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Abstract—Cardiac magnetic resonance (CMR) images
play a growing role in the diagnostic imaging of cardio-
vascular diseases. Full coverage of the left ventricle (LV),
from base to apex, is a basic criterion for CMR image qual-
ity and is necessary for accurate measurement of cardiac
volume and functional assessment. Incomplete coverage of
the LV is identified through visual inspection, which is time
consuming and usually done retrospectively in the assess-
ment of large imaging cohorts. This paper proposes a novel
automatic method for determining LV coverage from CMR
images by using Fisher-discriminative three-dimensional
(FD3D) convolutional neural networks (CNNs). In contrast
to our previous method employing 2-D CNNs, this approach
utilizes spatial contextual information in CMR volumes,
extracts more representative high-level features, and en-
hances the discriminative capacity of the baseline 2-D CNN
learning framework, thus, achieving superior detection ac-
curacy. A two-stage framework is proposed to identify miss-
ing basal and apical slices in measurements of CMR volume.
First, the FD3D CNN extracts high-level features from the
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CMR stacks. These image representations are then used to
detect the missing basal and apical slices. Compared to the
traditional 3-D CNN strategy, the proposed FD3D CNN min-
imizes within-class scatter and maximizes between-class
scatter. We performed extensive experiments to validate
the proposed method on more than 5000 independent vol-
umetric CMR scans from the UK Biobank study, achiev-
ing low error rates for missing basal/apical slice detection
(4.9%/4.6%). The proposed method can also be adopted for
assessing LV coverage for other types of CMR image data.

Index Terms—3D convolutional neural network, LV cover-
age, image-quality assessment, population image analysis,
Fisher discriminant criterion.

I. INTRODUCTION

L EFT ventricular (LV) cardiac anatomy and function are
widely used in the field of cardiac medicine for diagno-

sis and monitoring disease progression and for assessing the
patient’s response to cardiac surgery and interventional proce-
dures. Cardiac ultrasound (US) and cardiac magnetic resonance
(CMR) imaging are arguably the most widespread techniques
for diagnostic imaging of the heart. For population imaging
studies, however, CMR remains the modality of choice. CMR
is a single technique that provides access to cardiac anatomy
and non-invasive measurements of cardiac function [1]. In large
population imaging studies or assessment of patient cohorts
from large clinical trials, the quantification of LV anatomy and
function requires automatic image quality assessment and tools
for image analysis. One basic criterion for cardiac image qual-
ity is LV coverage and detection of missing apical and basal
CMR slices [2]. CMR may display incomplete LV coverage
because of insufficient radiographer experience in planning a
scan, natural cardiac muscle contraction, breathing motion, and
imperfect triggering, all of which pose challenges in efforts at
quantitative LV characterisation and accurate diagnosis [3]. For
example, missing basal slices affect calculations of LV volume
and derived LV functional measures such as ejection fraction
and cardiac output. Even if scout images are acquired, in order
to centre the LV in view and minimize this issue, incomplete
coverage may result at any point throughout the cardiac cycle
because of changes in patient breathing and cardiac motion.
Image quality assessment is traditionally performed by radiog-
raphers who ensure that patients do not leave the scanner without
providing diagnostically interpretable data. However, there are
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limits to human attention. With CMR examinations becoming
less expensive and increasingly commissioned, scanning loads
at some centres may be insufficient to maintain consistent stan-
dards. Quality assessment is of particular importance in large-
scale population imaging studies, where data are acquired across
different imaging sites before core lab analysis. For example,
large volumes of data may be stored without being checked by
experienced staff prior to analysis [4], [5]. Automatic methods
for these repetitive quality assurance tasks provide the required
consistency and reliability.

To ensure consistent quantification of CMR data, automatic
assessment of complete LV coverage is the first step. LV
coverage is assessed by visual inspection of CMR image
sequences, which is a subjective, repetitive, error-prone, and
time-consuming process [6]. Automatic coverage assessment
is required to promptly intervene and correct data acquisition,
and/or discard images with incomplete LV coverage whose
analysis would otherwise impair any statistics aggregated over
the cohort. The most common causes of incomplete LV coverage
are lack of a basal slice (no atrial chamber visible in end-systole,
hence no certainty that the base of the heart is completely
covered) and lack of an apical slice (LV cavity remains visible
at end-systole). According to the criteria used in [2] for CMR
quality assessment, a missing basal slice carries a higher penalty
than a missing apical slice, given its impact on LV volume com-
putation. Although technological developments in magnetic
resonance imaging (MRI) hardware and pulse sequences have
led to faster CMR acquisitions, challenges remain with regard
to ensuring full heart coverage and motion compensation. In the
UK Biobank’s CMR protocol, for instance, incomplete heart
coverage is the reason for flagging 4% of all CMR examinations
as providing unreliable or non-analysable image data [7]. While
4% may seem to be a small proportion, the challenge is to
automatically sift through the entire database to identify and
exclude those cases from further quantitative analysis. Methods
for the objective detection of basal and apical imaging planes
are relevant in this context, as their absence affects diagnostic
accuracy as well as anatomical and functional LV quantification.

In the field of video processing, Automatic Image Quality As-
sessment (AIQA) is a well-developed corpus of techniques con-
cerned with detecting image distortions characteristic of mul-
timedia communications [8], [9]. These distortions generally
differ from those affecting medical images. No-reference-based
image quality assessment (NR-IQA) [10], [11] is relevant for
medical imaging data. While there is relatively easy access to
abundant data sets of mixed quality, it is not possible to collect
data without some level of image degradation or artefacts. Prac-
tical CMR image-processing applications do not provide perfect
versions of incomplete LV coverage images, but rather, only the
image to be assessed. While assessments attempt to highlight
differences in our assessed data set regarding a hypothetical
high-quality image [12], the final image quality is estimated
solely based on the characteristics of the assessed image.

The current standard operating procedure in the UK Biobank,
for instance, involves the detection of missing basal/apical slices
based on visual assessment by experts. Few methods have been
developed for automating this process, and prior work mostly

Fig. 1. Left: A typical two-chamber view cardiac MRI with eight slices
covering from base to apex. Right: (a) a volume with whole coverage
(slice 1 is the basal slice), and (b) a volume with missing basal slice
(slice 1 is not the basal slice). In each rectangle, from top to bottom,
rows correspond to adjacent axial slices.

adopted approaches that require segmenting short-axis slices of
LV [13], [14] or landmark localization [15]–[17]. However, fast
full LV coverage detection as the first step of an image quantifi-
cation pipeline is largely unexplored. Hoffmann et al. pioneered
this field [15] by initially localizing the heart in raw data prior
to applying computer-aided diagnosis algorithms. Lu et al. [18]
proposed an approach to locate LV and prescribe long/short-
axis views before MR image acquisition, which could be used
to evaluate cardiac coverage in short-axis views. These methods
detect missing basal/apical slices and largely rely on the quality
of LV segmentation and localization. de Vos et al. [19] proposed
a method that automatically identifies a slice of interest (SOI)
in 3D images. A ConvNet regressor was trained to determine
the distance between each 2D slice and the SOI. However, this
solution does not consider 3D contextual information contained
across slices.

The characteristics of the LV are useful in identifying the
position that the slice belongs to, since the LV in each slice
shows a different shape and size. For example, the LV shape
is approximately circular in mid-slices, while it is more ellip-
tical in basal slices (Fig. 1). Recent work [20], [21] has fo-
cused on learning data-driven features to more accurately detect
shape differences. Among them, 3D convolutional neural net-
works (CNNs) are one of the most regularly used deep-learning
schemes to meet the challenges of discriminative shape detec-
tion [22], [23]. Roth et al. [24] and Prasoon et al. [25] adapted
2D CNNs for processing 3D volumetric data. However, these
studies reported having difficulties when attempting to employ
3D CNN on their data, since they often lack sufficient training
samples and computational resources to learn accurate 3D mod-
els. Although some authors [26], [27] have utilized 3D CNNs to
process medical images, their architectural settings, convolution
kernels, and prediction score volumes have not been disclosed
in the detail required to reproduce their results [28]. Some ex-
ceptions, however, include the work of Kamnitsas et al. [29],
who devised an effective dense training scheme based on 3D
CNNs for brain lesion segmentation and dealing with the com-
putational burden of processing 3D medical scans. Moreover,
the 3D U-Net architecture of Cicek et al. [30] takes 3D volumes
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as input and produces volumetric image segmentation. The ar-
chitecture and data augmentation of the U-net allow learning
models with very good generalization performance from only a
few annotated samples. Owing to the success of 3D deep neu-
ral networks in medical image segmentation, we are motivated
to devise an end-to-end network optimization without requir-
ing manual annotations of the visual image quality. Meanwhile,
we seek features maximally affected by partial image artefacts,
which are also not very sensitive to variability related to the
intrinsic anatomy or image modality at hand.

In this paper, we focus on the analysis of short-axis (SA) cine
MRI, although the technique can also be generalized to long-axis
images. We aim to identify missing apical slices (MAS) and/or
basal slices (MBS) in 3D cardiac MRI volumes. In our previous
work, we used a 2D CNN constructed on single-slice images
and processed them sequentially [31]. However, this solution
ignores contextual information contained across slices provid-
ing inferior performance compared to a 3D analysis. We assume
that 3D CNNs can easily and effectively deal with within-class
variability and between-class similarity, which are important
sources of the detection error [32]. We seek to learn a feature
representation that achieves reliable classification results even
with a small amount of training data or a small number of
iterations. In this paper, we address incomplete LV coverage de-
tection using a Fisher-discriminative 3D (FD3D) CNN, which
utilizes 3D convolution kernels and exploits the spatial contex-
tual information in volumetric data. The proposed FD3D CNN
uses the Fisher discriminant criterion [33] on the fully connected
layer to render features more discriminative and insensitive to
geometric structural variations.

To the best of our knowledge, this is the first study tackling
the problem of automatic detection of missing basal and apical
slices on a CMR dataset as extensive and challenging as the UK
Biobank. Besides introducing a novel FD3D CNN architecture,
we propose an effective cascaded detection strategy for incom-
plete coverage identification. In the first stage, we train two
separate FD3D CNN classifiers to detect the absence of basal
and apical slices. In the second stage, we combine the classifi-
cation results from stage 1 to determine the type of incomplete
coverage found on the image.

The rest of this paper is organized as follows. Section II in-
troduces the proposed FD3D CNN architecture and explains the
learning strategy for its parameters. Section III presents exper-
imental materials and metrics. Section IV describes the exper-
imental design and classification results. Further analysis and
discussion of the proposed method are provided in Section V.
Conclusions are presented in Section VI.

II. FULL LV COVERAGE DETECTION METHOD

A. Problem Formulation

During image acquisition, a sufficient margin ought to be left
above and below the LV cavity according to the established
guidelines [34]. However, some image volumes may lack suf-
ficient information at the apical and basal levels, which can
hamper or bias the subsequent statistical analysis of cardiac

Fig. 2. Schematic LV shapes showing blood pool (light grey) and my-
ocardium (dark grey) for different slices from apex to base. Slice 1 (left)
shows LVOT, which identifies the basal slice.

structural and functional parameters in population imaging [35],
[36]. In many LV quantification approaches, the LV cross sec-
tion is approximated using simple quasi-circular models [37],
[38]. These methods can produce a good approximation on LV
mid-slices, but not on slices containing the left ventricular out-
flow tract (LVOT), which is at or near the basal slice. Therefore,
in our approach, we treat the blood pool cross-section as a dis-
tinct model. Fig. 2 depicts the LV shape of several slices in one
cardiac volume from the apex to base. In volumes with missing
basal slice, LVOT is usually not present.

We use a vector s to represent pixel values in each slice. A
3D cardiac MRI volume V with full coverage with n slices can
be described as follows:

V = [s1 , s2 , . . . , sn ] . (1)

Each cardiac volume, V = [sp , . . . , sq ], p ≤ q ∈ [1, n], can
have a different or same number of slices but cover a different
portion of the LV.

To guarantee accurate cardiac volumetry and functional mea-
surements [2], full LV coverage is a basic requirement [36]. To
address this problem, we propose a two stage detection system
that first computes image intensity representations by a FD3D
CNN model and then detects missing slices based on these
representations. In the first stage, we encode spatial contex-
tual information and hierarchically extract high-level features,
which indicate intensity representations. Our FD3D CNN model
is equipped with a fully connected Fisher discriminative layer
(F2) that takes the output of the fully connected layer (F1) as
input. In the second stage, independent detection of any missing
basal and apical slices is performed and the results are combined
to provide the final coverage assessment.

B. Three-Dimensional Intensity Representations

Lu et al. [39] proposed a pattern recognition technique built on
intra-segment correlation, using a normalization scheme, which
maps each LV slice to polar coordinates with fixed size, shape
level, and position. Intensity information and slice position are
relevant even with incomplete LV coverage detection. In our
paper, we define intensity representation for the missing slice
in a high-level feature space where slices of cardiac MRI are
used to construct a representation of intensity. Each slice of the
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3D volume is accounted for and the similarity of neighboring
slices determines the difference of the 3D intensity distribution.
Different characteristics in each slice and contextual informa-
tion about spatial relation between slices are used to compute
intensity representations.

Which 3D intensity representations? Our intensity represen-
tations are computed as a feature distribution matrix, which
integrates information about LV shape and size. We detect in-
complete LV coverage by image classification using the dis-
tribution matrix. We define two classes: missing apical slice
(MAS) and missing basal slice (MBS).

Given a particular describable visual representation, we can
formalize our notion of 3D intensity representations based on
Eq. (1). For example, if we are looking at the volume from base
to apex, MAS and MBS can be formalized as follows:

{
VM BS = [sq , . . . , sn ],

VM AS = [s1 , . . . , sp ],
(2)

where, p, q ∈ (1, n), s1 is the basal slice and sn is the apical
slice. Our intensity representations classifiers can be thought
of functions f (·) for mapping 3D stacks V to real value pi .
A positive value of pi indicates the presence or strength of
the ith representation, while negative values indicate its ab-
sence. Considering our intensity representations, if we define
V1 and V2 as MBS and non-MBS samples, respectively, the
representation function fM BS (·) may map V1 to a positive
value and V2 to a negative value. This is a binary classi-
fication function. Our 3D intensity representation classifiers
are trained on the UK Biobank dataset as they provide reli-
able ground-truth labels based on visual inspection and manual
annotation.

C. Fisher Discriminative 3D CNN Model

In this subsection, we propose a FD3D CNN (shown in
Fig. 3b) to extract high-level features, which represent 3D in-
tensity representations. Our FD3D CNN model is designed by
adding a new Fisher-discriminative fully connected layer, F2,
which uses the output of the previous layer, F1, as input. The
new layer is then stacked onto a conventional 3D CNN. To
maximize inter-class distances between learned features while
minimizing intra-class distances of learned features, we train
the newly added Fisher discriminative layer F2 on CNN fea-
tures based on a Fisher discriminant criterion [33].

1) 3D CNN: Learning feature representations in three di-
mensions is important for later feature detection and image
interpretation tasks in volumetric medical imagery. We employ
3D convolution kernels to encode richer spatial information in
volumetric data. Here, feature maps are 3D blocks instead of
2D patches. Conventional 3D convolution is achieved by con-
volving a 3D kernel, with the cube formed by stacking multiple
contiguous slices. With this construction, feature maps in the
convolution layer are connected to multiple contiguous frames
of the previous layer [40], [41]. Given an input vl

k , the 3D

convolution layer output equates to a filtering operation with
a filter Wl+1

ik . Computation of the 3D feature volume hl+1
i is

given by:

hl+1
i = f

(∑
k

R−1∑
r=0

S−1∑
s=0

T −1∑
t=0

Wl+1
ik (r, s, t)vl

k + bl+1
k

)
(3)

where Wl+1
ik (r, s, t) is the element-wise weight in the 3D con-

volution kernel, Wl+1
ik and bl+1

k are the filter and bias terms
connecting the feature maps of adjacent layers, and f(·) is the
element-wise, non-linear activation function.

2) Fisher Discriminative 3D CNN: To boost the discrimi-
native power of 3D CNN learned features, we impose a Fisher
discrimination criterion [33] on them. Given the 3D input data
Vt

i , where i is the representation class, with i = {1, 2}, cor-
responding to MAS and MBS; the superscript t in Vt

i indi-
cates whether the representation is positive or negative, i.e.,
t = {0, 1}; Vt

i =
[
vt

i,1 ,v
t
i,2 , . . . ,v

t
i,C

]
, vt

i,j is the input data of
jth sample from class i, for j = 1, 2, . . . , C. We denote Ft

i,j to
be features in the fully-connected layer of the 3D CNN for class
i and jth sample. Using the Fisher criterion, discrimination is
achieved by minimizing within-class scatter of Ft , denoted by
Sw (Ft), and maximizing between-class scatter of Ft , denoted
by Sb(Ft). Sw (Ft) and Sb(Ft) are defined as follows:

Sw (Ft) =
I∑

i=1

∑
F t

i , j ∈t

(Ft
i,j − mt

i)(F
t
i,j − mt

i)
T , (4)

Sb(Ft) =
I∑

i=1

ni(mt
i − mt)(mt

i − mt)T , (5)

where mt
i and mt are mean vectors of Ft

i and Ft , respec-
tively, and ni is the number of samples from class i. The
Fisher discriminant regularization term Φ(Ft) is defined as
tr(Sw (Ft)) − tr(Sb(Ft)). To obtain a discriminative classifi-
cation result with deep learned features, we propose modifying
the objective function of the FD3D CNN model by inserting a
Fisher discriminant regularization term:

J∗(W,b) = arg min
W ,b

1
I

I∑
i=1

yt log a (Vt
i,j ;W,b)

+ (1 − yt) log (1 − a (Vt
i,j ;W,b))

+
1
2
λ ‖W‖2

2 +
1
2
η (tr (Sw (Ft))

− tr(Sb(Ft))), (6)

where J∗ is our new cost function that can minimize within-class
scatter and maximize between-class scatter, and y is the output
label. Output activation a(Vt

i,j ;W,b) = 1/(1 + e−WV t
i , j −b)

is typically restricted to the open interval (0, 1) by using a
logistic sigmoid, which is parametrized by W and b on the
jth training sample. ‖W‖2

2 is a penalty term to the loss function
that prevents weights from getting too large and helps to prevent
over-fitting. Weights in each layer can be adjusted toward target
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Fig. 3. Whole assessment framework. (a) Positive and negative training data for each representation classifier (MBS and MAS). (b) Framework
for our LV coverage assessment process. (c) Structure and parameters of the 3D CNN used in panel (b): Step 1.

classes and utilize input data close to the corresponding classes
in case of no large dataset or a small number of iteration. Here,
λ, η ∈ [0, 1] are two trade-off parameters that control the relative
importance of each term and are usually chosen by experiments,
which can differ depending on different databases and network
structures.

For intensity representation Vt
i,j , we define:

J(W,b) = yt log a(Vt
i,j ;W,b)

+ (1 − yt) log(1 − a(Vt
i,j ;W,b)), (7)

Φ(Ft) =
1
2
tr((Ft

i,j − mt
i)(F

t
i,j − mt

i)
T )

− 1
2
tr

(
(mt

i − mt)(mt
i − mt)T

)
. (8)

Once the new cost function is obtained, we can employ the
gradient descent method [42] to solve this optimization problem.
Our key problem is to calculate the error of output units, which
consists of output errors from two sub-functions J(W,b) and
Φ(Ft). To update parameters Wt and bt , we first calculate the
error δL,t

i (L is the output layer) of the output layer with forward
propagation, and then adopt the back-propagation method [43]
to calculate the error δl,t

i (l < L) for other layers. Partial deriva-
tives of the overall cost function J∗(W,b) regarding Wt and

TABLE I
ARCHITECTURE OF THE 3D DISCRIMINATIVE CNN MODEL

Note: F2 is the Fisher Discriminant Layer.

bt are:

∂J∗(W,b)
∂Wl,t

=
C∑

t=0

∑
F t ∈t

∂J(Wt ,bt)
∂Wl,t

+ η
C∑

t=0

∑
F t ∈t

∂Φ(Ft)
∂W

,

(9)

∂J∗(W,b)
∂bl,t

=
C∑

t=0

∑
F t ∈t

∂J(Wt ,bt)
∂bl,t

+ η

C∑
t=0

∑
F t ∈t

∂Φ(Ft)
∂b

.

(10)

In this stage, we use the 3D CNN model with architecture
in Table I. Algorithm 1 provides the pseudo-code to train this
new network. In our 3D CNN implementation, a rectifier linear
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unit (ReLU) [44] is utilized as a non-linear activation function
in layers C and F1.

III. MATERIALS AND METRICS

A. CMR Acquisition Protocol and Annotation

UK Biobank CMR Protocol: UK Biobank’s CMR acquisitions
are performed on a clinical wide bore 1.5T scanner (MAGNE-
TOM Aera, Syngo Platform VD13A; Siemens Healthcare, Er-
langen, Germany) and include piloting, sagittal, transverse, and
coronal partial coverage of the chest and abdomen. For mea-
suring the cardiac function, three long-axis cines are acquired
(viz. horizontal long-axis (HLA), vertical long-axis (VLA), and
LVOT in both sagittal and coronal views). In addition, a com-
plete SA stack is acquired. All acquisitions use balanced steady-
state free precession (bSSFP) MRI sequences, attempting full
coverage of the LV and right ventricle [45]. In this study, we
will focus on SA bSSFP cine CMR data. To date, more than
18,800 volunteers have been scanned. Voxel and matrix size
of these CMR images are, respectively, 1.8 × 1.8 × 8.0 mm3 ,
and 208 × 187 with, approximately, 10 slices per volume. Each
volumetric sequence contains about 50 cardiac phases.

Gold-Standard Image Quality Annotations: Quality-scored
cardiac MRI data are available for approximately 5,000 volun-
teers of the UK Biobank (UKBB) imaging resource. Following
visual inspection, manual annotation was carried out with a sim-
ple three-grade quality score [7]: (1) optimal quality for diagno-
sis, (2) suboptimal quality yet analysable and (3) bad quality and
diagnostically unusable. In 5,065 SA cine CMR from the same
number of volunteers, 4,361 sequences correspond to a quality
score of 1, an additional 527 sequences have a quality score of

2, and the remaining 177 sequences have a quality score of 3.
All datasets with optimal quality (score 1) had full coverage of
the heart from base (LVOT existing) to apex (LV cavity still
visible at end-systole). These data were used to construct the
ground-truth classes for our experiments. Note that having full
coverage should not be confused with having top/bottom slices
corresponding exactly to the base/apex.

B. Training and Testing Set Definitions

Training Set: To create a training dataset for learning intensity
representations, we extract the three topmost slices as negative
samples for MBS detection (i.e. containing the cardiac base),
and the three bottom most slices as negative samples for MAS
detection. To create positive samples (i.e. not containing the
cardiac base/apex), we choose three-slice blocks, each starting
from the middle slice towards the base/apex for MBS/MAS
detection training. We create the training set from images with
optimal quality and with exclusively full coverage.

We train using three-slice stacks (or triplets) to model the
3D context. the average number of slices per image volume
is approximately 10. During training, we extract four triplets
(two samples including base/apex and two samples excluding
the base/apex). To maximize inter-class separation, it is wise to
avoid intersection between the training samples; for example, if
we use four-slice stacks (for a ten-slice volume), there will be a
two-slice overlap between basal positive/negative examples and
the apical region. By choosing the proposed slice triplets, we
ensure that there is no overlap and increase the discriminative
power of the FD3D CNN. Another important observation that
supports the choice of slice triplets is that the CMR scan volume
is not acquired immediately. Instead, each slice is collected over
several cardiac cycles leading to some degree of slice-to-slice
misalignment. This effect is minimized when considering only
slice triplets in contrast to using the full 3D volume.

Testing Set: During testing, we extract every set of three
adjacent slices from top to bottom for each volume and apply
these triplets to intensity representation classifiers. Data with
known MBS/MAS are created by manually removing the three
topmost/bottom most slices from images with optimal quality,
as in the training set.

During training and testing, three-slice stacks are input to
the proposed FD3D CNN. Scores of the output layer can be
interpreted as the probability that triplets correspond to negative
or positive MBS/MAS. The final output is the combination of
two CNN outputs (MBS and MAS). The three slice stacks input
into our network are cropped centered images of dimensions
120 × 120 × 3 to extract the region of interest. Parameter setting
of block-size determination is explained in Section IV-A.

C. Training Set Augmentation

To prevent over-fitting due to insufficient training data and
to improve the detection rate of our algorithm, we employ data
augmentation techniques to artificially enlarge our dataset [46],
[47]. In our application, we augment the data by applying a
discrete set of in-plane rotations and isotropic scalings to the
training images. Unlike data augmentation choices made for
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natural image datasets where variability in location and pose
of objects are relatively high, our data are comparatively con-
strained due to standard imaging protocols and gross patient
positioning on the MRI scanner. We therefore chose a set of re-
alistic rotations and scaling factors for MRI. Based on analysis
of the in-plane orientation angle distribution for 5,000 subjects
for which manual segmentations were available (and therefore
LVRV angle can be computed), we found that LVRV orientation
ranges between −45◦ and 45◦. The set of rotations chosen was
accordingly −45◦ and 45◦, with two scaling factors of 0.75 and
1.25. This increases the number of training samples by a factor
of four, while not adding significantly to the convergence time.

After data augmentation, we constructed 845,000 3D stacks
comprised of 2D CMR slices from 3,380 sequences each with
50 cardiac phases, with a quality score of 1. These data are
used for experiments in Section IV-A, B, and C. We set aside
981 sequences and data with quality scores of 2 and 3 for later
use, as described Section IV-D. In our experiments, 10-fold
cross-validation [48] was used to evaluate the performance of
our system. To the best of our knowledge, this is the largest
annotated dataset available to date for automatic CMR quality
assessment.

D. Learning Performance Metrics

To evaluate the learning process, we use the following estab-
lished classification metrics:

Precision = TP/(TP + FP ), (11)

Sensitivity = TP/(TP + FN), (12)

Error Rate = (FP + FN)/N, (13)

where TP , FP and FN are numbers of true-positive, false-
positive and false-negative samples, respectively, and N repre-
sents the number of subjects in the test set.

IV. EXPERIMENTS AND RESULTS

A. Performance Analysis

We experiment to characterize the performance of our FD3D
CNN learning framework. The error (cost) functions used in
learning (Eqs. [6] and [7]) remain within this range [0, 1]. In all
experiments, the learning process was terminated when standard
deviation of the error function over the last five iterations is
smaller than σ = 0.01.

1) Hyper-Parameter Selection: LeCun et al. [49] and
Salah et al. [50] used CNN to recognize handwritten digital
numbers with different numbers of training samples on the
MNIST dataset. Their results illustrated that, when reducing
training samples, the recognition rate of the algorithm drops
sharply. To demonstrate the behaviour of our FD3D CNN, we
experiment with different percentages of training samples. We
use improvement defined as (1 − ERD/ERT) × 100 to bench-
mark our method against a traditional 3D CNN, where ERD
and ERT are error rates of our FD3D CNN and the traditional
3D CNN, respectively. Error rates of MBS/MAS representation
learning are shown in Fig. 4, where our proposed method appears

Fig. 4. Error rates and improvements for increasingly larger training
sets. (a) MBS detection. (b) MAS detection.

to achieve comparable results with less training data compared
to the conventional 3D CNN. We choose 80% of the 845,000 as
the training samples and perform testing on the remaining 20%.
the results are shown in Table II. Even when trained with fewer
iterations, our method achieves better results than the traditional
3D CNN.

With sufficient training samples and iterations, most machine
learning methods can improve their accuracy at a higher com-
putational cost. However, we usually want to obtain a trained
network as quickly as possible. This is especially important in
population imaging as new datasets can become available and
retraining might be required. Rapid training is also a desirable
feature during algorithmic development since finding an optimal
architecture may require multiple training procedures for differ-
ent parameter settings. We illustrate that our FD3D CNN has
better error-reducting performance as a function of the number
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TABLE II
ERROR RATES VERSUS LEARNING EPOCHS

TABLE III
PERFORMANCE VERSUS BLOCK SIZE

of training samples and iterations than other competing
techniques.

A 3D CNN requires a suitable receptive field (i.e. input size)
to achieve the best discrimination. Based on a random sample of
200 image volumes, we determine the smallest crop size that en-
sures the coverage of the LV structure compared to three block-
size configurations, namely, 120 × 120 × 3 (which removes
redundant background information based on the central point of
original images), 180 × 180 × 3 (which is the original size as
extracted and resized from the UK Biobank), and 80 × 80 × 3,
which mostly contains the LV at the centre. We test sizes smaller
than the original block size of the classification model because
we want to determine whether a larger input block with more
contextual information can enhance the model’s discriminative
capacity. The results obtained with these settings are shown
in Table III. With a block size of 80 × 80 × 3, MBS/MAS
detection precision rate reaches 89.01% and 88.36%, respec-
tively. The detection performance improves to a precision rate
of 91.81% and 90.73% under block size 120 × 120 × 3, demon-
strating that increasing contextual information can enhance the
discriminative capacity of 3D CNN. Without cropping, the de-
tection precision rate decreases to 90.12% and 89.78% for MBS
and MAS detection, respectively. This may have been because
too much redundant contextual information clutters the actual
LV signature, and hence degrades detection performance. Based
on these experiments, we set block size to 120 × 120 × 3, to
achieve optimal detection performance.

Typical classification results using the proposed FD3D CNN
architecture are shown in Fig. 5. A few basal stacks (top row)
and apical stacks (bottom row) in the test datasets with their AQ
or corresponding posterior probability values are shown. High
score values on the stack correspond to the likelihood of being
a correct basal or apical triplet. Basal slices with existing LVOT
indicate higher probability values of being correctly classified.

This shows that the training captures the LVOT as a prominent
feature in correctly positioned basal slices.

2) Comparison to Other Machine Learning Methods: We
compare our framework with a traditional 3D CNN and with our
previous 2D CNN study [31]. Table IV lists the results for these
architectures.The architecture of a traditional 3D CNN is similar
to that of our FD3D CNN, replacing the fisher layer (F2) with a
traditional fully connected layer including 256 ReLU activation
neurons. We use the same training and testing approaches for
the 3D CNN and list the results obtained using the hand crafted
features used in [51]. In [51], the basal slice was identified
following these steps: 1. Choose the mid-slice image as the
start image and process each image sequentially in the basal
direction. 2. Apply the optimal threshold method to convert the
ROI to a binary image. 3. Identify the binary object with blood
pool, which shows an elliptical shape. 4. Calculate the length
of the major axis L of the ellipse that has the same normalized
second central moments as the binary object. 5. If the ratio of
the current to preceding L exceeds a predefined threshold (e.g.
>1.2 in this work), then a basal slice is identified; otherwise,
the basal slice is missing. We use a similar method to identify
the apical slice. We process each image sequentially from base
to apex. If the ratio of the current to preceding L is smaller than
a predefined threshold (e.g. <0.2 in this study), an apical slice
is detected; otherwise, the apical slice is missing. We employ
this feature extraction procedure for prediction. The proposed
FD3D CNN shows the best precision and sensitivity figures in
each representation classifier, and full LV coverage detection
performance.

B. Inter-Observer Reliability

To contextualize the results of automatic full LV coverage
assessment, we compare it to the inter-observer full LV cover-
age detection rate obtained by expert readers. The inter-observer
agreement [52] of human experts is evaluated by reassessing a
subset of 200 random CMR datasets. The quality distribution
levels in this randomly selected subset are compared to origi-
nal data using Pearson’s χ2 goodness-of-fit test to confirm that
it represents the original data distribution (p > 0.05). The re-
assessed samples demonstrate strong agreement with original
qualities (Cohen’s κ = 0.76, p < 0.05).

To show how our results can be compared to the expected
human detection error rates, we present the error rates between
an expert cardiologist (VQ1) and another cardiac image expert
(VQ2) for 200 re assessed samples. The confusion matrix of
VQ1 versus VQ2 is presented in Table V. Use of the confu-
sion matrix reveals 7 among the 200 re assessed samples with
inconsistent quality assessment between VQ1 and VQ2. These
findings show that the expert cardiologist’s visual results con-
flict with the cardiac image expert’s visual assessment only 3%
of the time. As shown in Table II epoch = 40, our automatic
algorithm’s error rate is just below 5%, which shows excel-
lent agreement with human expert assessments (two percentage
points). Some examples of MBS/MAS test images are shown in
Fig. 5 (panels a and b correspondingly). We have intentionally
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Fig. 5. Sample test volumes and their AQ, expert cardiologist (VQ1) and cardiac image expert’s visual (VQ2) qualities for MBS detection (top row)
or MAS detection (bottom row) are shown. The left seven samples in each row show consistency between AQ and VQ1, which means our algorithm
yields an accurate prediction. The right two samples in each row show the wrong quality prediction and show inconsistency between VQ1 and
VQ2. (a) Sample volumes for MBS testing with automatic quality (AQ), expert cardiologist (VQ1) and cardiac image expert.s visual (VQ2) qualities.
(b) Sample volumes for MAS testing with automatic quality (AQ), expert cardiologist (VQ1) and cardiac image expert.s visual (VQ2) qualities.

TABLE IV
PERFORMANCE COMPARISON OF DIFFERENT LEARNING MODELS WITH LEARNED AND HAND-CRAFTED VISUAL REPRESENTATIONS

TABLE V
CONFUSION MATRIX OF THE EXPERT CARDIOLOGIST (VQ1) AND CARDIAC

IMAGE EXPERT’S VISUAL (VQ2) RESULTS. GREY NUMBERS INDICATE
NUMBER AND RATIO OF CORRECT ESTIMATES

chosen to show seven inter-observer agreement examples, plus
two disagreement examples on each panel.

C. Cross-Database Performance: Sunnybrook
Cardiac Dataset

We evaluate the generalization of the performance of our
full LV coverage detection system on an independent database.
We assess the sensitivity of our system to moderate changes
in imaging conditions, scanner vendors, image resolution, etc.
To this effect, we use Data Science Bowl Cardiac Challenge
Data (Kaggle or Sunnybrook Cardiac dataset) [53]. This dataset
comprises 1,120 cardiac MRI volumes. Cine steady state free
precession (SSFP) MR short-axis (SAX) images are obtained

TABLE VI
CROSS-DATASET PERFORMANCE: KAGGLE DATASET

with a 1.5T GE Signa CV/i MRI System (General Electric,
Milwaukee, WI). All images are obtained during 10–15 second
breath-holds with a temporal resolution of 20 cardiac phases
over the heart cycle (scanned from the ED phase). Six to twelve
SAX images are obtained from the atrioventricular ring to the
apex (resolution 1.25 × 1.25× 8 mm3 , thickness = 8 mm).
Gold-standard full LV coverage is obtained by an experienced
reader and checked visually by inspecting slices from base to
apex. Original volumes are used for full LV coverage detection
and triplets of top and bottom slices are used, respectively, as
negative examples for MBS and MAS. Positive examples of
MBS/MAS are obtained from triples of mid-slices. This dataset
is used as a test set for the FD3D CNN that was pre-trained
with 800,000 volumes from the UK Biobank. Values for error,
precision and sensitivity under various conditions are shown
in Table VI.
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TABLE VII
MISSING SLICE RATE PER VISUAL QUALITY SCORE

TABLE VIII
EFFECT OF INCOMPLETE CARDIAC COVERAGE (MBS/MAS) ON THE
END-DIASTOLIC, END-SYSTOLIC, STROKE VOLUMES AND EJECTION

FRACTION. VALUES ARE SHOWN AS MEAN ± STANDARD DEVIATIONS

D. Missing Slice Rate per Visual Quality Score

To gain insight into the relation between missing slice rates
and visual quality scores achieved by experts [7], a third exper-
iment is conducted. The system is trained on 3,380 random vol-
umes from a total of 5,065. The testing set, as earlier indicated,
has 1,685 CMR volumes distributed among the quality scores
(from 1 to 3: 981, 527 and 177). Table VII gives the percentages
of the full LV coverage class for each quality score. CMR data
with a quality score of 3 highly correlates with MBS, as miss-
ing basal slices highly affect accurate quantitative analysis in
CMR.

E. Clinical Impact

To assess the impact of incomplete LV coverage in real appli-
cations, such as measurement of cardiac function based on blood
volumes, we design an experiment where incomplete coverage
is simulated and volume differences between full and incom-
plete coverage are measured. We also compute two commonly
used indexes of the cardiac function derived from such vol-
umes viz. stroke volume (SV) and ejection fraction (EF), and
similarly report the differences between the full and incom-
plete coverages. For this experiment, we take 4,737 subjects
for which manual annotations are available (both cardiac phase
labels and full coverage labels), and systematically remove the
basal and apical slices to generate incomplete MBS and MAS
volumes. Then, we compute blood pool volumes at the ED and
ES phases, and from these, we obtain SV and EF. Finally, the
average volumes and indexes are computed across the sample,
comparing full coverage and MBS/MAS. Table VIII shows that
the largest effect of incomplete coverage is caused by MBS,
where the missing slice reduces ED and ES volumes by an
average of 12% and 20%, respectively. In turn, these differ-
ences cause a decrease in the computed SV by 6.7% and an
increase in the EF by 3.9%. The absence of the apical slice has
a smaller yet non-negligible impact on the volumes and derived
indexes.

F. Implementation Considerations

The experiments reported here are conducted using the Con-
vNet library [54] on an Intel Xeon E5-1620 v3 @3.50 GHz
machine running Windows 10 with 32 GB RAM and Nvidia
Quadro K620 GPU. The networks are optimized using the gra-
dient descent method [42] with the fllowing hyper-parameters:
learning rate = 0.01, momentum = 0.9, drop-out rate = 0.1.
Trainable weights are randomly initialized from a Gaussian dis-
tribution (μ = 0, σ = 0.01) and updated with standard back-
propagation. Models converge in about 6 hours when training
is performed with 800,000 volumes with size 120 × 120× 3.
Testing is rapid and can process each volume in 3 seconds.

V. DISCUSSION

Automatic identification of CMR volumes with incomplete
LV coverage is important in high-throughput image analysis of
population imaging. The acquisition of thousands of subopti-
mal CMR images for later image analysis can be avoided if
such quality assessment is performed online and a system pro-
vides immediate feedback to technical staff when new images
are acquired. Incomplete LV coverage influences the accuracy
of anatomical and functional LV parameters of clinical interest.
Manual annotation of LV coverage is laborious, time-consuming
and error prone in current clinical routines. To automate this
labour-intensive task, we propose an efficient and robust two-
stage framework for the automatic detection of missing slices
at the LV base and apex. In the first stage, we train a FD3D
CNN that computes the corresponding intensity representation
with high accuracy. It can qualify CMR volumes based on two
representations, and can assist radiologists by automatically la-
belling the potentially incomplete volumes to mark them for
closer inspection. The second stage robustly discriminates two
quality categories (MBS and MAS), based only on the inten-
sity representation classifiers, which are then used to recognize
new cardiac volumes with no further training. Specifically, to
use the spatial information in volumetric data, we use 3D CNN
with shared 3D convolution kernels. Meanwhile, a Fisher dis-
criminant layer leads to small within-class scatter and large
between-class scatter of feature vectors in that layer. Extensive
experimental results illustrate the effectiveness and efficiency of
our method: its performance is superior to that of other methods
with obvious advantages.

In any AIQA system for population imaging, accuracy and ro-
bustness are key design criteria. These methods must work with-
out many false positives or false negatives, and must cope with
considerable variation in image quality. Most machine learning
methods can improve their recognition accuracy by increas-
ing the number of iterations. However, an increasing number
of iterations comes at a high computational cost. This can be
prohibitive with large databases or when retraining is required
as new data become available. In this study, we used a very
large dataset comprising more than 5,000 individually anno-
tated cardiac MRI scans of the same number of subjects, which
is 50-fold the 100 cases used in our previous study [31]. How-
ever, when compared to natural image datasets [42], our cardiac
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MRI dataset is still relatively small. We had to design an efficient
network taking full advantage of the available data. Consider-
ing there were only a few labelled images, there was no point
in constructing a network with too many sub-sampling layers;
there would have been a higher computational cost with more
layers of feature abstraction. Three-dimensional CNN have been
among the most promising solutions for object detection tasks.
Thus far, most studies have focused on image segmentation and
registration, and little effort has been devoted to AIQA. We
propose a FD3D CNN with an extra layer using a Fisher dis-
criminant criterion, which tackles the problem of detecting full
LV coverage as an important quality criterion. Our method can
eliminate redundant convolutional computations during forward
propagation and achieve a comparable result with a smaller num-
ber of training samples and iterations. Specifically, our FD3D
CNN can achieve a high precision rate of nearly 92%/91% for
MBS/MAS detection with only 20 epochs, which is better than
traditional 3D CNN. Meanwhile, even with a small number of
training samples (4 × 10,000), our FD3D CNN can decrease
the error rate by approximately 29.1% compared to traditional
3D CNN approaches for MBS detection.

Our proposed automatic assessment framework for full LV
coverage has great potential to improve the robustness of subse-
quent population image parsing. One can imagine an approach
whereby image analysis is adaptive to image quality and where
different models are used depending on whether the volume un-
der analysis is missing basal or apical slices. In our architecture,
we focus on learning intensity representations and develop a
FD3D CNN to describe those that best discriminate the missing
apical or basal slices. We then use the computed representation
classifiers to identify the final image quality. The advantages
of a representation-based method for vision tasks are manifold:
they can be composed to create descriptions at various levels
of specificity; they are generalizable, as they can be learned
once and then applied to recognize new objects or categories
with no further training and are efficient, possibly requiring ex-
ponentially fewer representations than explicitly naming each
category. In the future, we plan to investigate the possibility
of detecting full LV coverage for all slices, rather than just
for basal/apical slices, so we can directly predict visual quality
scores. The difficulty of detecting missing middle slices lies in
the similar shape of contiguous LV slices, which makes training
the representation classifier a non-trivial task. Another future
work is to extend deep-learning methods for multi-plane esti-
mation, that is, regressing one 3D volume to estimating missing
slices acquired from different positions. This is a limitation of
our two-stage framework, which can only estimate the basal and
apical planes. One way to achieve 3D CNN for multi-plane es-
timation would be to apply regression on each plane separately
and then combine all regression results into a single estimation.

VI. CONCLUSION

In this study, we tackled the problem of detecting incom-
plete LV coverage in large population image databases. We
illustrated the concept by proposing a Fisher discriminative 3D
CNN tested on CMR data from the UK Biobank. Our FD3D

CNN was proposed by adding a new Fisher-discriminative fully
connected layer into the network, which achieved a significant
improvement in intensity representation. The learned represen-
tation classifiers were computed for candidates of corresponding
quality categories. We also validated our model by training with
the UK Biobank dataset and cross-evaluating with data from the
Data Science Bowl Cardiac Challenge dataset. The proposed
model shows high consistency with human perception and is
superior to state-of-the-art methods, showing its high potential.
Our proposed FD3D CNN can also be easily applied and boosts
results for other detection and segmentation tasks in medical
image analysis.
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