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Simple Summary: A characteristic across several cancer types is a homologous recombination
deficiency (HRD). HRD is associated with a better response to several anticancer therapies. Adequate
assessment of HRD can therefore improve the outcome of such therapies. However, current methods
to assess HRD are insufficient, leading to an underestimation of patients with HRD. This review
discusses more accurate methods to detect HRD and how these can be applied for more personalized
cancer treatment.

Abstract: Homologous recombination deficiency (HRD) is a prevalent in approximately 17% of
tumors and is associated with enhanced sensitivity to anticancer therapies inducing double-strand
DNA breaks. Accurate detection of HRD would therefore allow improved patient selection and
outcome of conventional and targeted anticancer therapies. However, current clinical assessment
of HRD mainly relies on determining germline BRCA1/2 mutational status and is insufficient for
adequate patient stratification as mechanisms of HRD occurrence extend beyond functional BRCA1/2
loss. HRD, regardless of BRCA1/2 status, is associated with specific forms of genomic and mutational
signatures termed HRD scar. Detection of this HRD scar might therefore be a more reliable biomarker
for HRD. This review discusses and compares different methods of assessing HRD and HRD scar,
their advances into the clinic, and their potential implications for precision oncology.

Keywords: cancer; DNA repair; homologous recombination; homologous recombination deficiency;
homologous recombination deficiency scar; biomarkers; precision oncology

1. Introduction

The homologous recombination (HR) pathway involves a myriad of mediators—including
BRCA1, BRCA2, ataxia telangiectasia mutated (ATM) kinase, RAD51 paralogs, and RAD52—
and is essential for high-fidelity repair of double-strand DNA breaks (DSBs) [1]. HR deficiency
(HRD) is prevalent (17.4%) in several cancer types, including breast, ovarian, pancreatic,
and prostate cancer [2], and is associated with increased sensitivity to DNA-damaging
agents, such as platinum-based chemotherapeutics, and inhibitors of poly (ADP-ribose)
polymerase (PARP) [3,4]. Accurate detection of HRD is therefore clinically relevant as it
could improve patient selection and outcome of conventional and targeted therapies.

In the current clinical setting, assessing germline or somatic BRCA1/2 mutational status
is mainly used to determine HRD [5]. However, mechanisms of HRD occurrence extend
beyond the functional loss of BRCA1/2 [6,7], including mutations in other HR-related genes,
epigenetic silencing and changes in gene expression of these genes, or by other unknown
mechanisms, rendering germline testing insufficient for adequate patient selection and
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underscoring the need for better biomarkers of HRD. As HRD tumors exhibit a higher
degree of genomic instability and are characterized by specific mutational footprints [8–12],
detection of these phenotypic consequences of HRD—termed HRD scar—can thus provide
a better tool to detect HRD regardless of its cause.

The current review provides an overview of different methods and biomarkers to
detect HRD and HRD scar, compares their advantages and limitations, and discusses their
advances into the clinic with potential implications for precision oncology.

2. The Homologous Recombination Repair Pathway

The two major pathways for repair of DSBs—essential for maintenance of genomic
integrity—are nonhomologous end joining (NHEJ) or HR [13]. NHEJ is a highly flexible
and fast-acting DNA repair pathway active mainly in the G1 phase of the cell cycle but also
contributes to DSB repair throughout the entire cell cycle, ligating two broken DNA strands
with minimal regard to sequence homology [14]. Junctions repaired by NHEJ, however,
often harbor mutations or loss of genomic information. HR, on the other hand, is a process
of slower kinetics using a homologous DNA sequence as a template for highly accurate
repair of DSBs [13]. Unlike NHEJ, HR-mediated repair is mainly restricted to the S phase
and G2 phase of the cell cycle [15], when sister chromatids are more easily accessible. HR
is a multistep process extensively reviewed by others [16,17]: after recognition of a DSB
by the MRE11-RAD50-NBS1 (MRN) complex, ATM is activated. The replication protein
(RPA) is recruited and coats the lesion, which in turn activates ataxia telangiectasia and
RAD3-related (ATR) kinase. RPA is subsequently replaced by RAD51 mediated by BRCA2,
which itself is recruited to the DSB by BRCA1 and partner and localizer of BRCA2 (PALB2).
The resulting RAD51-DNA nucleoprotein subsequently initiates homology search followed
by displacement loop (D-loop) formation and strand invasion, a process in which RAD52
is involved [18]. DNA synthesis starts and can be mediated via distinct HR subpathways.

As becomes evident, HR is a complex pathway engaging a multitude of sensors
and mediators. Despite BRCA1/2 being centrally involved in HR, a deficiency in any
other element of HR can also disrupt HR, effectively leading to HRD. Supportive of this,
deficiencies in non-BRCA HR-related genes have indeed shown to result in heightened
sensitivity to platinum-based agents and PARP inhibitors (PARPis). For example, patients
with a PALB2 mutation significantly benefit from cisplatin [19] and olaparib treatment [20].
Interestingly, no benefit of olaparib treatment was observed in ATM-mutated breast [20] and
prostate cancer patients [21]. Nonetheless, and as stated above, these findings underscore
the inadequacy of assessing germline or somatic BRCA1/2 status in identifying patients with
HRD. Assays focusing on the phenotypical or functional consequences of HRD, regardless
of its cause, may prove to be better biomarkers of HRD.

3. Large-Scale Genomic Aberrations Associated with HRD

Large-scale genomic aberrations were initially detected in patients harboring autoso-
mal hereditary recessive mutations in genes encoding proteins orchestrating and regulating
HR. Ataxia telangiectasia was one of the first DNA damage response disorders iden-
tified [22], a syndrome associated with genomic instability, cancer predisposition, and
increased sensitivity to therapies inducing DBSs [23]. A different example is the RecQ
family of DNA helicases that play an essential role in HR-mediated repair of DSBs [24]
and maintenance of genomic integrity [25]. Mutations in members of the RecQ fam-
ily have been associated with Bloom’s syndrome [26], Werner’s syndrome [27], and the
Rothmund–Thomson syndrome [28]. These syndromes are characterized by large-scale
genomic aberrations that were later found to be caused, indirectly, by defective HR [28].

Indeed, in the absence of HR due to HRD, nonconservative, i.e., less precise, forms of
DNA repair such as NHEJ are used to repair DNA damage [7]. This error-prone DNA repair
ultimately leads to specific large-scale genomic aberrations or scars, including telomeric
allelic imbalance (TAI), loss of heterozygosity (LOH), and large-scale transitions (LST) [29]
(Figure 1). Detection and quantification of these genomic scars—most often using single-
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nucleotide polymorphism (SNP)-based assays—can thus identify tumors as HRD regardless
of its underlying cause.
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At least three large-scale genomic aberrations have been associated with HRD: telomeric allelic
imbalance (TAI), defined as regions of allelic imbalance at telomeric region; loss of heterozygosity
(LOH), defined as the loss of one or two alleles at a locus; and large-scale transitions (LST), defined as
chromosomal breaks between regions of at least 10 Mb.

A first large-scale genomic aberration found to be associated with HRD was TAI,
defined as regions of allelic imbalance extending to the telomeric regions but not crossing
the centromere. High degrees of TAI have shown to be inversely associated (R = −0.50;
p = 0.0053) with BRCA1 expression and to successfully predict (AUC = 0.74) the response
to cisplatin of triple-negative breast cancer (TNBC) patients in two phase 2 clinical trials
(NCT00148694 and NCT00580333) [30]. Importantly, this association remained significant
when only BRCA1/2 wild-type cases were included, underscoring that causes of HRD
extend beyond functional loss of BRCA1/2. The majority of TAI regions occur within 25 kB
of copy-number variations (CNVs), suggesting that CNV-associated mechanisms such as
increased replicative stress or stalled replication forks might be underlying mechanisms of
TAI [30].

LOH was identified later as another genomic aberration associated with HRD. LOH
is defined as the loss of one of two alleles at a specific locus, either by deletion of this
allele (copy-loss LOH) or by deletion of the allele accompanied by duplication of the
other allele (copy-neutral LOH) [31]. Depending on its underlying cause, regions of
LOH of different length and pattern can eventuate. Abkevich and colleagues discovered
that LOH of intermediate lengths (>15 Mb, but less than the entire chromosome) were
significantly associated with HRD, defined as a deficiency in BRCA1/2 (p = 10−11) or
RAD51C (p = 0.0003), in ovarian cancer [8]. Similar to BRCA1/2, RAD51 plays a central role
in HR and is involved in the homology search and strand invasion steps [32]. Importantly,
a substantial fraction of BRCA1/2 and RAD51C wild-type tumors also exhibited high
degrees of LOH [8], indicative of mechanisms of HRD beyond mutations in these HR genes.
Indeed, no differences between the extents of LOH were observed between HRD caused by
mutations and either promoter methylation or low gene expression levels [8]. Later clinical
trials used a prespecified cutoff value of 14% or more genomic LOH to classify tumors as
LOHhigh, or HRD [33].

As a third characteristic of genomic instability associated with HRD, Popova and
colleagues found the number of LSTs, defined as a chromosomal break between flanking
regions larger than 10 Mb, to be a robust indicator of BRCA1/2 mutational status in breast
cancer patients [9]. A tumor displaying ≥15 or ≥20 LSTs, if near-diploid or near-tetraploid,
respectively, was classified as HRD. The majority of these LSTs corresponded to inter-
chromosomal translocations and were associated with increased (p < 10−16) GC-content
and gene-rich chromosomal regions [9]. A subsequent study employing 456 breast cancer
patients of varying subtypes validated that, in addition to BRCA1/2 status, high degrees
of LST were correlated to RAD51C mutational status [34]. In a The Cancer Genome Atlas
(TCGA) cohort of 467 breast cancer patients, a significant association between the degree of
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LST and BRCA1/2 and RAD51C mutational status or expression levels was also found [34].
Importantly, 29% of LSThigh cases did not show any alteration in BRCA1/2 or RAD51C
genes [34], again suggestive of other underlying causes of HRD.

Although all three genomic scars are highly correlated with each other in certain
cancer types such as breast cancer [35,36] and can individually predict BRCA1/2 mutational
status, the combination of TAI, LOH, and LST parameters was found to perform best at
distinguishing HR proficient from deficient tumors [29,37]. Indeed, Telli and colleagues
demonstrated that the HRD score, i.e., the unweighted numeric sum of TAI, LOH, and LST,
exhibited superior performance at detecting HRD in breast cancer patients [4]. Using a
training dataset comprising 1058 breast and ovarian tumors of which 268 were BRCA1/2
deficient, an HRD score of ≥42 was set as threshold to identify HRD tumors with a
sensitivity of 95% [4]. A positive HRD score was validated to be associated with BRCA1/2
mutations and with response to platinum-based agents in the PrECOG 0105 breast cancer
cohort (NCT00813956) even in the absence of BRCA1/2 mutations [4]. The HRD score
has since been further validated in other cancer types [38–40], and has successfully been
used in clinical trials for patient selection as recently reviewed extensively by others [41].
Importantly, however, it should be noted that the threshold of HRD score—and perhaps
the HRD score itself—is probably dependent on the tumor type and should be evaluated or
optimized carefully before clinical application.

Lastly, it should be mentioned that other large-scale, genome-wide aberrations have
also been associated with HRD. Chromothripsis, for example, is a unique form of genomic
instability defined as a single, cataclysmic event whereby a single or a few chromosomes
are affected by tens to thousands of clustered rearrangements [42]. Higher degrees of
chromothripsis were found in HRD tumors, as evidenced by a strong link with ATM
mutations in patients suffering from acute lymphoblastic leukemia [43]. However, the
precise underlying mechanisms causing chromothripsis remain unclear [44] and should
be further extensively investigated to unveil the link with HRD, and allow application for
detection of HRD in a clinical setting.

4. Mutational Signatures of HRD

In cancer, over 100 different mutational signatures—comprising single and multiple
base substitutions, small insertions and deletions, small genomic rearrangements and chro-
mosome CNVs—have been described, caused by various endogenous and exogenous fac-
tors such as mutagen exposures, replication errors, and deficient DNA maintenance [45,46].
These mutational signatures are patterns of somatic passenger mutations that arise during
tumorigenesis and can thus provide insights into the underlying causes of individual
cancers [47]. Every signature serves as an imprint of the past and ongoing distinct DNA
damage and repair mutation processes in the tumor [48]. Mutational signatures are divided
into four categories: single-base substitution (SBS), double-base substitution (DBS), small
insertion/deletion (ID), and rearrangement signatures (RS). Historically, SBSs are classified
based on the flanking sequence context of each possible substitution type, resulting in a
96-channel pattern [12], DBSs are defined by 78 channels [49], and RS are classified using
a 32-channel system [12]. IDs, on the other hand, are more recently defined and remain
relatively underexplored [47]. IDs are classified according to a set of 83 channels, and
to date, 17 ID signatures have been identified [49]. In context of mutational signatures
associated with HRD, SBSs have been most extensively investigated.

Single-base substitution Signature 3 (SBS3)—a uniform pattern of mutations across
all 96 possible substitution types—is one of the mutational signatures discovered to be
correlated with HRD—specifically with BRCA1/2 mutations [12,50]—in breast cancer, and
was later extended to pancreatic [51,52], ovarian [53], and gastric cancer [54]. However,
a later study demonstrated that most samples in the top quartile of SBS3 activity did not
exhibit deleterious BRCA1/2 mutations, suggesting that other events might also contribute
to SBS3 [55]. Indeed, several other causes leading to HRD have since also been associ-
ated with elevated SBS3, such as epigenetic silencing of the BRCA1 promoter region [55],
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deleterious mutations in PALB2 [55,56], a crucial component for recruitment of BRCA2 to
DSBs, and RAD51C promoter methylation [55]. It should be noted that similar but different
phenotypes of SBS3 may arise dependent on the underlying cause and even tumor type,
e.g., BRCA2 and PALB2 inactivation lead to larger deletions when compared to BRCA1- and
RAD51-related HRD [57].

Comparison of SBS and LOH or LST for detection of HRD demonstrated that using
SBS3 is more sensitive and could identify up to 11% more tumors as HRD with a yet un-
known underlying cause [55]. Rather than SNP-based arrays used to assess LOH, LST, and
TAI, detection of SBS3 relies mostly on whole genome sequencing (WGS) or whole exome
sequencing (WES) data, potentially explaining this difference in sensitivity. In addition,
SBS3 is more sensitive in identifying BRCA2 and RAD51C mutational events [55]. Nonethe-
less, selecting a cutoff value to discriminate between HRD-proficient and -deficient tumors
is not straightforward when using this signature alone, given its limited discriminatory
mutation profile potentially resulting in non-HRD SBS mutations wrongly being assigned
to SBS3, and because the mutational spectrum of a single signature is often affected by other
signatures active in the same dataset. Indeed, besides SBS3, evidence has demonstrated
that HRD can give rise to at least five distinct mutational signatures depending on its
cause [12,58]. SBS8—characterized by C > A substitutions—has also been associated with
HRD, although to a lesser extent than SBS3 [59,60]. ID6 is a microhomology-mediated
deletion signature often seen in BRCA1/2 mutated tumors [49,61], and importantly, has
shown to be the most sensitive WGS-related HRD biomarker in the HRD prediction tools
HRDetect [62] and CHORD [6]. Lastly, RS3 is elevated in tumors with a BRCA1, but not
BRCA2 mutation and is designated by <10 kb tandem duplications [12], whilst RS5—<10
kb deletions—is associated with mutations in both BRCA1 and BRCA2 [12]. Presence of
these different signatures of the same etiology has shown to impede accurate detection of
an SBS3 in a sample [63]. SBS3 is therefore probably not as specific for HRD as previously
believed, and use of SBS3 alone to classify tumors as HRD has shown to overestimate HRD
in esophagus, lung, head and neck, and uterine cancers [64]. Additionally, current methods
of signature detection and analysis are inadequate if the mutational count is low, either due
to too few genomes or too few mutations per genome [63].

To address these limitations, a novel computational tool called Signature Multivari-
ate Analysis (SigMA) was developed, using a likelihood-based approach that can detect
mutational signatures such as SBS3 even when the mutational count is low [63]. SigMA is
an algorithm based on hierarchical clustering of tumor types based on the average entire
mutational spectrum, which includes other mutational signatures in addition to SBS3 and
varies across and within tumor types [63]. Using a simulated dataset of breast cancer
patients, application of SigMA yielded a sensitivity of 74% to identify HRD cases, which
was markedly higher than other methods [63]. In the same dataset, use of SigMA doubled
the number of cases identified as HRD without inherited mutations [63].

5. Integrative Models to Predict HRD

HRD can result in a myriad of genomic scars, ranging from distinct mutational signa-
tures to large-scale genomic aberrations that not only vary with the underlying cause of
HRD, but also differ between tumor types. To encompass the full complexity of the genomic
scar associated with HRD, models integrating multiple characteristics discussed above have
been developed. Currently, the two most commonly used and clinically validated assays
to detect HRD and genomic HRD scars are the FDA-approved myChoice® CDx (Myriad
Genetics, Inc., Salt Lake City, UT, USAC) and FoundationOne® CDx (F1CDx; Foundation
Medicine, Inc., Beverly, MA, USA) assays [41]. To assess HRD, myChoice® CDx utilizes
both the combined HRD score [4] of TAI, LOH, and LST, and mutational BRCA1/2 status.
Tumors having HRD scores ≥42 and/or alterations in BRCA1/2 are considered as HRD-
positive. FoundationOne® CDx, on the other hand, includes the percentage of genomic
LOH (%LOH > 16) and next-generation sequencing of 315 genes, including HR-related
genes extending beyond BRCA1/2, and other cancer-related genes such as NOTCH and
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MTOR [33,65]. Consequently, these two assays are not equivalent and should thus not be
considered interchangeable [66].

More recently developed and yet to be approved for clinical use, HRDetect is a
lasso-weighted logistic regression model based on WGS data that includes microhomology-
mediated deletions, SBS3, RS3, RS5, HRD score (TAI, LOH, and LST), and SBS8 [62].
In a cohort of 560 patients suffering from breast cancer, HRDetect could identify and,
importantly, discriminate between BRCA1/2-deficient tumors with a sensitivity of 98.7%,
using a probabilistic cutoff of 0.7 [62]. In a validation cohort of 80 breast cancer patients,
the sensitivity of HRDetect remained high at 86% [62], emphasizing the value of combining
multiple mutational and genomic signatures to predict HRD. Indeed, in comparison to other
methods of assessing HRD, especially using individual mutational signatures and genomic
scar-based indices as the HRD score, HRDetect performed superior [62]. HRDetect was later
validated by Golan et al. in a cohort of 391 patients with pancreatic ductal adenocarcinomas
(PDAC) and could predict BRCA1/PALB2 deficiency with a sensitivity and specificity of 98%
and 100%, respectively [67]. Importantly, HRDetect was able to classify an additional 7% to
10% of PDAC patients without known germline mutations as HRD [67]. In addition, in the
phase 2 RIO trial (EudraCT 2014-003319-12), HRDetect was more specific in identifying
HRD—as defined as mutations or epigenetic alterations in BRCA1/2, PALB2, or RAD51C—
in TNBC patients when compared to the HRD score, with up to 69% of patients classified as
HRD [68]. The utility of HRDetect in other cancer types, however, remains to be validated:
in an ovarian cancer dataset (n = 425), HRDetect (AUC = 0.823) did not perform better in
identifying HRD than the HRD score (AUC = 0.837) [69].

Using a different approach, the random forest-based model classifier of homologous
recombination deficiency (CHORD), employing a pan-cancer approach, was developed [6].
Previous models, such as HRDetect, are developed based on one cancer type necessitating
validation on other cancer types before application [69]. CHORD was developed using
WGS data of 3584 patients from a pan-cancer metastatic cohort comprised of 20 different
cancer types including amongst others pancreas, head and neck, prostate, breast, ovary,
colon, and lung cancer [6,70]. CHORD uses a combination of 29 mutational features of three
somatic mutation categories: SBSs, IDs, and structural variants (SV), with the presence
of deletions with flanking homology of ≥2 bp being the most important predictor of
HRD [6]. The features used by CHORD can, in addition to predicting HRD, also distinguish
between BRCA1-type HRD and BRCA2-type HRD using 1–10 kb and, to a lesser extent,
10–100 kb duplications. Using a probabilistic cutoff of 0.5 (i.e., the sum of BRCA1 and
BRCA2 deficiency probability), CHORD can detect HRD with overall low false-positive
(<2%) and false-negative (<6%) rates [6]. CHORD was validated and compared with the
predictions of HRDetect on two independent datasets, the BRCA-EU breast cancer dataset
(n = 543) and the pan-cancer analysis of whole genomes (PCAWG) dataset (n = 1854),
which demonstrated similar performance for both models (AUC = 0.98) [6]. In contrast to
HRDetect, however, CHORD does not rely upon mutational signatures, suggesting that
accurate prediction of HRD is feasible without additional mutational signature extraction
steps [71]. Additionally, as CHORD has been developed and validated on pan-cancer
cohorts, it is much better suited for detection of HRD in tumor-agnostic clinical trials.

6. Limitations of Detecting Mutational Scars

Depending on the method used to detect mutational or genomic scars associated with
HRD, fresh tissue might be required to accurately assess the presence of the respective
HRD scar. Routinely used in clinical pathology, formalin-fixed paraffin-embedded (FFPE)
tissue samples harbor artifacts that can severely compromise detection of, e.g., SBS3 [62]
and is a first limitation of applying HRD scar assessment in clinical setting.

Second, while mutational scar-based methods of detecting HRD identify HRD cases
beyond BRCA1/2 mutations, a principal limitation of detecting mutational and genomic
scars is that these represent past events and do not necessarily reflect current HRD status,
possibly resulting in false-positive or false-negative classification of a tumor according
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to HRD status. Reversions or secondary mutations in BRCA1/2 [72], RAD51 [73], and
PALB2 [74] have shown to restore HR function and induce resistance to platinum-based
agents or PARPis and could therefore lead to a false-positive prediction. On the other hand,
recent acquisition of an HRD phenotype could result in a false-negative classification due
to insufficient mutational or genomic events for accurate HRD scar detection. Genetic
testing of HRD genes should thus be complementary to HRD scar detection providing
supporting information for making a final decision on a patients’ HR status. In light with
this, assays relying on WGS, although not routinely used (yet) for clinical diagnostics,
have the advantage that both genetic testing and HRD scar detection can be performed
simultaneously.

Additionally, the mutational scars described above have been mostly defined by
comparison with, or have been validated against BRCA1/2—or other HR-related genes—
mutated samples. Often, however, little evidence is provided that these specific mutations
present are actually resulting in HRD, i.e., leading to functional HRD loss. Elaborative of
this, assays reflecting real-time, functional HR status might also serve as potential biomark-
ers. Examples of such assays include evaluation of transcriptional profiles, protein expres-
sion levels, or functional assays such as RAD51 foci induction, or sensitivity to platinum-
based therapies [5,75–79]. Essers and colleagues developed an RNA expression-based
HRD signature, based on cellular crosslinker sensitivity, fully independent of mutational
status of HRD genes. This gene expression signature could retrospectively successfully
predict response of 180 head and neck cancer patients to cisplatin. However, despite being
biologically useful, application of these real-time indicators of HRD is currently not straight-
forward in the clinic. Nonetheless, integrated functional repair and genomic (scar) analyses
could further improve the prognostic and predictive value of genetic biomarkers [80].

7. HRD Scar in the Clinic: Implications for Precision Oncology
7.1. PARPis

Accurate detection of HRD and subsequent patient selection could drastically improve
therapies exploiting HR. Current methods of assessing HRD are insufficient and consistently
lead to an underestimation of the number of patients with HRD tumors (Table 1). Currently,
the main application of HRD assessment in the clinic is to select patients benefitting
from treatment with PARPis. The interaction between PARP inhibition and HRD can be
described as synthetically lethal, where an individual loss of gene or protein of either
is not lethal, but a combined loss of function results in cell death [81]. PARPis not only
inhibit the catalytic function of PARP enzymes, preventing repair of single-stranded breaks
(SSBs), but also trap PARP to sites of DNA damage, preventing DNA repair, replication,
and transcription [82]. Ultimately, DSBs accumulate, which cannot be repaired in HRD
cells. To date, three PARPis (olaparib, rucaparib, and niraparib) have been approved by
the FDA for use in ovarian cancer patients with germline BRCA2 mutations. Germline
or somatic BRCA2 testing is insufficient, however, and leads to an underestimation and
even incorrect classification of patients who could benefit from treatment with PARPis.
In addition to assessing germline or somatic BRCA2 status, sensitivity to platinum-based
agents is also used as a functional readout of HRD to select patients expected to be sensitive
to PARPis [83]. However, mechanisms of inherent or acquired resistance to platinum-based
agents extending beyond BRCA1/2 status [84] also implicate a potential underestimation of
patients that would benefit from PARPis. Complementary assessment of HRD scar would
address this drawback and allow a more accurate identification of patients responsive to
PARPis.
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Table 1. Overview of completed clinical trials to date determining patient HRD status by assessing the presence of HRD scars.

Name Phase Cancer Type Patients HRD Assay BRCA1/2
Mutation

Total
HRD Aims and Results Study Identifier Associated

Publications

PrECOG 0105 2 Breast 80 LOH score 24.2% 81.5%

Assessment of the safety and
efficacy of iniparib in combination
with gemcitabine and carboplatin.

Mean LOH score was higher in
responders vs. nonresponders, an

association that remained
significant when only BRCA1/2

wild-type tumors were considered.

NCT00813956
Telli et al.,

J. Clin. Oncol.
2015.

NU 10B07 2 Breast 30 HRD score 10.0% 46.2%

Evaluation of safety of carboplatin
and eribulin in breast cancer

patients and use of HRD score as
biomarker of response.

Combination of carboplatin and
eribulin was safe and HRD score
could predict outcome regardless

of BRCA1/2 mutational status.

NCT01372579
Kaklamani et al.,

Breast Cancer
Res. Treat. 2015.

ENGOT-
OV16/NOVA 3 Ovarian 594 Myriad

myChoice® CDx 36.7% 78.5%

Evaluation the efficacy of niraparib
in platinum-sensitive ovarian
cancer. Niraparib treatment
resulted in significant longer
progression-free survival in

patients with BRCA1/2 mutation
and positive HRD classification.

NCT01847274 Mirza et al.,
NEJM 2016.

ARIEL2 2
Ovarian,
fallopia,

peritoneal
206 LOH score 19.6% 59.2%

Evaluation of LOH as biomarker of
response to rucaparib. Patients
without BRCA1/2 mutation but

high LOH score responded better
to rucaparib.

NCT01891344
Swischer et al.,
Lancet Oncol.

2017.
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Table 1. Cont.

Name Phase Cancer Type Patients HRD Assay BRCA1/2
Mutation

Total
HRD Aims and Results Study Identifier Associated

Publications

Study 19 2 Ovarian 53 HRD score 60.3% 69.8%

Characterization of long-term and
short-term responders to olaparib.
BRCA1/2 status and a high HRD

score were associated with
long-term response to olaparib.

NCT00753545
Lheureux et al.,
Clin. Cancer Res.

2017.

SWOG S9313 2 Breast 425 HRD score 29.3% 67.3%

Evaluation of the combination of
anthracycline and

cyclophosphamide in breast cancer
patients and use of HRD as

biomarker of response.
HRD-positivity was associated

with better response to
anthracycline and

cyclophosphamide combination.

Int0137
Sharma et al.,
Ann. Oncol.

2018.

M10-976 1
Ovarian,
fallopia,

peritoneal
60 HRD score 43.3% 56.7%

Assess the safety of a novel PARPi,
ABT-767. Patients with a mutation
in BRCA1/2 or with a HRD score
≥42 responded better to ABT-767.

NCT01339650
Van der Biessen

et al., Invest.
New Drugs 2018

QUADRA 2
Ovarian,
fallopia,

peritoneal
463 Myriad

myChoice® CDx 18.7% 47.9%
Assessment of safety of niraparib
in patients with ovarian, fallopian,

or peritoneal cancer.
NCT02354586

Moore et al.,
Lancet Oncol.

2019.

PAOLA-1 3
Ovarian,
fallopia,

peritoneal
806 Myriad

myChoice® CDx 30.0% 48.0%

Assessment of efficacy of the
combination of olaparib and

bevacizumab in ovarian cancer.
Significant benefit of addition of

olaparib was observed in patients
with a high HRD score, regardless

of BRCA1/2 mutations.

NCT02477644
Ray-Coquard
et al., NEJM

2019.



Cancers 2022, 14, 4157 10 of 20

Table 1. Cont.

Name Phase Cancer Type Patients HRD Assay BRCA1/2
Mutation

Total
HRD Aims and Results Study Identifier Associated

Publications

LIGHT 2
Ovarian,
fallopia,

peritoneal
272 Myriad

myChoice® CDx 37.0% 62.2%

Evaluation of safety of olaparib in
patients with ovarian, fallopian, or
peritoneal cancer and use of HRD

score as biomarker of response.
Patients with BRCA1/2 mutations

and positive HRD score responded
better to olaparib.

NCT02983799

Cadoo et al.,
2020 ASCO
Annu. Meet.

2020.

GeparOla 2 Breast 107 HRD score 56.2% 99.7%

Investigation of the combination of
paclitaxel and olaparib (PO) in

HER2-negative HRD breast cancer
patients. PO was safe and resulted in

higher pathologic complete
response.

NCT02789332
Fasching et al.,

Ann. Oncol.
2021.

RUBY 2 Breast 40 LOH score
HRDetect 12.5% 100.0%

Assessment of efficacy of rucaparib
in breast HER2-positive HRD breast

cancer and use of LOH and
HRDetect as biomarkers of response.

A positive HRD score was an
inclusion criterion. A subset of

patients with high LOH and
HRDetect scores without BRCA1/2

mutations benefited from rucaparib
treatment.

NCT02505048 Patsouris et al.,
EJC 2021.

TBCRC 2 Breast 138 Myriad
myChoice® CDx 6.7% 71.2%

Assessment of a correlation between
HRD score and response to cisplatin

or paclitaxel. Tumors with a HRD
score ≥33 were classified as HRD

instead of ≥42. HRD was not
predictive of response to either

cisplatin or paclitaxel.

NCT01982448
Mayer et al.,
Ann. Oncol.

2021.
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Table 1. Cont.

Name Phase Cancer Type Patients HRD Assay BRCA1/2
Mutation

Total
HRD Aims and Results Study Identifier Associated

Publications

Lung-MAP
S1900A 2 Lung 59 LOH score 38.9% 100.0%

Assessment of efficacy of rucaparib
in lung cancer patients with HRD.

A positive LOH score was an
inclusion criterion. The degree of
LOH did not predict response to

rucaparib.

NCT03377556
Riess et al., 2021

ASCO Annu.
Meet. 2021.

JBCRG-22 2 Breast 99 HRD score N/A 46.5%

Investigation of clinical usefulness
of combination of eribulin and
carboplatin or paclitaxel. HRD

patients (≥42) responded
significantly better to combination

therapy.

UMIN000023162
Masuda et al.,
Breast Cancer

Res. Treat. 2021.

Meet-URO 12 2 Urothelial 58 FoundationOne®

CDx
12.8% 44.7%

Evaluation of niraparib in
combination with best supportive
care (BSC). Addition of niraparib
did not improve progression-free

survival

NCT03945084

Vignani et al.,
2022 ASCO
Genitourin.

Cancers Symp.
2022.

HRD assay: type of assay used to detect presence of HRD scar; BRCA1/2 mutation: percentage of patients in the trial with a BRCA1/2 mutation; Total HRD: total percentage of patients
with HRD, either a BRCA1/2 mutation and/or positive HRD score; N/A: not applicable, i.e., not reported.
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Supportive of this, patients with BRCA1/2 wild-type platinum-sensitive ovarian car-
cinomas with high degrees of LOH responded better to rucaparib than patients with low
degrees of LOH in the ARIEL2 phase 2 clinical trial (NCT01891344) [33], demonstrating the
potential of PARP inhibition to be extended beyond BRCA1/2 mutated tumors. Additionally,
in the RUBY phase 2 trial (NCT02505048), evaluating the efficacy of rucaparib in metastatic
breast cancer patients without germline BRCA1/2 mutations, the HRDetect score tended
to be higher in responders vs. nonresponders (0.465 vs. 0.040), albeit not significant [85],
perhaps due to the low number of patients (n = 40) analyzed. In the PAOLA-1 phase 3 trial
(NCT02477644), patients suffering from platinum-responsive ovarian cancer classified as
HRD-positive based on the HRD score (≥42; Myriad myChoice® CDx) demonstrated better
response to olaparib even when no BRCA1/2 mutations were present [86]. In this study, an
additional 18% of BRCA1/2 wild-type patients were identified as HRD and significantly
benefited from PARP inhibition. Similarly, in the QUADRA trial (NCT02354586), also em-
ploying the Myriad myChoice® CDx assay, 29% of patients were classified as HRD-positive
without BRCA1/2 mutations and responded significantly better to niraparib, especially
when both HRD-positive and platinum-sensitive [87], implicative that combining genomic
scar analyses and functional HRD assays might provide additional discriminative value of
these biomarkers. Findings of these clinical trials are in line with a study by Davies and
colleagues that demonstrated that up to 22% of breast cancer patients could potentially
benefit from PARP inhibition as predicted by HRDetect, larger than the hitherto appreciated
fraction (1–5%) [62] and highlighting the need for more accurate and integrated approaches
for HRD classification.

7.2. Platinum-Based and Other DSB-Inducing Agents

In addition to PARPis, tumors deficient in HR are also more sensitive to other therapies
inducing DSBs such as platinum-based agents [88]. These agents, including cisplatin and
carboplatin, preferentially bind to the N7 atom of the purine bases of DNA, after which
three types of lesions can form: monoadducts, intrastrand crosslinks, and interstrand
crosslinks (ICLs), subsequently leading to SSBs or DSBs [89]. Given the complexity of
DNA lesions induced by platinum-based agents, several DNA repair mechanisms are
implicated in repair of the induced damage, including HR for DSBs [90]. Indeed, in
several preclinical and clinical studies, cells and tumors with germline BRCA1/2 mutations
exhibit enhanced sensitivity to platinum-based agents [91–94]. However, it has previously
been demonstrated that TNBC patients without BRCA1/2 mutations but with either low
BRCA1 mRNA expression or promoter methylation also showed improved responses to
cisplatin [95]. In line with this, the burden of TAI and LOH could successfully predict
(AUC = 0.74) the response of breast cancer patients to cisplatin in two phase 2 clinical trials
(NCT00148694 and NCT00580333), an association that remained significant when only wild-
type BRCA1/2 cases were included [30,34]. Additionally, in the PrECOG 0105 phase 2 trial
(NCT00813956), clinical responses of wild-type BRCA1/2 breast cancer to cisplatin patients
were higher in patients classified as HRD defined as a LOH score ≥10 [4]. In this trial, 57% of
wild-type BRCA1/2 patients were classified as HRD and experienced significant additional
benefit from carboplatin treatment [96]. In a different phase 2 trial (NCT01372579) in TNBC
patients, a positive HRD score (≥42; Myriad myChoice® CDx) successfully predicted
response to carboplatin with 75% of responsive patients not harboring germline BRCA1/2
mutations [97]. Conversely, in the TBCRC phase 2 trial (NCT01982448) in TNBC patients,
no significant association was observed between the HRD score determined by the Myriad
myChoice® CDx assay and clinical response to cisplatin [98]. A different cutoff value to
classify tumors as HRD-positive (≥33 vs. ≥42) used in this study, however, could be a
potential explanation for this discrepancy.

Assessment of HRD could also be applied to other DSB-inducing therapies. Indeed,
several preclinical studies observed enhanced sensitivity of HRD cells and tumor xenografts
to ICL-inducing agents such as chlorambucil [99] and mitomycin C [100]. Clinical trials,
comparing the efficacy of nonplatinum interstrand crosslinking agents in tumors proficient
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and deficient in HR, however, are limited. In a retrospective analysis of 83 TNBC patients
in a TCGA cohort, patients classified as HRD by HRDetect (≥42) responded significantly
better (overall survival; p = 0.0063) to the interstrand crosslinker cyclophosphamide in
combination with anthracycline and taxane chemotherapy (ACT) [101]. Moreover, HRD
patients were less likely to be resistant to ACT combinational treatment when compared to
HR-proficient patients (37.1 vs. 62.9%; p = 0.074) [101]. Similar results were observed in the
SWOG S9313 trial (Int0137), as HRD-positive status (HRD score ≥42) was associated with
better disease free survival (DFS; hazard ratio 0.72; p = 0.049) after combination treatment
of cyclophosphamide and anthracycline (AC) [102].

Taken together, results of these clinical trials underscore that application of a reliable
HRD biomarker could improve prediction of treatment response to DSB-inducing agents,
and might lead to optimization of treatment regimen selection, not only of existing and
approved drugs, but also of novel, more targeted therapies. Hypoxia-activated prodrugs
(HAPs), for example, are a promising therapeutic approach selectively targeting hypoxic
tumor cells associated with malignant progression and resistance to conventional thera-
pies [103]. Despite highly promising preclinical and clinical results [104–107], HAPs have
failed to be implemented in routine clinical settings with a lack of patient stratification partly
accountable for their failure [105]. Identification of key factors of the tumoral response to
HAPs, and predictive biomarkers thereof, is thus essential for their successful clinical appli-
cation. In this light, Hunter and colleagues demonstrated that for several hypoxia-activated
alkylating agents, including evofosfamide and PR-104, cytotoxicity and antitumor effects
were markedly enhanced (p < 0.0001) when cells and tumors were HRD [108]. CP-506, a
next-generation hypoxia-activated alkylating agent, demonstrated highly hypoxia-selective
cytotoxicity and induction of DNA interstrand crosslinks [107,109]. Furthermore, the anti-
tumor effects of CP-506 were significantly enhanced in HRD tumors (unpublished data).
Based on these data, CP-506 will be evaluated in an upcoming pan-cancer phase 1/2 clinical
trial TUMAGNOSTIC (NCT04954599) in solid tumors with HRD or in tumor types with a
high incidence of HRD. In this trial, CHORD will be used for the detection of HRD as it is
better suited for HRD detection in tumor-agnostic clinical trials.

7.3. Immunotherapies

The integrity of DNA repair pathways can modulate the immune system and antitu-
mor immunity—and therefore also response to immunotherapies—in a variety of ways.
Accumulation of mutations in the DNA due to elevated genomic instability, for exam-
ple, can result in novel proteins normally not encoded, creating tumor-specific antigens
called neoantigens. Several studies have demonstrated a correlation between HRD and
tumor mutational burden (TMB) and neoantigen load, as reviewed recently [110]. A higher
neoantigen load has been associated with both longer overall survival and increased re-
sponse to immunotherapies in lung cancer patients [111]. Supportive of this, recent studies
found a correlation between the HRD score and increased neoantigen load and TMB in a
pan-cancer cohort [112], and demonstrated that HRD ovarian and prostate tumors exhibited
increased lymphocyte infiltration [113–115].

Despite these immunogenic events, HRD tumors are able to evade immune clearance
via modulation of the tumor microenvironment (TME) by release of immune-suppressive
cytokines [116], and upregulation of immune checkpoint molecules programmed cell death
1 receptor (PD-1) and its ligand PD-L1 [117–121], and cytotoxic T-lymphocyte-associated
protein 4 (CTLA-4) [117], effectively promoting an immunosuppressive TME. In support of
these findings, Jenzer and colleagues found that, although tumors with a loss of BRCA2
showed increased levels of tumor-infiltrating lymphocytes (TILs), the ratio of cytotoxic
CD8+ T lymphocytes to immunosuppressive T regulatory CD25+ FOXP3+ lymphocytes was
lower compared to BRCA2 wild-type tumors [113]. This highly immunosuppressive TME of
HRD tumors, however, also renders them more sensitive to immune checkpoint inhibitors
(ICIs). In a retrospective analysis of three clinical trials assessing monotherapeutic efficacy
of anti-PD-1/PD-L1 in advanced urothelial cancers, alterations in HR genes were more
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commonly observed in responders compared to nonresponders [122]. Additionally, BRCA2
mutations were significantly enriched in melanomas responsive to anti-PD-1 therapy [123].

Of note, it is important to distinguish between BRCA1- and BRCA2-mutated tumors
regarding their immunophenotype and clinical effectivity of ICIs. In high-grade ovarian
cancer, tumors with alterations in BRCA1, but not BRCA2, for example, demonstrated a
more immunoreactive phenotype characterized by higher levels of TILs [124]. In breast
cancer, on the other hand, a more immunosuppressive phenotype of BRCA1-mutated
tumors was observed compared to BRCA2-mutated tumors [125]. This is further reflected
by several preclinical studies showing that BRCA2-mutated, but not BRCA1-mutated breast
cancers, are responsive to treatment with ICIs [117,125]. Prospective studies are thus
needed to assess whether HRD and HRD-associated scars can be used as biomarkers of
response to treatment with ICIs.

8. Conclusions and Future Directions

HRD is a well-recognized characteristic of tumors and is associated with an enhanced
sensitivity to several anticancer therapies. Accurate detection of clinically relevant HRD
would allow proper patient stratification and improve the outcome of conventional and
targeted therapies such as PARPis, platinum-based and other DSB-inducing agents, im-
munotherapies, and potential combinations thereof, which warrants further investigations.
However, current clinical assessment of HRD—mainly relying on determining germline
BRCA1/2 mutational status—is insufficient and consistently leads to an underestimation of
the number of patients with HRD tumors as mechanisms of HRD occurrence extend beyond
functional BRCA1/2 loss. HRD, regardless of BRCA1/2 status, is associated with specific
forms of genomic and mutational signatures termed HRD scar. A variety of these scars
have been identified and associated with HRD, including large-scale genomic aberrations
such as TAI, LOH, and LST, and mutational signatures such as SBS3 and ID6. Nonetheless,
composite models—such as the HRD score, HRDetect, and CHORD—integrating multiple
of these scars, better encompass the full complexity of HRD-associated phenotypic changes
and are in all likelihood better candidates for clinical application for detection of HRD.
Last but not least, integrating genomic (scar) and more functional repair analyses—either
clinical response data or functional HRD assays—likely further improve the prognostic
and predictive value of these biomarkers.
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