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The use of spatial memory is well-documented in many animal species and has been

shown to be critical for the emergence of spatial learning. Adaptive behaviors based

on learning can emerge thanks to an interdependence between the acquisition of

information over time and movement decisions. The study of how spatio-ecological

knowledge is constructed throughout the life of an individual has not been carried out

in a quantitative and comprehensive way, hindered by the lack of knowledge of the

information an animal already has of its environment at the time monitoring begins.

Identifying how animals use memory to make beneficial decisions is fundamental to

developing a general theory of animal movement and space use. Here we propose

several mobility models based on memory and perform hierarchical Bayesian inference

on 11-month trajectories of 21 elk after they were released in a completely new

environment. Almost all the observed animals exhibited preferential returns to previously

visited patches, such that memory and random exploration phases occurred. Memory

decay was mild or negligible over the study period. The fact that individual elk rapidly

become used to a relatively small number of patches was consistent with the hypothesis

that they seek places with predictable resources and reduced mortality risks such

as predation.

Keywords: memory-based movement models, spatial memory, attribute memory, animal learning, translocated

elk, hierarchal Bayesian inference

1. INTRODUCTION

The use of spatial memory is well-documented in many animal species. For example, humans, non-
human primates and other large-brained vertebrates make movement decisions based on spatial
representations of their environments (Wills et al., 2010). These representations may allow animals
to move directly to important sites in their environment that lie outside of their perceptual range
(Normand and Boesch, 2009; Presotto and Izar, 2010), such as resource patches, sites that connect
with other high quality sites in space, or safe spots to avoid predators, and may also allow them to
estimate the travel cost to reach a particular place (Lanner, 1996; Janson, 2007; Janson and Byrne,
2007; Noser and Byrne, 2007). Another type of memory, described for the first time by Schacter
(1992) and retaken by Fagan et al. (2013), encodes the attributes of landscape features under the
name of attribute memory. While spatial memory allows animals to reduce uncertainty about
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the location of geographical features, attribute memory reduces
uncertainty concerning location-independent features of objects
(Fagan et al., 2013). The information stored as attribute memory
may be the abundance or types of food, and can be linked
to spatial information. For example, food patch quality can be
spatially encoded: patch quality is an attribute and its location
is spatial information (Fagan et al., 2013). The combination of
these two types of information allows animals to choose among
alternative movement paths as has been observed in bumblebees
(Lihoreau et al., 2011) or large herbivores (Avgar et al., 2013;
Merkle et al., 2014). Identifying how animals use memory to
make decisions is fundamental to developing a general theory of
animal movement and space use (Gautestad andMysterud, 2005;
Morales et al., 2010; Spencer, 2012).

Memory is also critical in the emergence of spatial learning,
which results from interactions with the environment and can
be detected through changes in movement patterns (Mueller
and Fagan, 2008). Adaptive behaviors based on learning can
occur thanks to an interdependence between the acquisition of
information over time and movement decisions (Falcón-Cortés
et al., 2017, 2019). For instance, an animal can make decisions
based on past successful experiences, resulting in a change of
behavior and improved resource exploitation (Leonard, 1990;
Bracis and Mueller, 2017; Jesmer et al., 2018; Merkle et al.,
2019). Learning is consistent, for example, with frequent visits
to certain locations, or site fidelity (Bonnell et al., 2013; Falcón-
Cortés et al., 2017), and with the emergence of home range
behavior or preferential travel routes (Van Moorter et al., 2009;
Boyer and Walsh, 2010). The capability of learning can also
bring other benefits beyond improved foraging; e.g., providing
advantage in territorial defense (Potts and Lewis, 2014; Schlägel
and Lewis, 2014; Schlägel et al., 2017), more effective escape
from predators (Brown, 2001), and improving the route choice
in migration (Bischof et al., 2012; Poor et al., 2012). Nevertheless,
the connections between memory and spatial learning is not
well understood. Theoretical models bring useful insights by
predicting, for instance, how often memory should be used for
the emergence of recurrent movements to a particular resource
patch (Falcón-Cortés et al., 2017; Boyer et al., 2019).

Several theoretical studies have highlighted the role played
by memory and cognitive abilities for foraging success (Boyer
and Walsh, 2010), home range formation (Börger et al., 2008;
Van Moorter et al., 2009; Berger-Tal and Avgar, 2012), and
paved the way for inferring individual memory capacities
from movement and environmental data (Avgar et al., 2013).
The applications of these theoretical approaches to free-
ranging animals are varied. For example, predictions of a
simple memory model based on linear reinforcement through
preferential revisits have been compared with the movements
of capuchin monkeys, revealing movement rules found to
generate very slow diffusion and heterogeneous space use
(Boyer and Solis-Salas, 2014). On the other hand, Merkle
et al. (2014) applied a patch-to-patch model to ranging data of
American bison, finding that these animals remember valuable
information about the location and quality of meadows (spatial
and attribute memory) and use this information to revisit
profitable locations.

The study of how spatio-ecological knowledge is constructed
throughout the life of an individual has not been developed
thoroughly. Data analyses that employ memory based models
are promising but are often difficult to implement due to the
short observation periods available, and the fact that the animals
are observed in an environment already familiar to them. If
memory is long-ranged, the above limitations may affect the
results. To avoid these shortcomings, we used data from relocated
animals. This means that the observed animals explored an
unknown landscape at the start of their movement trajectories.
In this new environment the spatial locations of different
environmental features and patches were initially unknown to
them. We analyzed the movement data from 21 relocated elk
(Cervus canadensis) as described in Frair et al. (2007) and Wolf
et al. (2009). We expected elk to show an initial exploratory
phase in which the animals were getting familiarized with their
new environment and collecting information about the location
and quality of different habitat patches. We then expected an
exploitation phase showing less random space use, eventually
leading to the formation of home ranges. Furthermore, as
the relocated animals came from three different sources with
different degrees of similarity with the release site (see below),
it is possible that some animals would show different strategies.

In a recent study, a memory-based movement model similar
to the ones that we propose below was fitted to roe deer
reintroduced into a novel environment, showing that home
ranges in the absence of territoriality could emerge from the
benefits of using memory during foraging (Ranc et al., 2020).
Here we followed a similar approach, but placed emphasis on
comparisons among alternative movement models. This allowed
us to reveal possible differences in behaviors across individuals.
We also paid special attention to the estimates of certain key
parameters characterizing informed movement, such as the rate
at which an animal used memory, and whether memory decayed
over time and how.

We present four simple patch-to-patch movement models,
defined through the probabilities of transiting from one patch to
another. The simplest model is memoryless as it assumes that the
transition probabilities only depend on the distance between the
two patches and on the size of the target patch. For simplicity,
we do not consider other patch variables such as patch quality.
The remaining three models consider the role of memory. The
manner in whichwe introducememory in the dynamics is similar
to that of Boyer and Solis-Salas (2014) and Falcón-Cortés et al.
(2017): the probability to revisit a particular patch is modified by
a factor which depends on the accumulated number of past visits
to this patch, such that the most visited patches have a higher
probability to be revisited. In these memory-based models we
assume that animals remember patch locations (spatial memory)
and the number of past visits to each patch (attribute memory).
The main difference between these three models is the way in
which animals use their memory. In the simplest case we suppose
that animals have infinite memory, i.e., they can remember all
the patches previously visited, and they use their memory at
a constant rate. In another model we assume infinite memory
but the rate at which the animal decides to use its experience
increases with the number of explored patches. In the last model
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we relax the assumption of infinite memory by introducing a
memory decay associated to each patch visit (McNamara and
Houston, 1985), whereas the rate of memory use increases as in
the previous model.

2. METHODS

2.1. Ranging Data
We used data collected and presented by Frair et al. (2007);
see also Wolf et al. (2009). The study area consisted of 15,800
km2 along the eastern slopes of the Rocky Mountains in central
Alberta, Canada. Approximately 2,000 elk inhabited the area
during the study period, from December 2000 to September 2002
(Frair et al., 2007). Elevation was 500–1,500 m and the area
was largely forested (68.7% of the total area). Dominant tree
species included lodgepole pine Pinus Contorta, white spruce
Picea Glauca, and aspen/poplar Populus Tremuloides and P.
Balsamea. Interspersed throughout the forested matrix were wet
and dry meadows (7.1%), cutover forest following timber harvest
(4.3%), bare soil/rock outcrops (12.3%), rivers and lakes (2.1%),
and areas regenerating from wildfire or site reclamation (<1%)
(Frair et al., 2007; Wolf et al., 2009).

Over the study period, female elk were translocated to the
study area from three source sites within Alberta: (1) Banff and
Jasper National Parks, mountainous areas with the full suite of
predators present in the study area but protected from hunting,
(2) Cross Ranch Conservation Area (ca 20 km southwest of
Calgary), a hunted area of foothills and agricultural lands largely
without predators, and (3) Elk Island National Park, a flat aspen
parkland without predators or hunters, see Frair et al. (2007) for
more details about these three sites. Collared animals included
six females from the town site of Banff released in February
2001. Nine females were released from the Cross Area, six during
December 2000 and three in December 2001, and six females
were released from Elk Island between January and February
2002. The animals were captured primarily using corral traps
baited with hay. These animals were transported to release areas
in livestock trailers that held between 9 and 16 animals depending
on the sex and age class composition. Elk were released directly
from the trailers into the study area. The animals were released in
a number of separate locations to increase independence between
results from different individuals (Frair et al., 2007; Wolf et al.,
2009).

Prior to release, translocated elk were fitted with GPS collars
(LMRT4 and GPS2200, Lotek Wireless, ON, Canada) that
collected locations every 2 h for up to 11 months. We used
all locations of each collared animal during a season or until
radio-contact was lost, the animal died, or GPS collars were
retrieved via breakaway device (11 months post-release). All
collars were equipped withmortality sensors that activated after 7
h of immobility. Collar tests across the range of cover and terrain
conditions encountered within the study area indicated a high
fix rate and positional accuracy of ≤50 m 80% of the time (Frair
et al., 2007; Wolf et al., 2009).

Foraging patches were defined based on a 27-class landcover
grid developed for this region (see Frair et al., 2005). The grid
had a 28.5 m cell size, and an overall classification accuracy of

82.7%. Using ArcGIS (Environmental Systems Research Institute,
Redlands, California), we combined those classes where elk can
find forage [dry/mesic and wet meadows, shrubland, clearcuts,
and reclaimed herbaceous (pipeline)] into a single foraging
habitat class. Then, we converted the grid to a polygon layer
without simplifying lines, which is equivalent to an 8-cell
neighborhood rule for patch definition. We eliminated polygons
<0.27 ha in size (essentially <3 contiguous pixels), and retained
16,782 patches for analysis. The resulting foraging patches
averaged 6.93 ± 29.4 ha in size. For each elk GPS location
occurring within a patch, we recorded the unique number for that
patch, which allowed us to derive information on the time spent
moving between foraging patches, the residency time within
patches, and the return time to previously visited patches. Thus,
we transformed the original GPS trajectories into a time series of
patch to patch visits which included the time spent in each patch
and the time traveling between patches. We assumed that most
foraging occurred in these high biomass patches. Figure 1 shows
the map of the study area with the distribution of the foraging
patches, as well as four representative trajectories during summer
and winter for two elk.

2.2. Models
For each model below, we made the following assumptions:

• The animals were moving in a stationary 2d environment
which consisted of a set of N available patches (resource sites),
N is obtained from environmental data as detailed in the
previous subsection. Patches were characterized by their area
an, with n in {1, ...,N}. The Euclidean distance between the
centroids of the patches n andm is denoted by dn,m.

• We modeled discrete movement events: at each time step
t → t + 1 an animal decides to move to another patch
(patch-to-patch movement) following a set of rules that we
will explain below. The model does not take into account the
actual time spent in a patch or between patches, and consider
each trajectory as a whole without making distinction between
seasons.

• An animal will go from patch n to patch m with probability
Pn,m. This probability were computed in different ways for
each model.

• All the parameters to estimate were positive numbers.

2.2.1. Model I

The first model is Markovian as it assumes that the forager
chooses to visit a patch (m) in the environment by considering
the distance (dn,m) from its current patch (n) and the area (am)
of the patch m. We define a probability vector k = (k1, ..., kN)
whosem-th entry denotes the probability that the animal goes to
patchm from patch n. Each entry is defined by:

km = dm ∗ cm/
∑

r

dr ∗ cr , r = 1, ...,N (1)

with,

dm = exp(−(dn,m/α)β )
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FIGURE 1 | Map of the study area with the distribution of the foraging patches. As an illustrative example, the trajectories between patches of two representative elk

are displayed, in summer (white circles) and in winter (black circles).

and

cm = exp(xm)/(1+ exp(xm))

where xm = λam + κ , i.e., we assume that the probability to
visit patch m decays exponentially with the distance to patch n
(dn,m) and increases with the area of patchm (am). This model (as
well as the others below) does not specifically consider a variable
for the patch quality, but assumes that the animals have a higher
probability to cross a large patch than a small one. We aim at
obtaining a hierarchical estimation for the parameters α, β , λ,
and κ (see Table 1).

2.2.2. Model II

We next incorporate memory effects through a parameter q ∈

(0, 1) that defines the probability with which an animal decides
to use its experience to revisit a patch. In this Model II, we
assume that the forager has infinite memory, i.e., is capable of
remembering all previously visited sites. Linear reinforcement is
implemented by setting that the probability to choose a particular
site for revisit is proportional to the accumulated number of visits
to that site. This model has two types of movement decisions:

◦ With probability q the forager moves from patch n to patch
m considering, besides the distance and area, the number of
visits that patchm has received in the past. The entrym of the
probability vector k is now defined by:

km = dm ∗ cm ∗mm/
∑

r

dr ∗ cr ∗mr , r = 1, ...,N (2)

with dm and cm defined as in (1) and mm = nm, where nm is
the number of visits at site m until the present time t. Hence,
mm = 0 if the animal has never visitedm.

◦ With probability 1−q the forager does not use its memory and
will choose a patchm using the probability vector k defined in
(1). Hence the forager performs an exploratory movement.

2.2.3. Model III

Given that the data trajectories belong to animals that were
released in an unfamiliar environment, it is reasonable to
hypothesize that movements were dominated by exploration at
early times and by memory at later times. In such case, one may
allow the memory parameter q to vary with time.

In this model, the memory parameter depends on the number
of unique visited sites (UVS) of the forager up to time t. To this
end, we define u = (u1, ..., uT) as a vector of length T, with T the
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TABLE 1 | Prior distributions.

Parameter Prior distribution Interpretation

α Normal (0, 10) Scale parameter for the exponential function that defines the probability decay with distance.

β Normal (0, 1) Shape parameter for the exponential function that defines the probability decay with distance.

λ Normal (0, 1) Slope parameter for the logit function that defines the probability increase as function of patch area.

κ Normal (0, 1) Intercept parameter for the logit function that defines the probability increase as function of patch area.

q Beta (1, 1) Parameter that defines the memory use frequency.

ρ Normal (0, 10) Scale parameter for the exponential function that defines the increase of probability memory use

as function of the number of unique visited sites.

ǫ Normal (0, 1) Shape parameter for the exponential function that defines the increase of probability memory use

as function of the number of unique visited sites.

ν Normal (0, 10) Scale parameter for the exponential function that defines memory decay as function of time since

last visit for each patch.

θ Normal (0, 10) Shape parameter for the exponential function that defines memory decay as function of time since

last visit for each patch.

trajectory length and uT the number of distinct patches visited by
the forager up to time T (u1 = 1). This vector is an observed data
and q will depend on it as follows:

q(ut) = 1− exp(−(ut/ρ)
ǫ) (3)

In this model the total number of parameters to estimate is six,
four of them already considered in Model I, plus two parameters
for the increase of memory use as function of the UVS (ρ and ǫ,
see Table 1).

2.2.4. Model IV

So far we have considered inModel II and III that foragers possess
infinite memory. Besides, we have considered that reinforcement
is linear, i.e., that an animal chooses a site for revisit with
probability proportional to the total number of visits to that site.
To incorporate memory decay, we assume in Model IV that the
weight of any visit decays exponentially in time, from the value
unity. Hence, the animal will forget those visits that are far away
in the past and will remember very well those that are recent.
Therefore, the recently visited sites have a larger probability to
be visited again.

The memory factor defined in Model II now takes the form:

mm(t) =

nm∑

i=1

exp{−[(t − ti)/ν]
θ } (4)

with nm the number of visits to patch m until time t, and ti the
time at which the i-th visit to this patch occurred. It is important
to note that mm defined in Equation (4) will be characterized by
an exponential memory decay for θ = 1, a stretched exponential
decay for θ < 1, and a super-exponential decay for θ > 1.
In this model, one needs to estimate eight parameters. The
six parameters already considered in Model III and two more
describing memory decay (ν and θ , see Table 1).

We fitted these fourmodels to the data and then we performed
a model comparison. We used two different tools to perform

this comparison: a Posterior Predictive Check (PPC) to asses
the model’s ability to “predict” the data used to parameterize
it, and the Watanabe-Akaike Information Criterion (WAIC)
(Watanabe and Opper, 2010) as an approximation for out of
sample predicting capacity of each model. These two tools help
us to compare the four models above. Specifications about fitting
and comparison are shown in the next sections.

2.3. Model Fitting
For some parameters such as q, the frequency of memory use, we
used non-informative priors while for other parameters we used
weakly informative priors (Table 1). All priors were truncated to
take only non-negative values.

The models were fitted by using a two-stage approach as
proposed by Hooten and Hefley (2019). Such fitting procedure
was necessary because fitting the hierarchical level in only one
stage would have been intractable computationally, regarding
both memory and execution time. The first stage involves
fitting the set of individual-level models independently using
placeholder priors for all model parameters. Each individual has
its own set of parameters for each model. This first-stage was
achieved using Hamiltonian Monte Carlo (HMC) techniques
implemented within the software Stan (Carpenter et al., 2017)
and accessed via RStan (Stan Development Team, 2018). For all
models we ran three HMC chains with 5,000 iterations for Model
I and II, 10,000 iterations for Model III and IV. We discarded the
first half of the iterations for warm-up, and obtained a Rhat< 1.1
and a reasonable number of effective samples (n_eff), fromwhich
the posterior distribution of all parameters were obtained. For
each animal, the starting point of the fitting simulation was taken
as the first visited patch observed. More details about how we
performed the simulations are given in Supplementary Material

(A Guide Example).
The second stage involved a simple MCMC algorithm to

fit the full hierarchical Gaussian model using the posteriors
from the first stage as priors (Hooten and Hefley, 2019). This
second stage ran only one chain with 7,500 (15,000) iterations
(the union of the three chains from the first stage) with 3,750
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(7,500) iterations for warmup, a p−value pv > 0.05 for the
Geweke’s statistic and a reasonable n_eff for all the relevant
parameters in the different model dynamics. With this second
step, we obtained the posterior distributions at the individual-
level for the parameters of each animal (this fit takes into account
the variability between individuals) as well as the posterior
distributions of the parameters at the population-level.

2.4. Model Assessment and Comparison
In order to assess and compare the descriptive and predictive
capacity of the different models, we use two kinds of tools: one
qualitative and the other quantitative.

As qualitative assessments, we performed PPC on the number
of unique patches visited by the animals through time. That is,
for each animal we determined the number of unique patches
visited (or UVS) as a function of the number of between-patch
movements and compared this quantity with the predictions
of simulated trajectories from the different models. For each
simulated trajectory, we used parameter combinations sampled
from the joint posterior of each of the corresponding model.
For each model and individual animal, we simulated 1,000
trajectories, with initial position as same as the observed one,
and we checked whether the observed change in number of UVS
fell within the credible interval of the simulated ones. We thus
could asses whether the observed pattern was consistent with the
parameterized model.

As a quantitative assessment of model predictive capacity
we used WAIC (Watanabe and Opper, 2010). This quantity
is computed from the log-pointwise-predictive-density of each
model, which was calculated from the posterior distributions
obtained from the second-stage algorithm. This quantity helped
us to suggest the best model for each individual: we say that a
model is the best when it obtained the lowest WAIC and when
the difference between this and other model’s WAIC were >2.

3. RESULTS

3.1. Model Comparison
Considering the PPC for all individuals and models
(Supplementary Figure 9), we found that six trajectories
(out of the 21 individuals) were contained within the 95%
credible interval (CI) of Model I, while 17 did so for Model II, 10
for Model III and 15 for Model IV.

The WAIC comparisons displayed in Table 2 show us that
Model I was not the best model for any individual, i.e., the
calculated WAIC for Model I was never the smallest one for
any animal. Model II had the smallest WAIC for 12 individuals.
Model III was the best for nine animals, andModel IVwas not the
best for any individual. Therefore, in most cases, a constant rate
ofmemory use and a linear reinforcement withoutmemory decay
provided a good description of their trajectories. These results
agree qualitatively with those of the PPC.

To illustrate these general results, we present a closer analysis
of the PPC and WAIC for four representative individuals that
portray different kinds of behaviors on a trajectory. Figure 2
displays the PPC for each model and animals 1, 7, 11, and
17. Table 2 shows WAIC for all models and the same four
representative animals in gray. The lowest WAIC between

models for each individual is indicated in bold. We denoted as
δ the difference between the WAIC of each model and the lowest
one, and PW as the effective number of parameters.

Figure 2-first Row shows the PPC results for individual 1
from Banff. Model I fitted well only the first steps of the
trajectory, indicating that the animal was probably in exploration
phase. Later on, the trajectory is no longer contained within
Model I credible interval. Model II fitted well the final steps
of the trajectory from this animal, suggesting that it followed
an exploitation phase with q = 0.68 (from here on, all
reported parameters values are the mean from their correspond
posterior distribution). However, like Model I, neither Model
II OR IV described the entire time series. Thus, Model III was
the only acceptable model for animal 1, indicating that this
particular individual increased its memory use as it explored the
environment. In agreement with this finding, Model III had the
lowest WAIC for this animal (Table 2).

Figure 2-second Row displays the PPCs for animal 7 from
Cross Ranch. Here, Models I and III fitted well just the first
trajectory steps, indicating a exploration phase, but overall, they
were not acceptable for animal 7. In contrast, Model IV contained
all the observed trajectory within its CI, suggesting that this
particular individual increased its memory use as it explored
the space and its memory decayed over time. Model II was also
acceptable for animal 7, with a constant rate of memory use
of q = 0.38. Therefore, animal 7 had two possible acceptable
models. However, the lowest WAIC for individual 7 was for
Model II, and the δ for Model IV was quite large (Table 2).

Figure 2-third Row corresponds to animal 11, also fromCross
Ranch. Models I, III, and IV fitted well only the first steps of
the observed trajectory. Model II contained within its CI the
entire observed data, indicating that this particular animal used
its memory at a constant and very high rate (q = 0.80), being
most of the time visiting known patches. Table 2 indicated the
lowest WAIC for Model II, confirming the conclusion drawn
from the PPC.

Figure 2-fourth Row corresponds to animal 17 from Elk
Island. Model III fitted well just the first steps of the trajectory
and it was not acceptable for this individual. Otherwise Models
I, II, and IV contained within their respective CI all the observed
trajectory. This give us three possible interpretations for animal
17: (i) The animal was always in exploratory phase. (ii) The
individual used its memory at constant rate q = 0.25. (iii)
The animal increased its memory use with time and its memory
decayed over the time. Table 2 shows that Model II actually had
the lowest WAIC. Therefore, Model II can be considered as fairly
good to describe and predict the trajectory of animal 17.

Table 2 summarizes models fit to each elk by their source
population. Elk from 1 to 6 belong to the Banff and Jasper Source,
animals from 7 to 15 to Cross Ranch, and elk from 16 to 21 to Elk
Island. Models having the lowest WAIC are bolded. We can see
that for all animals from Banff and Jasper, Model III was the best
according toWAIC. For animals fromCross Ranch,Model II was
the best for most of them. And for 66% of elk from Elk Island,
Model II was the best. This suggests that animals from different
source populations reacted differently to the new environment.

We discuss in the following the different parameters obtained
from the fits.
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TABLE 2 | WAIC from the pointwise log-likelihood for each model and each individual.

Model I Model II Model III Model IV

Source ID WAIC PW WAIC PW WAIC PW WAIC PW

Est δ Est Est δ Est Est δ Est Est δ Est

1 916.51 148.28 12.06 788.51 20.28 7.27 768.23 0.00 7.05 801.51 33.28 11.23

2 1864.50 221.87 8.50 1645.72 3.09 8.46 1642.63 0.00 9.50 1724.00 81.37 13.08

3 2751.13 342.30 5.60 2410.23 1.40 5.73 2408.83 0.00 10.16 2499.04 94.21 14.99

Banff and Jasper 4 295.62 38.37 13.92 263.21 6.32 7.25 256.89 0.00 5.80 267.09 10.20 6.98

5 611.20 57.11 21.75 561.77 7.68 33.43 554.09 0.00 29.81 653.32 99.23 76.39

6 1161.61 169.74 21.04 994.70 2.83 31.52 991.87 0.00 29.74 1031.30 39.43 33.59

7 1670.40 70.08 8.93 1600.32 0.00 11.42 1654.73 54.41 18.34 1689.76 89.44 24.60

8 398.77 33.54 8.78 370.41 5.18 2.83 365.23 0.00 1.70 372.14 6.91 2.32

9 846.68 54.29 11.59 792.39 0.00 9.40 812.27 19.88 9.68 834.13 41.74 11.40

10 793.78 21.14 10.00 772.64 0.00 5.81 857.71 85.07 16.11 846.62 73.98 9.43

Cross Ranch 11 3406.23 677.88 6.71 2728.35 0.00 7.34 2755.67 27.32 5.99 2868.43 140.08 18.11

12 1259.08 98.78 7.88 1160.30 0.00 11.72 1193.49 33.19 18.01 1223.01 62.71 15.93

13 1732.02 160.37 7.32 1571.65 0.00 10.58 1577.72 6.07 9.88 1627.82 56.17 14.03

14 1020.30 102.70 7.39 917.60 0.00 7.29 921.85 4.25 7.55 951.79 34.19 9.45

15 2561.35 213.99 7.37 2347.36 0.00 5.49 2394.94 47.58 18.72 2467.82 120.46 23.22

16 289.98 3.03 13.39 286.95 0.00 15.68 295.28 8.33 16.24 296.51 9.56 18.12

17 499.80 34.65 27.65 465.15 0.00 10.51 468.45 3.30 8.85 469.82 4.67 10.55

Elk Island 18 1604.57 118.75 6.80 1485.82 0.00 7.30 1485.86 0.04 5.80 1540.36 54.54 10.08

National Park 19 130.98 106.86 53.14 27.41 3.29 2.84 24.12 0.00 1.40 26.20 1.21 1.81

20 23.02 5.18 0.78 18.05 0.21 0.69 17.84 0.00 0.24 18.92 1.08 0.27

21 241.79 72.34 50.91 169.45 0.00 12.35 176.70 7.25 13.92 178.27 8.82 15.73

Table shows point estimates (Est) for information criterion WAIC, the effective number of parameters (PW ), and difference between WAIC’s models as δ. In bold the lowest WAIC for

each individual.

3.2. Spatial Parameters
The spatial parameters α, β , λ, and κ are present in all models.
The estimated values for these parameters do not vary too much
between the four different models. We present here a common
interpretation for these parameters. From now on the analysis
focuses on the individual-level estimate of each parameter [say
pj (j = 1 : 21)] as well as on the population-level parameter p.

Parameter α, which controls the scale of the exponential decay
with distance between patches (see Supplementary Tables 6–9)
fluctuated little among individuals and across the four models
[0.60 ≤ αj ≤ 2.57 (km)], with a population average between
models of α = 1.71. Parameter β , which controls the shape
of the exponential decay, varied between 0.64 and 1.50 among
individuals, with a population average of β = 1.09, i.e., close to
the exponential shape. These values mean that distance played
an important role in patch selection; the animals did not choose
patches beyond one or two kilometers from their actual positions
(maybe due to the patchiness of the environment) as shown by
the posterior curve in Figure 3 (Top). These results highlight the
importance of “distance discounting” in movement choices, even
when memory was involved.

Parameter λ, which controls the slope of the logit increase with
patch area, also fluctuated little among individuals and models
[2.34 ≤ λj ≤ 3.70 (ha)], with a population average of λ =

2.90. Whereas, parameter κ , which controls the intercept of the

logit increase, had fluctuations between 0.02 and 0.42 among
individuals, and a population average of κ = 0.14. We conclude
that patch area played a significant role during patch use: the
probability increased rapidly for patches of area around 1 ha, and
saturated for patches with area >2 ha as shown by the posterior
curve in Figure 3 (Bottom).

3.3. Memory Use
Figure 4 displays the marginal posterior distributions of the
parameter q, that defines the probability of memory use in Model
II. As mentioned earlier, this model was considered the best for
12 individuals. For these individuals q had a minimum value of
0.18 and a maximum of 0.80, but most of them had a q ≈ 0.5.
Hence, according to this model, roughly half of the moves from
patch to patch performed by most of the animals are informed by
memory, while the other half can be considered as exploratory.
For those animals with values of q far from 0.5, the trajectories
are either dominated by memory (e.g., ID 11) or by exploratory
movements (e.g., ID 10 and 21) .

Model III assumes that q grows from zero with the number
of UVS at time t (ut), as defined by Equation (3). Figure 5
(Top) displays the marginal posterior distributions of the
parameter ρ. This parameter defines the number of visited
sites needed for the onset of important memory effects. For
those individuals for which this Model III was considered
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FIGURE 2 | Posterior predictive check (PPC) of models I–IV for elk with ID 1 (1st row), 7 (2nd row), 11 (3rd row), and 17 (4th row). The number of unique patches

visited (UVS) is shown as a function of time. The PPC curves (obtained from simulating movement using parameters sampled from their posterior distributions) are in

light gray, with the 95% CI in dark gray. The red curves were obtained from the real trajectories. The y-scale for each graph in the same row is different in order to

clearly show which parts of the observed trajectory are inside of the CI.

the best ρ had values between 12.87 and 12.93. Likewise, the
shape parameter ǫ Figure 5 (Center) of the exponential ranged
between 0.03 and 0.86. Figure 5 (Bottom) displays the growth
of memory use as a function of u at the population-level.
Memory use increased rapidly to 0.5 when the unique visited
sites were between 5 and 10, before slowly tending to its
asymptotic value.

3.4. Memory Decay
Model IV takes into account all the assumptions of Model III,
with the addition of a decay in memory. Figure 6 (Top) displays
the marginal posterior distribution of the scale parameter ν that
defines the time scale of memory decay. For the population-
level this parameter was estimated as ν = 10.78. The mean
shape parameter θ was estimated as θ = 0.30, thus, memory
decayed on average more slowly than exponentially, namely, as
a stretched exponential [Figure 6 (Center)]. Actually, Figure 6
(Bottom) reveals that the weight of a visit to a patch (whose
initial value is 1) often decayed very slowly in time. In many
realizations, this weight remained significant (> 0.2) even after
a number of steps (t ∼ 100) much larger than the mean
half-time (estimated as ∼ 5 steps, or ∼ 30 h in physical
time). Therefore, the half-time of memory decay is not very
meaningful here.

4. DISCUSSION

We have presented four simple models to fit a set of movement
data collected in western Canada for 21 elk relocated into a new
environment. In a first stage, Bayesian estimates were carried out
at the individual-level using Hamiltonian Monte Carlo sampling.
A hierarchical analysis was next implemented following the
algorithm proposed in Hooten and Hefley (2019), allowing us
to infer how the population as a whole is adapting to a new
environment. All the results obtained at the individual-level
can be found in the Supplementary Material. To compare and
evaluate these four different models we used two tools, one
quantitative the other qualitative. We used, on the one hand
the Watanabe Akaike Information Criterion (WAIC) and on the
other hand, a Posterior Predictive Check (PPC) based on the
number of unique patches visited by the animals. The results
obtained by these two tests were in agreement. We found that
the trajectories of all animals were far from being described
by a memoryless random walk and rather exhibited patterns of
recurrent revisits to patches. Although it is possible that some
unquantified patch feature makes them more attractive to the
animals and hence more likely to be revisited, it is unlikely
that the pattern of patch use described by the time series of
unique patches visited can result from memoryless movement.
In other words, unobserved patch features will have to have a
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FIGURE 3 | Probability weights (see Equation 1) for choosing a patch as a

function of distance (Top) and area (Bottom) at the population-level for Model

I. The curves (obtained from sampling the parameters posterior distributions)

are in light gray, with the 95% CI in dark gray. Very similar results were

obtained for Models II–IV (see Supplementary Figures 6–8).

very particular distribution in order to match observed changes
in patch use with time.

Our Models II and III, that consider an infinite memory
capability (with constant and dynamic rate of use, respectively)
combined with a linear reinforcement of the visited patches, fitted
and predicted well all the trajectories. This is consistent with
the results exposed by Wolf et al. (2009) in which a thorough
statistical study of habitat selection found that elk had a strong
tendency to select the most recently visited locations to forage
instead of selecting locations only by their quality. Moreover,
the values of our spatial parameters, and the dispersion curves
that they defined, corresponded well with resident elk movement
scales reported in Frair et al. (2005). Foraging movements were
of the order of hundreds of meters and relocating moves of the
order of 1.6 km. Our fourth model, that considered a dynamic
use of memory as well as memory decay, was not considered as
the best model for any individual. That model therefore seems
too sophisticated for this population over the observation period.

The exploitation-exploration paradigm is a well known
concept in ecology. There are several models that have focused on

FIGURE 4 | Mean marginal posteriors (points) and 95% CI (vertical lines) for

individuals (denoted by ID number) and the population (denoted by “pop”) for

the parameter q of Model II which controls the probability of using memory

when making a movement decision. The black intervals correspond to the

results of the first-stage algorithm and the solid light gray intervals correspond

to the results of the hierarchical, second-stage algorithm across all animals.

Dashed gray interval correspond to the population-level.

identifying and predicting these two phases from single animal
trajectories (Morales et al., 2004; Jonsen et al., 2007) but they
are often based on memoryless dynamics and the exploitation-
exploration phases are the result of different types of random
walks movements. Our Model II is memory-based and the use
of memory is governed by a constant parameter q. While the
exploration phase corresponds to random decisions unrelated
with experience, the exploitation phase is ruled by the use of
memory and the reinforcement learning acquired by experience.
These simple assumptions were enough to adequately represent
the temporal changes in the number of unique patches visited
(Supplementary Figure 9) by twelve animals and therefore to
identify the presence of these two phases. It is important to
note that those twelve individuals for which Model II was
considered the best model, as well as the nine animals for which
Model III gave the best results, had a high value of q (near
1/2, typically). This suggests that these animals used memory
intensively, instead of performing pure random walks (which
correspond to the limit q → 0). A previous study on capuchin
monkeys that used a similar model found a value of q near 0.12
over a 6-month period (Boyer and Solis-Salas, 2014). In that
model the environment was represented as a regular discrete
lattice in which each point was a site to visit. The high values of q
observed in our study could be explained by frequent decisions to
return to high-resource patches or safe places, for instance those
where the predation risk (by wolves or humans) is lower. The
movement patterns produced by these high values of q is also
consistent with the scale movement results exposed in Frair et al.
(2005) that shows that elk make use of certain patches and do not
explore beyond them, possibly to reduce their mortality rate and
predation risk.

We also found that animals from the same source population
tended to behave similarly: for most of the animals relocated
from Banff and Jasper, Model III was considered the best model,
whereas most of the elk coming from Cross Ranch and Elk Island
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FIGURE 5 | (Top and middle) Same as Figure 4 but for parameters ρ and ǫ

(resp.) of Model III. (Bottom) Increase of the probability of memory use q as a

function of the number of unique visited sites u at the population-level. The

curves (obtained from sampling parameters from the joint posterior

distributions) are in light gray, with the 95% CI in dark gray.

were best described byModel II. These results might be explained
by the experience animals had before translocation: we speculate
that if the original environment was similar to the new one or the
animal was not naive to predators, the animal relied more heavily
onmemory as they visited new patches (Model III). Conversely, if
the original environment was very different or the animals naive
to predators, then the they kept high rates of exploration (Model

FIGURE 6 | Same as Figure 4 for the parameters ν (Top) and θ (middle) of

Model IV. (Bottom) Decay of the weight of a visit to a patch, exp{−[(t− ti )/ν]
θ }

vs. t, with , ti = 1, sampled from the joint posterior distribution of ν and θ .

II). This hypothesis stems from the fact that Banff and Jasper
are mountainous with similar kinds of valley meadows as the
new habitat, and that the animals were familiar with predators,
while Cross Ranch and Elk Island have quite different habitat
backgrounds, mostly wide-open areas dominated by agriculture
and flatland, respectively, and with animals naive to predators.

It is noteworthy that the model in which memory decays with
time (Model IV) was not supported as the best model for any of
the animals during the period of this study. This suggests that elk
remember very well the places they have visited at least within
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1 year. Similar findings have been reported for other species
such as American bison (Merkle et al., 2014), sheep (Gautestad
and Mysterud, 2005), woodland caribou (Avgar et al., 2015),
or chimpanzees (Janmaat et al., 2013). These works reported
evidence of long-term or very slowly decaying memory, with
individuals having the ability to return sometimes to locations
which had not been visited for months, or even years.

Studying the movement trajectories of translocated animals
provides a promising way to understand how animals use
memory. Our findings are qualitatively consistent with those
recently reported by Ranc et al. (2020) on reintroduced roe deer.
The movements of those animals were described by a model
including both memory and resource preferences, somehow
similarly to ours in the memory mode, with a reinforcement that
saturated to a limiting value instead of growing linearly as here.
Their fitted model was able to predict the dynamics of home
range formation observed in roe deer, thus bringing support to
the hypothesis that memory constitutes an important mechanism
for home range emergence (Börger et al., 2008; Van Moorter
et al., 2009). Although not analyzed in detail here, it is very likely
that the models that we have fitted would also predict several
movement properties indicative of limited space use and home
range behavior in elk, but it would be important to have longer
observation periods to verify this.

Our models and data analysis show a clear effect of distance
and patch area on the probability of a patch being used in the
next move. Thus, the configuration of patches in the landscape
will affect how space is used and how memory is built. Several
extensions would make these models more realistic and complex.
For example, the probability ofmoving from one patch to another
could be affected not only by distance and patch area but also by
more realistic estimates of movement costs due to topography
and other landscape variables such as different habitat types
and predation risk between patches. Furthermore, it would be
interesting to include properties of patches that wouldmake them
more or less attractive, and also to consider potential seasonal
changes in these attributes.

Compared to previous work that studied habitat selection in
these animals (Frair et al., 2007), our model is quite coarse as
we are only considering moves from patch to patch without
taking into account how animals go from one patch to another
or how they move inside patches. It would also be possible
to consider continuous time modeling taking into account the
time that an animal spend going from one patch to another,
as well as the residence time within patches. The residence
time is a key movement component, which can exhibit high
variations within home ranges due to a higher selectivity among
habitat types (Van Moorter et al., 2016). Our modeling approach
also ignored the fact that in a network of patches, nearby
patches can compete as possible destinations due to their spatial
configuration (Ovaskainen and Cornell, 2003). This effect can
be approximated by considered all possible ways in which an
individual leaving a particular patch can eventually reach another
patch in the network, although the computational costs are
substantial (Morales et al., 2017).

Our models could capture features of the movement
patterns of the study animals with a minimum number of

parameters and rather simple dynamical rules. Such simplicity
is advantageous if one wishes to apply the same models to
other data sets. Particularly, a single parameter q quantifies
the behavior of an animal memory-wise, and can serve as a
basis for comparisons between individuals or between species.
Substantial variations of this parameter among individuals
of a same species and in a same environment, as observed
here, indicate that the movement strategies employed are
quite flexible.
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