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Abstract 

Inadequate sleep duration has been suggested as a chronic stressor associated with changes 

in telomere length. However, the association of these two variables in children is limited. 

This study aimed to explore the association between sleep duration and telomere length 

(TL) using the INMA birth cohort study data. A sample of 1014 children was included in this 

study (cross-sectional: 686; longitudinal: 872). Sleep duration (hours/day [h/day]) was 

reported by caregivers at age 4 and classified in three categories (7-10 h/day; >10-11 h/day; 

>11-14 h/day). Leucocyte TL at age 4 and age 7-9 were the two outcomes of interest. They 

were measured using quantitative PCR methods. Multiple robust linear regression models, 

through log-level regression models, were used to report the percentage (%) of difference 

among tertiles of sleep duration. In comparison to children who slept between >10 and 11 

h/day, those in the highest category (> 11 h/day) had 8·5% (95% CI: 3·56-13·6) longer 

telomeres at age 4. In contrast, children in the lowest sleep category showed 2·2% longer 

leucocyte TL than their counterparts, but this association was non-significant (p=0·162). No 

significant associations were identified between sleep duration at age 4 and TL at age 7-9.  

Keywords: Child; Telomere length; Sleep; Lifestyle 

Total words: 2923  
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Introduction 

Sleep is a necessary physiological process and has a critical role in promoting balanced 

health1. In children, adequate sleep is associated with normal growth, wellbeing, and 

different development domains such as nutrition, hygiene, communication, and physical 

contact2 3. Inadequate sleep, instead – defined mainly as the number of hours a child sleeps 

– negatively impacts cognitive functions, socioemotional domains, early childhood 

development, and physical health2. The American Academy of Sleep Medicine recommends 

sleeping 10 to 13 hours per day for children between 3 and 5 years old to reach their full 

developmental potential3. However, not all children meet this recommendation. For 

instance, 34·9% of American children and adolescents aged 4 months to 17 years reported 

sleeping less than the recommendations for their age4. In Spain, Ruiter et al. estimated that 

sleep duration in children between 2 and 14 years had decreased by 20 minutes in the last 

decades and that only 55% of children were sleeping enough hours per day5.  

In addition to the aforementioned consequences of sleep disturbance, inadequate sleep 

duration has been suggested as a chronic stressor associated with changes in telomere 

length6-8. Telomeres are nucleoprotein structures containing repeat sequences of tandem 

TTAGGG DNA stretches that protect chromosome ends from illicit DNA repair. Naturally, 

they shorten over time; however, they are susceptible to faster shortening under stressors. 

Previous studies have identified that shorter telomeres are associated with a higher risk of 

adverse health outcomes and have been identified as a useful ageing biomarker9. 

Although studies evaluating telomere length in children are limited, previous works 

highlighted the association between childhood abuse, early life adversity, childhood 

socioeconomic status, and maternal factors (such as depression, smoking, and inheritance) 

with telomere length10 11. Regarding sleep, studies conducted in adults have shown that 

poor sleep quality is associated with shorter telomere length6-8. In children, two studies 

evaluated the potential association between sleep duration and telomere length. However, 

results from both studies are inconclusive since one evidenced a positive association and 

the other no association between these two variables12 13. Considering that the literature 

has proposed that the environmental conditions during adulthood might have less impact 

over telomere length than those during childhood 14 15 – and the poorly investigated role of 
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sleep in children – this study aimed to explore the association between sleep duration and 

telomere length using data from the INMA birth cohort study. 

Methods 

This study was carried out using data from the INMA (INfancia y Medio Ambiente, 

Environment and Childhood) birth cohort study. The INMA project’s main aim is to 

investigate the role of environmental factors during pregnancy and early life and their 

effects on child growth and development. More details about the INMA project can be 

found online https://www.proyectoinma.org/ and have been published elsewhere16.  

In brief, pregnant women from the general population were recruited between 2004 and 

2008 in four areas of Spain (Asturias, Gipuzkoa, Sabadell and Valencia) using the following 

inclusion criteria: ≥16 years-old, singleton pregnancy, no assisted conception, intention to 

deliver at the reference hospital and to have no communication problems. Of the original 

sample, 1014 children had available data on the exposure (sleep at age 4), at least one of 

the outcomes (telomere length at 4 years, or at 7-to- 9 years; ‘hereafter: 7-9’), and 

covariates and were, therefore, included in the analyses (Figure 1). Of them, 686 and 875 

children had information for telomere length at 4 and 7-9 years, respectively (Figure 1).  

Ethics declarations 

The regional Ethical Committees approved the INMA birth cohort study. Written informed 

consent was obtained from all participants. This study complies with the Helsinki declaration 

for human studies.  

Sleep categories – exposure 

Caregivers (parents/legal tutors) reported child's sleep time (hours per day [h/day]) in the 

assessment carried out at age 4 using questionnaires. During the evaluation, the examiner 

asked ‘how many hours does your child sleep during the week (h/day)?’ and ‘how many 

hours does your child sleep during the weekend (h/day)?’ The average sleep per day was 

estimated as the sum of hours during the week and weekend divided by seven using these 

two questions as follows: (((weekday sleep time ×5)+(weekend sleep time ×2))/7). The 

American Academy of Sleep Medicine recommends children sleep between 10 and 13 

hours/day at age 43. However, only 7 children were reported as sleeping more than 13 

https://www.proyectoinma.org/
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h/day whilst 89 less than 10 h/day, representing a relatively homogeneous sample. 

Consequently, the average per day was categorized in tertiles following the participants’ 

distribution as follows: i) 7 to 10 h/day, ii) 10·02 to 11 h/day (hereafter, ‘>10 to 11 h/day’), 

and iii) 11.03 to 14 h/day (hereafter, ‘>11 to 14 h/day’). 

Leucocyte telomere length – outcome  

Leucocyte telomere length (LTL) at age 4 was available in Gipuzkoa, Sabadell and Asturias 

(average age: 4.4 years, standard deviation [SD] 0·2 years; interquartile range 4·4-4·5 years). 

The cross-sectional analysis was restricted to these participants only (Figure 1). On the other 

hand, Gipuzkoa, Asturias and Valencia had available telomere data at age 7 while Sabadell 

at age 9 only (average age: 8·2 years; SD: 0·6 years; interquartile range: 7·7-9·2 years). 

Therefore, these outcomes were pooled together to create the variable LTL at age 7-9. The 

longitudinal analysis was restricted to these participants only (Figure 1). 

Blood samples were collected during clinical examination and adequately stored in EDTA 

tubes. At age 4, DNA was extracted from blood using the Flexigen AGKT-WB-640 (Qiagen) kit 

in Gipuzkoa samples, Chemagen kit (Perkin Elmer) in Sabadell and from buffy coat applying 

the QIAamp DNA Mini Kit (Qiagen) in Asturias. At age 7-9, DNA was extracted from buffy 

coats using the aforementioned kits for Gipuzkoa, Sabadell and Asturias. In Valencia, DNA 

was extracted from buffy coats using the Chemagen kit (Perkin Elmer)17.  

As described in supplementary methods, LTL was determined using quantitative PCR 

methods. Different single-copy gene primers were used to assess LTL at 9 years in the 

Sabadell cohort samples18. Relative Leucocyte telomere length was determined separately 

for each cohort and normalized separately using qBase software (Biogazelle, Zwijnaarde, 

Belgium) and expressed as the ratio of telomere copy number to single-copy gene number 

(T/S) relative to the average T/S ratio of the cohort sample set. The reliability of the applied 

protocol was assessed by interclass correlation coefficients of triplicate measures (T/S 

ratios, telomere copy number and single-copy gene number measures). 

Covariates  

Age (calculated from the date of birth and assessment at 4 years), sex (female or male), the 

cohort of origin (Gipuzkoa, Sabadell, Asturias, or Valencia), blood extraction date (the day 



7 
 

when telomere information was collected; then codified as the season of extraction), 

mother’s social class, parity (number of previous children, classified as 0 or ≥1), adherence 

to a relative Mediterranean Diet Score (rMED) and television (TV) time (reported by the 

caregivers regarding the total hours during the week and weekend watching TV/videos, i.e., 

screen time) were the covariates included in the main analyses. rMED was previously 

published in children19 and is based on the Buckland et al. index excluding alcohol 

consumption20 since this study was restricted to children. The dietary index was calculated 

using the food intake of a validated food frequency questionnaire of eight components 

vegetables (excluding potatoes), fruit (including nuts, seeds, and fruit juices), legumes, 

cereals (including whole grains and bread), fish (including seafood), meat (including 

processed meat), dairy products (including low-fat and high-fat products), and olive oil. Each 

rMED component was calculated in grams per 1000 kcal/day and divided into tertiles of 

intake. 

Statistical analyses 

Descriptive characteristics by children’s sleep categories are presented as median with their 

respective interquartile range for quantitative variables. For categorical variables, data are 

reported as frequencies with their respective percentages. The distribution of the 

continuous variables was checked using the Lilliefors correction of Kolmogorov–Smirnov 

test and compared using ANOVA or Kruskal-Wallis, and Chi-square tests, both for main 

covariates and additional descriptive variables used in the sensitivity analyses. 

Associations were initially analyzed using meta-analytic techniques to obtain combined 

estimates to quantify the heterogeneity among the study cohorts. The heterogeneity was 

quantified using I2 statistics in R21. Since all I2 values obtained for the primary outcomes 

were <50%; we analyzed adding the cohort variable to the adjustment of all the models 

(data not shown).  

Associations between sleep categories and LTL at age 4 were investigated using multiple 

robust linear regression models, through log-level regression models, where the LTL was 

log10-transformed. Therefore, the results are reported as % difference and their respectively 

95% CI. Children whose parents/tutors reported sleeping between >10 and 11 h/day were 
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used as the reference group. Same analyzes were performed when LTL at age 7-9 was used 

as the outcome of interest. 

All analyses were adjusted using three incremental models: Model 1, adjusted for blood 

date (at age 4 or age 7-9, according to the outcome of interest), cohort, age at sleep 

assessment and sex of the child. Model 2: as per model 1, but also for social class and parity 

of the mother at baseline assessment. Model 3: as per model 2, but also for the rMED and 

TV time. These potential confounder factors were selected based on previous literature and 

also in those variables with p-values <0.20 in the individual bivariate analyses at age 4 and 7-

9 and those that changed the magnitude of the main effect by 10% using a backwards-

forward elimination procedure22. 

Finally, to investigate whether the association differed by sex, the analyses were repeated 

and stratified by sex (male and female) using the maximally adjusted model.  

R 4.0.5 (packages ‘robustbase’, ‘nortest’, ‘meta’, ‘lmtest’, ‘foreign’, ‘car’, ‘gdata’) and Stata 

17 were used to perform the statistical analyses. A p-value lower than 0·05 was considered 

statistically significant.  

Results 

Characteristics of the sample 

Cohort characteristics by sleep categories are presented in Table 1. A total of 489 (48·2%) 

caregivers reported their children slept between 7-10 h/day, while only 132 (13 ·0%) 

children were reported sleeping more than 11 hours per day. Overall, and compared to 

those in the lowest sleep category (7-10 h/day), children who slept more than 11 hours per 

day were more likely to be male and from Asturias and their mothers were more likely to 

belong to a lower social class (IV +V). They also tended to have a better rMED and watch 

fewer TV hours per week. More information regarding the children's characteristics is 

available in Table 1. 

Associations between sleep duration and LTL    

Associations between sleep categories and LTL measured as a percentage difference at ages 

4 and 7-9 are presented in Table 2. Compared to those in the medium category (sleep 

between >10 and 11 h/day), children in the highest category (more than 11 h/day) had 6·9% 
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(95% CI: 1·94-12·1) longer telomeres at age 4 (model 1). After further adjusting the model 

for other sociodemographic and lifestyle factors (models 2 and 3), the percentage difference 

at age 4 was even higher in this group (% difference: 8·48 [95% CI:3·56-13·6]). On the other 

hand, children in the lowest sleep category showed 2·2% longer LTL compared to their 

counterparts (model 3); however, this association was non-significant (p=0·162). Regarding 

sleep duration at age 4 and LTL at age 7-9, both children in the lowest and highest category 

showed longer LTL when compared to the models that evaluated LTL at the age of 4 years 

(Table 2). 

Exploring differences in the association between sleep duration and LTL by sex 

Finally, when the associations were stratified by sex, similar patterns of associations were 

identified for sleep at age 4 and telomere at age 4 (Supplementary Table 1). In the cross-

sectional analyses, analyses remained significant for both sexes. Yet, boys had longer 

telomeres at age 4 than their counterparts (% difference boys: 10% [95% CI: 2·97-17·8] and % 

difference girls: 7·03% [95% CI: 0·24-14·3]). No differences were identified in the longitudinal 

analysis by sex (Supplementary Table 1).   

Discussion 

This study showed that, compared with children whose caregivers reported they slept 

between >10 and 11 h/day, LTL was longer in those in the highest sleep category (>11 

h/day) independently of a wide range of confounder factors at age 4. This finding remained 

consistent by sex. Notwithstanding the above, we did not observe a significant association 

between sleep duration at age 4 and LTL later in childhood (age 7-9). Other unmeasured 

confounder factors could also explain the lack of significant association at this age. Yet, as 

previous authors have proposed, environmental conditions might have a major impact on 

telomere length during the first years of life14.  

During the first 4 years of life, there is a rapid decline in LTL because of proliferative cells' 

increased turnover associated with growth14. Sleep is a unique window of opportunity to 

restore cellular health 23. Even if some biological mechanisms underlying the association 

between sleep and LTL have been proposed, they are still unclear and need to be 

elucidated. For example, sleep is related to changes in the immune system through the 

sleep-wake cycle, and disruption in this cycle has been associated with higher inflammation. 
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The latter increases the circulation of proinflammatory cytokines, which may affect the 

telomere length23 24. In the same line, changes in cortisol secretion and melatonin have also 

been linked to telomere length variation through higher oxidative stress25 26. Hence, it may 

be hypothesized that a reduced stress environment, lower inflammation and/or oxidation6 9 

27 in children who slept more hours per day may be the potential mechanisms that might 

explain longer telomeres at age 4 in our study. Nonetheless, the complex biology of 

telomeres – influenced by environmental and genetic factors – makes the investigation in 

this field very challenging. Therefore, future studies still need to elucidate which biological 

pathways might explain the association between sleep duration and LTL.  

Sleep disturbance and its role in telomere length have been more widely investigated in 

adults6-8. Thus far, few studies have explored this association in children. James et al. 

investigated the cross-sectional association between telomere length and sleep duration at 

age 9 from 1567 children of the Fragile Families and Child Wellbeing Study (a population-

based birth cohort of children born between 1998 and 2000 in American cities)12. According 

to this study, each hour less sleep was associated with 0·015 log-kilobase shorter telomeres, 

i.e., children with fewer sleep hours had shorter telomeres than those who slept longer12. 

Inconsistently, Nguyen et al. showed no evidence for the association between sleep 

duration – objectively measured – and telomere length in blood in adolescents of 11-12 

years from the Longitudinal Study of Australian Children (β= 0.01 (95% CI: -0·04-0·06)13. The 

latter might be explained by the age of the participants since, as it has been proposed, the 

rate of telomere loss becomes more stable later in life compared with the first years14.  

Short sleep duration is a modifiable risk factor contributing to non-communicable diseases 

such as type 2 diabetes, hypertension, and obesity in children28-30. The overuse of 

technology and screen time has disturbed many children's sleep hygiene, especially 

nighttime sleep31. Sleep routines provide security and help with activity transitions in 

children and moderate impulsivity2 31 32. A previous systematic review of approaches to 

assist in sleep hygiene summarized that using positive routines, controlled comforting and 

gradual extinction or sleep remodeling are some recommended techniques33. Given the 

acquaintance sleep benefits, consistent bedtime routines and adequate sleep are 

encouraged to promote positive child development and may be associated with a longer 

telomere length, as disclosed in this study.  
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This study leveraged data from the INMA birth cohort study, a pioneer project in Spain 

investigating the role of environmental factors during pregnancy and the beginning of life on 

growth and development. LTL was objectively measured following standard methods by 

trained professionals. In addition, we were able to adjust our analyses for an extensive 

range of confounder factors, including data collected during pregnancy, at birth, and during 

the 4-year follow-up interview. However, this study is not exempt from limitations. Firstly, 

although children from the INMA project were from different Spain areas, they may not 

represent the Spanish children population; therefore, estimates should not be fully 

generalized. Secondly, due to the observational nature of this study, causality cannot be 

inferred. Nonetheless, the prospective design of the INMA project allows verifying long-

term effects in follow-up assessments and identifying potential etiological factors of 

disturbances of normal child development over time, thereby establishing a temporal 

sequence of events. Thirdly, recall bias is possible with self-reported data, as it was the sleep 

data in this study. Nonetheless, any inaccuracy should be understood as non-differential. 

Fourthly, LTL was measured using PCR, which shows a higher technical variability than, e.g., 

Terminal Restriction Fragment (TRF) analysis. However, in large cross-sectional settings, as 

assessed by qPCR, LTL may be in line with TRF estimated LTL34. Yet, among the limitations of 

the PCR method are that it does not provide absolute LTL measures as well as issues 

detecting very short telomeres or telomeric losses. Therefore, even if a large amount of 

epidemiological research has conducted their investigation on LTL using the PCR approach35, 

findings should be interpreted with caution, and telomere dynamics should be confirmed in 

future longitudinal-based studies. Finally, unmeasured or residual confounding is possible 

even if we included a long list of confounder factors. Moreover, traumatic events10 11, a risk 

factor widely investigated and associated with telomere length, were not included as 

confounder factors since there was no available information. 

In conclusion, children that slept more h/day had a longer LTL at age 4 independently of a 

wide range of confounder factors. No significant differences were identified in LTL at age 7-

9. Therefore, sleep routines are encouraged to promote positive child development. Yet, 

considering the complex biology of telomere length, future studies still need to elucidate 

which biological pathways might explain the association between sleep duration and 

telomere length.   
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Table 1. Cohort characteristics by sleep categories at baseline 

  Sleep categories 

 Total 
participants 

7-10 h/day >10-11 h/day >11-14 h/day p-value 

Total children, n (%) 1014 (100) 489 (48·2) 393 (38·8) 132 (13·0)  
Child’s characteristics      
Age (years), median (IQR) 4·4 (4·3-4·5) 4·4 (4·3-4·5) 4·4 (4·3-4·5) 4·4 (4·3-4·5) 0·860 
Sex, n (%)     

0·223 
    Male  528 (52·1) 249 (50·9) 192 (48·8) 78 (59·1) 
Cohort, n (%)     

<0·001 
    Asturias 317 (31·3) 138 (28·2) 125 (31·8) 54 (40·9) 
    Gipuzkoa 217 (21·4) 102 (20·9) 88 (22·4) 27 (20·5) 
    Sabadell 272 (26·8) 119 (24·3) 118 (30·0) 35 (26·5) 
    Valencia 208 (20·5) 130 (26·6) 62 (15·8) 16 (12·1) 
Season of blood extraction 
at age 4, n (%)* 

    

<0·001 
     Winter 181 (26·4) 73 (24·7) 72 (24·8) 36 (36·0) 
     Spring 232 (33·8) 93 (31·4) 108 (37·3) 31 (31·0) 
     Summer 105 (15·3) 52 (17·5) 43 (14·8) 10 (10·0) 
     Autumn  168 (24·5) 78 (26·4) 67 (23·1) 23 (23·0) 
Season of blood extraction 
at age 7-9, n (%)* 

    

0·186 
     Winter 233 (26·4) 114 (26·0) 91 (26·8) 28 (26·7) 
     Spring 227 (25·7) 113 (25·7) 91 (26·8) 23 (21·9) 
     Summer 184 (21·9) 99 (22·6) 71 (20·8) 24 (22·8) 
     Autumn  230 (26·0) 113 (25·7) 87 (25·6) 30 (28·6) 
Relative Mediterranean 
diet score, median (IQR) 

8·0 (7·0-10·0) 8·0 (6·0-10·0) 9·0 (7·0-11·0) 9·0 (7·0-10·0) 
0·002 

TV time, (h/week), median 
(IQR) 

9·0 (5·8-13·5) 9·0 (6·5-14·0) 9·0 (5·8-12·0) 7·5 (5·3-11·3) 
0·002 

Mothers’ characteristics       
Parity, n (%)     

0·048 
    ≥1 435 (42·9) 208 (42·5) 181 (46·3) 45 (34·1) 
Social class at baseline, n 
(%) 

    

0·031    I+II 259 (25·5) 135 (27·6) 92 (23·4) 32 (24·2) 

   III 258 (25·5) 116 (23·7) 118 (30·0) 24 (18·2) 
   IV + V 497 (49·0) 238 (48·7) 183 (46·6) 76 (57·6) 
The distribution of the continuous variables was checked using the Lilliefors correction of Kolmogorov–Smirnov test 

and compared using ANOVA, Kruskal-Wallis, and Chi-square tests. N, number; h: hour; IQR: interquartile range. 

*Available only at age 4 and 7-9, respectively ~ used in sensitivity analyses, available in fewer participants.   
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Table 2. Associations between sleep categories and telomere length at age 4 and age 7-9. 

  Model 1  Model 2  Model 3 

 n % difference (95% CI) P-value  % difference (95% CI) P-value  % difference (95% CI) P-value 

Cross-sectional association           

Sleep categories at 4 – 
telomere at age 4  

686         

Medium (>10-11 h/day) 290 Ref·   Ref·   Ref·  

Low (7-10 h/day) 296 1·49 (-1·57-4·64) 0·343  2·19 (-0·88-5·36) 0·164  2·21 (-0·88-5·38) 0·162 

High (>11-14 h/day) 100 6·88 (1·94-12·1) 0·006  8·43 (3·47-13·6) <0·001  8·48 (3·56-13·6) <0·001 

Longitudinal association          

Sleep categories at 4 – 
telomere at age 7-9 

875         

Medium (>10-11 h/day) 334 Ref·   Ref·   Ref·  

Low (7-10 h/day) 437 1·15 (-1·88-4·28) 0·460  1·51 (-1·57-4·68) 0·340  1·72 (-1·36-4·89) 0·276 

High (>11-14 h/d>ay) 104 3·65 (-1·23-8·77) 0·145  4·26 (-0·70-9·47) 0·094  3·86 (-1·19-9·17) 0·136 

Data presented as % difference and their respective 95% CI. Model 1: adjusted for blood date, cohort, age at baseline and sex of the child. Model 2: as 
per model 1, but also for social class at baseline and parity Model 3: as per model 2, but also for relative Mediterranean parameter and TV time.  
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Figure 1. Diagram of participant included in the study 

 


