template by
averaging patches (H:40 pixels, W:30 pixels) of the object
pole tips in the training dataset;

7: Attach the ITMM model subsequent to the attention model
and therefore form the FGAM.

Algorithm 2 FGAM inference

Input: New captured image xnew, NMS IoU threshold θ, the
ITMM template patcht

Output: Localization prediction ŷjh,new, ŷ
j
w,new

1: Input a new image xnew to the attention model and
generate the ROIs v̂jnew based on θ;

2: Calculate the NCC matrix using the v̂jnew (patchs) and the
patcht;

3: Apply a 2 × 2 average pooling filter to the NCC matrix;
4: Find the coordinate of the largest element in the fil-

tered matrix and derive its corresponding coordinate
(ŷjh,new, ŷ

j
w,new) in the original image xnew.

V. EXPERIMENTS AND RESULTS

The FGAM based edge computing system is deployed in
a small-scale but representative factory for welding robot
guidance. Only 159 images are provided to train and val-
idate the proposed model. The performance of the FGAM
localization is assessed using metrics in terms of precision
and recall with modified definitions and is compared against
several reference models. With the validated FGAM model,
the edge IoT enhanced robotic system operates in real-time to
mass produce the shelf products. Details of the experiment are
presented as follows.

A. Experiment setup

Fig. 3. The robotic welding station.

In this work, the FGAM enhanced edge computing system
is deployed on an automatic robotic welding station in a
manufacturing factory located in Guangdong, China. A picture
of the welding robot station is presented in Fig.3, and details
of the employed system are described as follows.
• The edge computing server uses an I7-8700 CPU, a 32G

RAM, 128GB SSD, and 1T hard disk drive. Essential
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(a) An assembled metal shelf after the welding
process.

(b) The schematic diagram of the product (view
from top).

(c) A cylindric metal sleeve and welding beads at
the corner.

(d) A representative image captured by the vision
system.

(e) Representative images of OK weld beads. (f) Representative images of NG weld beads due to
weld deviations.

Fig. 4. Images of the products and the weld beads.

software installed in this server includes Linux 16.04 and
Python 3.6. The edge computing server communicates
with the vision system, the robot controller, and the user
interface device through standard TCP protocols. The
edge computing server controls the overall operation.

• The vision system uses a MV-CA020-20GM area scan
camera and a Rsee P-HRL ring-shape LED work light.
The camera captures 1024×1280 BMP images with an
exposure time of 100ms and forwards images to the edge
computing server through an ethernet cable. Both the
camera and work light are protected by a replaceable
glass dome from welding spatters or sparks. The vision
system can be either scene-related or object-related [18].
In this work, the vision system is mounted on the robot
manipulator (eye-in-hand) and therefore is in a typical
object-related scenario.

• The welding robot system contains a 6-axis 550kg robot
arm, a 220V, 120A arc welder, and a rotary welding
positioner with fixtures. The robot arm has 2239mm
reach, 50kg payload, and ±0.06mm repeatability.

• The user interface device uses a 9-inch industrial-grade
touch screen monitor. Operators can initialize or reboot
the system, set up operation configurations, or check
production statistics using this device.

This system is applied to assemble steel wire shelves (shown

in Fig. 4(a)) using hollow cylindrical metal sleeves and the
shelf frames. An assembled metal shelf has a rectangular shape
and has 4 metal sleeves at every corner. A schematic diagram
of the parts is presented in Fig. 4(b). For each corner, the metal
sleeve joins the frame poles on two sides, and each side will
have two spot welding joints (shown in Fig. 4(c) marked in
red boxes). Therefore, there are 16 joint points to be welded
for each final product. The diameter of the shelf poles is about
5mm, and the wall thickness of the cylindrical metal sleeves
is about 2mm.

It takes about 2-4 weeks to set up and calibrate the system
until it is ready for mass production. In operation, the assembly
process includes five steps: First, four cylindrical metal sleeves
and one shelf frame are held tightly by the fixtures on
the welding positioner. Second, the robot arm carries the
vision system to capture images of joints to be welded. A
representative captured image is presented in Fig. 4(d) and
the joints to be welded in the image are marked in yellow
boxes. Third, the images are received and analyzed by the
edge computing server, and the image position coordinates of
the joint points are derived by the embedded FGAM model.
Fourth, the image position coordinates are converted into the
robot coordinates and are sent to the robot arm, which will then
use a welding gun to perform the welding operation based on
the coordinates. Similar procedures will be repeated until all
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four metal sleeves are attached to the shelf frame.
The quality of the final product is inspected by human

inspectors, who visually examine the appearance of weld
beads. Other inspection methods, such as radiographic or
ultrasonic tests, are not employed due to the considerations
of cost and efficiency. Therefore, the human visual inspection
result is used as the ground truth for both model training and
validation in this work. For convenience, the human inspectors
denote qualified weld beads as OK and defective weld beads
as Not Good (NG). Examples of OK and NG weld beads are
presented in Fig. 4(e) and Fig. 4(f), respectively. Therefore,
1% NG rate for weld beads will result in about 15% NG rate
for the final shelf product.

Traditionally, the welding assembly is conducted by skilled
welding workers and the assembly of each shelf takes about 40
seconds. However, the welding arc and fume are hazardous to
human health even with appropriate protections. In addition,
labor shortage of skilled workers sometimes even halts the
production. Therefore, this factory is in eager to look for au-
tomatic welding solutions. Previously, a welding robot without
any vision guidance has been employed in this factory. Nev-
ertheless, these welding robots suffer from an overall defect
rate around 15% mainly due to weld deviations (exemplified
in Fig. 4(f)). Therefore, this factory demands vision guidance
solutions that could substantially reduce the defect rate. To this
end, a 3-D laser seam tracking method has been considered
for this scenario but eventually is not employed because
of cost and efficiency. In summary, an applicable vision
guidance system in this manufacturing scenario should satisfy
the following technique requirements. 1) Low-cost: only 2-D
camera solution is within the budget. 2) High efficiency: the
customer demands that the total time to produce each product
should be less than 1 minute in order to maintain the cost-
efficiency of the robot arm. Consequently, after excluding the
time needed for material loading, robot arm movement, and
welding operation, the vision localization process for all 16
joint points of each product should be completed in 3 seconds,
which is about 200ms for one individual joint point. 3) High
accuracy and robustness: any localization deviation larger than
1mm may result in NG weld beads, and a final product will be
identified as defective if any of the 16 weld beads is identified
as NG.

B. Experiment data
In this work, only 159 images are provided by the factory

to develop the proposed and all reference models because
of many restrictions, such as safety, security, and costs. A
representative image from the vision system is presented in
Fig. 5. In this image, the example object ROIs and the fine-
grained localization points of interest are marked by yellow
boxes and yellow dots, respectively. The ground-truth ROIs
and the fine-grained localization point positions are both
manually labelled for each image. Labelled ROIs are used
to develop the attention model, and the labelled fine-grained
points of interest are used to validate the performance of the
final localization. These labelled images are randomly split
into a set of 100 images for training and a set of 59 images
for testing.

Fig. 5. A representative image captured by the vision system.
The welding joint positions to be localized are marked by
yellow dots. The ROIs of welding joints are marked by
the yellow boxes. The positions that are not welding joints
but have similar visual appearances, which might disturb the
vision localization, are marked by red boxes.

To train and optimize the attention model with a very small
dataset, data augmentation [97], [98] is used to increase the
number and diversity of data. Data augmentation enlarges the
training dataset by generating modified or synthetic copies of
the existing data. Therefore, new data from data augmentation
is useful to reduce overfitting and to improve both performance
and robustness of the trained model. In this work, employed
data augmentation techniques include shearing, zooming, hor-
izontal and vertical flipping, brightness changing, and noise
adding.

In order to further enhance the robustness of the localization
model, the pixel intensities of the images are projected from
0-255 to 0-1 using minmax normalization method [99]:

Inormalized =
I − Imin

Imax − Imin
, (14)

where I is the intensity of every pixels, Imin and Imax are
the minimum (0) and the maximum (255) pixel intensities,
respectively.

C. Evaluation metrics

The mean Average Precision (mAP) is a popular metric
in measuring the accuracy of object detectors like Faster R-
CNN, SSD, etc. The mAP computes the average precision
value for recall value over 0 to 1 based on the IoU of
predicted and ground-truth bounding boxes. However, the
mAP is inappropriate to the application scenario in this work
because of the following two reasons:
• The robot guidance requires point coordinates of the

welding joints as inputs instead of bounding boxes.
The localization accuracy of the predicted point position
instead of the IoUs determines whether the welding bead
is OK or NG.

• Identifying a nonexistent position to be weld is a serious
issue that may be dangerous to the operation safety. The
mAP metric does not explicitly evaluate the frequency
of the wrong predictions that may cause damage to the
system hardware.
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(a) The tolerance range for local-
ization deviation.

(b) A representative TP case.

(c) A representative FP case: a
redundant predicted position in
red.

(d) A representative FN case: no
prediction

(e) A representative case with
both one FP and one FN: a point
position is predicted but is at
wrong position.

(f) A representative case with
multiple FP and one FN: multi-
ple point positions are predicted
but are all at the wrong positions.

Fig. 6. Examples of TP, FP, and FN cases.

Metrics to assess the localization performance should be
meaningful and associated to the final quality inspection
requirements of the welding beads. Therefore, we use the
metrics of precision and recall based on the recommendations
of the quality management group in the factory. Precision and
recall are calculated based on metrics in terms of True Positive
(TP), False Positive (FP), False Negative (FN) [100]. The
precision is defined as the correctness of positive localizations:

precision =
TP

TP + FP
× 100%. (15)

The recall is defined as the effectiveness of localization. In
other words, the correctness of localizations for all ground
truth positions:

recall =
TP

TP + FN
× 100%. (16)

TP, FP, FN are defined according to the quality inspection
requirements in this work. According to the interview of the
quality management team, the position of predicted point
should be within 1mm range of the mid points of the pole
tip (shown in Fig. 6(a)). 1mm is approximately equal to the
length of 6 or 7 pixels in a standard capture image. Therefore,
TP is defined as that the position of labelled point is correctly
predicted (shown in Fig. 6(b)). In other words, the distance

between the predicted point position and the labelled point
position is less or equal to 7 pixels. FP is defined as that a
predicted position is generated but there is no labelled position
within the 7-pixel distance. For example, a redundant point is
generated as shown in Fig. 6(c). FN is defined as that a labelled
position is not predicted (as shown in Fig. 6(d)). If an incorrect
position is predicted (as shown in Fig. 6(e)), values of both
FP and FN will increase by 1. If multiple predicted positions
are generated incorrectly (as shown in Fig. 6(f)), values of FP
will increase by the number of incorrect predictions but values
of FN will still increase by 1.

For any employed localization model, both precision and
recall should be very high to maintain a low defective rate. In
addition, the quality management group concerns more about
the FP case that might be dangerous to the system and human
operators. Consequently, precision rate nearly equal to 1 is
a mandatory requirement for automatic localization models.
Therefore, a few more mechanisms are employed to minimize
the probability of FP cases: 1) the number of detected ROIs
from the attention model is set to 2; 2) discard all ROIs that
have confidence scores less than 0.85; 3) for each detected
ROI, the fine-grained localization model generates only one
prediction based on filtered NCC matrix.

D. Reference models

In this work, five reference models are developed to bench-
mark the performance of the proposed FGAM. The first
reference model employs only the conventional computer
vision method (the ITMM), which has been described in
Section IV-C. The second reference model is the original
Tiny-YOLOv3 detector, and the third reference model is the
modified Tiny-YOLOv3 detector without the fine-grained en-
hancement. For convenience of comparison, the second and the
third reference detectors are trained using the same strategy,
such as fine-tuning and ADAM optimizer that are described
in Section IV-B. However, the robot guidance requires point
positions instead of bounding boxes. Therefore, the geometry
center (b̂h and b̂w) of each ROI box is used as the output
of the reference detector. The fourth reference model is the
Single Shot multibox Detector (SSD) [60], which is another
representative one-stage object detector. SSD demonstrates
high detection efficiency and is potential for the application
scenario. The last reference model is a deep CNN based object
localization model, which directly builds the mathematical
relationship from the input image to the point coordinates of
object points. Different from the backbone of the reference
Tiny-YOLOv3 detector, this localization model employs rel-
atively deeper CNN architecture, which is the VGG network
[101] proposed by the Visual Geometry Group at University of
Oxford. The VGG network has relatively deep structure using
small (3×3 and 1×1) convolution filters to extract high-level
representations. To convert the VGG into a localization model,
the following processes are employed. First, the original pre-
defined classifier of the original VGG network is removed and
only the front CNN part is left as an image feature extractor. A
fully connected network based localizer is attached to the VGG
feature extractor. This network contains three Fully Connected
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(FC) layers. The first FC layer has 128 neurons for image
feature abstraction. The second FC layer has 32 neurons for
further refinement of features. Each captured image has two
welding joint positions with 4 coordinates (y1h , y1w, y2h , y2w)
to be predicted. Therefore, the last FC layer has 4 neurons
and the 4 outputs of the neurons are corresponding to the 4
coordinates.

E. Performance of the fine-grained attention model

Fig. 7. The curves of both training and validation losses with
training epochs.

The proposed fine-grained attention model as well as the 4
reference models are assessed on the testing data set defined
in Section V-B. We first evaluate the curves of both training
and validation losses, which are presented in Fig. 7. There
is no significant gap between the two curves. Therefore, the
attention model is less likely to be overfitted after the data-
driven training. The assessment results are presented in Table
I. The proposed FGAM model significantly outperforms all
the reference models in terms of both precision and recall
metrics. For instance, the FGAM has only 1 FN case resulting
in a precision of 1.00 and a recall over 0.99. Therefore, the
FGAM is the only model that potentially satisfies the strict
requirements of localization accuracy in this application sce-
nario. The ITMM model has 18 FP and 18 FN cases resulting
in a precision of 0.85 and a recall of 0.85, respectively. The
modified Tiny-YOLOv3 model has achieved superior perfor-
mance over the original Tiny-YOLOv3 model, particularly in
terms of recall (0.91 to 0.83). Therefore, this result validates
the significance of the modified Tiny-YOLOv3 architecture.
The reference SSD model demonstrates similar performance
as the original Tiny-YOLOv3 model. The recall of SSD model,
0.86, is slightly higher than that of the original Tiny-YOLOv3
model, 0.83, while the precision of SSD model, 0.84, is
slightly lower than that of the original Tiny-YOLOv3 model,
0.89). The VGG localization model is suffered from both high
FP and FN cases resulting in relatively low precision, 0.45, and
recall, 0.45, which suggests that training a deeper model with
a relatively small training set may lead to over-fitting issues
resulting in lower test accuracy [102].

To further understand the localization performance of all
evaluated models, the example images of the localization
results are presented in Fig. 8. The conventional template
matching model is vulnerable to background noise. When a
background pole that has similar visual features appears in

the image, the ITMM model might predict the wrong pole tip
that should not be welded (shown in Fig. 8(a)). In addition,
the robot arm guided by incorrectly predicted positions might
damage the system hardware. Therefore, visual guidance based
on only the conventional method is not suitable to this appli-
cation. Deep learning based object detection models predict
bounding boxes for ROIs of the welding joints. Therefore,
they are able to distinguish the joint positions to be welded
from background noise. However, the original Tiny-YOLOv3
has relatively high probability of FN cases with a recall of
only 0.83. An FN example of the original Tiny-YOLOv3
is presented in Fig. 8(b). With modified architecture that
is specifically designed for this work, the modified Tiny-
YOLOv3 significantly reduces the FN ratios. However, the
geometry center of a predicted bounding box is not necessarily
located exactly at the pole tip position (shown in Fig. 8(c),
the lower red box) because of the bounding box jittering.
The deviations between the geometry centers of bound boxes
and the labelled positions may exceed the 1-mm limitation
and result in defective welding beads. The VGG based deep
localization model is employed to directly predict the point
positions to be welded. However, the proximity of the VGG
predicted positions to the true joint positions is varying even
more seriously than that of modified Tiny-YOLO-v3 (shown
in Fig. 8(d)).

Therefore, the FGAM has shown substantial advantages in
localizing the points of interest. With ROIs predicted from the
attention model, the FGAM is robust against the background
noise (shown in Fig. 8(e)). Within the predicted ROIs, the
fine-grained ITMM model is employed to localize the precise
positions of welding joint points. Therefore, the deviations
between the final predicted positions and the ground-truth
positions can be minimized even when the ROIs from the
attention model are jittering (shown in Fig. 8(e), the upper
red box). The only FN case happens when the attention model
predicts only one ROI as shown in Fig. 8(f). Fortunately, this
problem will not damage the system hardware and can be
solved by sending alarm for manual intervention.

After the validation using historical images, FGAM is com-
piled and installed on the edge computing system (described
in Section V-A). Then, the edge system is mounted on the
welding robot to operate in real-time for mass production
in the cooperated factory. The operational data is no longer
available due to the security regulations of this factory. After
one week of mass production, the quality management group
reports that this robotic welding system has produced about
6000 products. The defective rate is about 5% due to a
variety of issues, such as inappropriate welding configurations,
exhaustion of protection gas, electrical faults, and automation
errors. Only 2 defects are identified to be related to the
vision localization errors. These 2 localization errors are FN
cases similar to that in Fig. 8(f)), which may be caused
by overexposure problems (e.g. sun light, light of forklift
truck, inappropriate reflection of work light) as suggested by
the production operators. Therefore, the vision localization
accuracy of the FGAM is approximately 99.96% for one
product and 99.998% for each individual welding joint.
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(a) A representative localization error of the con-
ventional template matching model.

(b) A representative localization error of the origi-
nal Tiny-YOLOv3 model.

(c) A representative localization error of the modi-
fied Tiny-YOLOv3 model.

(d) A representative localization error of the deep
VGG model.

(e) A representative image of correct FGAM local-
izations.

(f) A representative localization error of the FGAM.

Fig. 8. Representative images of localization errors

TABLE I: The assessment performance of the proposed fine-grained attention model and the reference models.

Models TP FP FN Precision Recall Inference time
ITMM model 100 18 18 0.85 0.85 20-30 ms
Original Tiny-YOLOv3 98 12 20 0.89 0.83 40-50 ms
Modified Tiny-YOLOv3 107 10 11 0.91 0.91 20-30 ms
SSD 102 20 16 0.84 0.86 100-120 ms
VGG model 53 65 65 0.45 0.45 60-70 ms
FGAM 117 0 1 1.00 0.99 60-70 ms

F. Future Research Directions

In future work, there are a few approaches we could adapt
to both validate the generalization of the method and further
improve the overall performance of the system.

First, in addition to robot guidance, effort will be spent
on generalizing the proposed method to other smart manu-
facturing scenarios. This work aims to develop a computer
vision model on isolated edge computing system in IoT of
smart manufacturing scenario. Many manufacturing scenarios
usually have similar challenges (e.g. small data, strict accuracy,
efficiency, costs). Therefore, the proposed method is highly
potential to be generalized to new vision localization/detection
scenarios, which include but not limited to material loading,
missing part detection, production line sorting, and product
counting.

Second, the FGAM will be optimized to further improve
its performance and robustness. State-of-the-art neural net-
works, such as ViT based YOLO [103], will be analyzed
and compared with both the current attention model and

the fine-grained localization model. We will actively search
for detection approaches that are capable of addressing the
jittering issues. Once the jittering issue is solved, the FGAM
can be simplified to an end-to-end approach, which will both
reduce the implementation costs and increase the operational
robustness.

Third, the hyper-parameters could be further optimized
based on collected data of the scenario. It is impractical to
employ exhaustive search methods because the search space
for hyper-parameters is inexhaustible. Genetic algorithm [104]
can be considered as a potential approach to further optimize
the hyper-parameters.

Last but not least, Auto Machine Learning (AutoML) [105]
can be employed to periodically upgrade the deployed model
during operation. Both hardware and software of the coal fired
plants might be subjected to changes due to upgrading or
maintenance purpose. Therefore, instead of manually collect-
ing new data and retraining the model after system changes,
fine tuning a data driven model periodically will substantially
enhance the model robustness and decrease the maintenance
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costs.

VI. CONCLUSION

In this work, a low-cost edge computing IoT system is
developed for vision guidance of welding robots in smart
manufacturing scenarios. To predict highly accurate positions
of target objects in long-term mass production with high com-
puting efficiency, a Fine-Grained Attention Model (FGAM) is
proposed for the object-related vision system of the proposed
IoT system. The proposed FGAM first uses a modified Tiny-
YOLOv3 to predict ROIs from input images and then uses an
improved template matching model to perform fine-grained
localization in the predicted ROIs. With very limited data for
training, enhancement methods, such as data augmentation,
fine-tuning with pretrained parameters, mini batch gradient
descent, ADAM optimizer, and average pooling filter, are
employed to improve the performance and the generalization
of the model. Validated on in-field data collected from the IoT
vision system, the proposed FGAM significantly outperforms
all the reference models in terms of both precision (1.0) and
recall (0.99). Then, the FGAM based IoT system is deployed
for mass production in real-time achieving an efficient pro-
cessing and transmission rate of 20 images per second. In
nearly 96000 vision guided welding operations, only 2 false
negative localization errors are identified achieving a localiza-
tion recall up to 99.998%. The proposed FGAM is expected to
noticeably enhance the adaptability, cost-efficiency, and market
acceptance of IoT systems for robot guidance applications.
This work is particularly relevant to automatic operation and
quality control for manufacturing industry.
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[17] C. Wöhler, 3D Computer Vision: Efficient Methods and Applications.
Springer Science & Business Media, 2012.
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