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ABSTRACT

Advances in low-temperature thermochronology, and the wide range of 
geologic problems that it is used to investigate, have prompted the routine 
use of thermal history (time-temperature, tT) models to quantitatively explore 
and evaluate rock cooling ages. As a result, studies that investigate topics 
ranging from Proterozoic tectonics to Pleistocene erosion now commonly 
require a substantial numerical modeling effort that combines the empiri-
cal understanding of chronometer thermochemical behavior (kinetics) with 
independent knowledge or hypotheses about a study area’s geologic history 
(geologic constraints). Although relatively user-friendly programs, such as 
HeFTy and QTQt, are available to facilitate thermal history modeling, there is 
a critical need to provide the geoscience community with more accessible 
entry points for using these tools. This contribution addresses this need by 
offering an explicit discussion of modeling strategies in the program HeFTy. 
Using both synthetic data and real examples, we illustrate the opportunities 
and limitations of thermal history modeling. We highlight the importance of 
testing the sensitivity of model results to model design choices and describe 
a strategy for classifying model results that we call the Path Family Approach. 
More broadly, we demonstrate how HeFTy can be used to build an intuitive 
understanding of the thermochronologic data types and model design strat-
egies that are capable of discriminating among geologic hypotheses.

 ■ INTRODUCTION

Thermochronology is used by researchers across the geosciences to mea-
sure the thermal history of rocks and thereby address questions that range from 
faulting and rock deformation, to climate-driven erosion, to lithosphere-scale 
changes in the geothermal gradient. Along with methodological advances 
in producing and interpreting thermochronologic data sets (e.g., Ault et al., 
2019; Gautheron and Zeitler, 2020, and references therein), thermal history 
(i.e., time-temperature, tT) modeling has emerged as an important and, in 

many cases, required step in thermochronologic data interpretation (Fox and 
Shuster, 2020). The need for quantitative analysis of rock cooling ages has 
prompted the development and dissemination of modeling software programs 
(e.g., Ketcham et al., 2000; Ketcham, 2005; Braun, 2003; Zeitler, 2004; Hager and 
Stockli, 2009; Gallagher, 1995, 2012; Fox et al., 2014), including the commonly 
used HeFTy (Ketcham, 2005) and QTQt (Gallagher, 2012) programs (Fig. 1). 
As an increasingly broad range of geoscientists generate thermochronologic 
data sets, they join the ranks of thermal history modelers but commonly lack 
experience with the non-uniqueness of rock cooling ages and the tools used 
to quantitatively interpret thermochronologic data.

Thermal history models are critical tools for interpreting cooling ages 
because individual ages, calculated from the measured abundance of par-
ent radionuclides (e.g., U and Th) and their daughter products (e.g., 4He and 
fission tracks), are not very meaningful unless considered in a geologic context. 
Unlike geochronologic ages, single thermochronologic ages are non-unique 
because the retention of the daughter products, and thus the age, is controlled 
by a sample’s net temperature history. As such, many different thermal his-
tories can result in the same measured age. This was demonstrated early in 
the development of U-Th/He thermochronology by Wolf et al. (1998), who 
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Figure 1. Illustration of the steady increase in citations of the two most 
commonly used thermal history modeling programs, HeFTy (Ketcham, 2005) 
and QTQt (Gallagher, 2012), from 2005–2020.
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presented five very different tT histories that all yield a 40 Ma apatite U-Th/He 
(AHe) age (Fig. 2A). Wolf et al. (1998) emphasized the need to use multiple 
samples or thermochronometric systems to reconstruct rock cooling histories, 
because additional data narrow the range of possible tT histories. The range 
of possible tT histories can also be narrowed by what is independently known 
about a sample’s history. Thermal history models bring all of this information 
together; they are the numerical tools we use to interpret thermochronologic 
data in the context of the temperature sensitivity of thermochronometers (i.e., 
kinetics derived from experimental observations) and independent knowl-
edge or hypotheses about a study area’s geologic history (Fox and Shuster, 
2020). Advances in our understanding of additional factors that control indi-
vidual cooling ages, such as radiation damage (e.g., Flowers et al., 2009) and 
crystal composition (Carlson et al., 1999) as well as fission-track etching and 
annealing (Ketcham and Tamer, 2021; Aslanian et al., 2022), have only added 
to the need for numerical tools to guide the assessment and interpretation of 
thermochronologic data sets.

Given the integral role tT models play in modern thermochronologic 
interpretations (Fox and Shuster, 2020; McDannell and Flowers, 2020), it is 
important for the expanding user community to understand the opportunities 
and limitations of tT modeling and have access to information about model-
ing strategies and best practices. As has been discussed in recent literature, 
any model offers only an imperfect representation of the data, and inverse 
tT models are commonly “ill-posed” such that modelers must make many 
choices while attempting to retrieve meaningful geologic information from 
thermochronologic data (Fox and Carter, 2020). Indeed, many debates that 
hinge on thermochronologic data are in fact disagreements about modeling 
choices and not geologic processes or histories (e.g., Fox and Carter, 2020; 
Flowers et al., 2015). Thus, although there is general agreement about the 

importance of conducting tT modeling with careful consideration of thermo-
chronometer kinetics, inversion algorithms, statistical methods, model design, 
data input, and geologic context, exactly how this should be done is extensively 
debated (e.g., Vermeesch and Tian, 2014, 2018, 2020; Gallagher and Ketcham, 
2018, 2020; Green and Duddy, 2021). Although valuable recommendations 
have been made about the reporting of modeling results (Flowers et al., 2015, 
2016, 2022; Gallagher, 2016), most thermochronologic studies do not provide 
explicit descriptions of their modeling practices and interpretation strategies. 
The absence of these details in the published literature means that many new 
and experienced modelers must reconstruct or reinvent modeling and inter-
pretation strategies for themselves. It also relegates meaningful discussion of 
modeling practices to relatively inaccessible spaces, such as the manuscript 
review process or the occasional short course.

Here, we aim to fill this resource gap by presenting a series of concrete 
examples, accompanied by guided exercises in the Supplemental Materials1, 
that demonstrate the fundamentals of thermochronometer behavior and 
present a range of thermal history modeling activities in the HeFTy program 
(Ketcham, 2005). We use synthetic data and generalized examples from our 
own work in order to focus this contribution on modeling methods and to 
not call out specific study areas. Although there is no one “right” way to 
model data, there are best practices that are common among thermal history 
modeling approaches and programs. We briefly summarize the features that 
characterize robust modeling practices in HeFTy that are presented in this 
contribution as well as in previous publications (Ketcham, 2005; Flowers et al., 

1 Supplemental Material. HeFTy modeling tutorial, Tables S1–S4, Figure S1. Please visit https://
doi.org/10.1130/GEOS.S.19991567 to access the supplemental material, and contact editing@
geosociety.org with any questions.
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Figure 2. (A) Six tT paths (adapted Wolf et al., 1998) represent thermal histories associated with common geologic settings, including volcanic cooling (Path 1), craton erosion (Path 2), 
craton rifting (Path 3), thrust belt erosion (Path 4), basin burial and exhumation (Path 5), and transient localized heating next to a near-surface igneous intrusion (Path 6). See Table 1. 
For each path, an apatite grain with an equivalent spherical radius (Rs) of 60 µm and parent nuclide composition ([eU]) of 60 ppm will record a He cooling age of ca. 40 Ma using the 
radiation damage accumulation and annealing model (RDAAM) kinetics (Flowers et al., 2009). Equivalent thermal histories could be designed to illustrate the non-unique behavior 
of other thermochronometers. (B) Predicted apatite He age-[eU] trends for the six paths. This [eU] range over-represents the variability in a typical sample. Apatite grains with [eU] 
as high as 150 ppm and 300 ppm are uncommon, and most grains in a typical sample have [eU] between 10 ppm and 90 ppm. (C) Predicted apatite He age versus grain size trends 
for the six paths. (D) Predicted AFT age versus mean track length relationship for Dpar = 2.05 µm.
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2015; Fox and Carter, 2020; Fox and Shuster, 2020). We also refer the interested 
reader to our forthcoming companion paper (Abbey et al., 2022) that aims to 
fill the same gap using the QTQt program (Gallagher, 2012).

 ■ FORWARD AND INVERSE MODELING OF SYNTHETIC DATA: 
EXPLORING DATA UNIQUENESS AND MODEL RESOLUTION

We demonstrate fundamental aspects of using thermochronologic data to 
reconstruct a rock’s “true” time-temperature history in HeFTy with both forward 
and inverse models of synthetic data. Following the lead of Wolf et al. (1998), 
we use six different thermal history paths (Fig. 2A) that each yield a 40 Ma He 
age for an apatite grain of specific size and composition.

We also expand upon Wolf et al. (1998) by modeling the AHe data trends 
that arise from one well-documented source of He age variability that is built 
into the current kinetic models (Flowers et al., 2009; Gautheron et al., 2009; 
Willett et al., 2017) and commonly leveraged in tT history models: radiation 
damage accumulation and annealing. Radiation damage produced during the 
decay of U, Th, and Sm substantially impacts the mobility of He and thereby 
the measured He age. The extent of this impact depends on the abundance 
of damage in a grain, which is controlled by the grain’s U-Th-Sm compo-
sition (commonly combined into one parameter called effective U, or [eU] 
= [U] + 0.234[Th] + 0.0047[Sm]) and the amount of time a grain has been 
accumulating damage. Radiation damage abundance is also a function of the 
grain’s thermal history because it heals (i.e., anneals) at high temperatures. 
These effects manifest in AHe data sets as positive-slope relationships between 
AHe age and [eU] (Fig. 2B) because for some—but not all—types of thermal 
histories, higher [eU] apatite grains accumulate more radiation damage, and 
as a result they retain more He and have older measured ages than lower [eU] 
grains that experienced the same thermal history. Programs like HeFTy imple-
ment various radiation damage accumulation and annealing models and are 

thereby practical tools not only for interpreting data but also for training one’s 
intuition about how these convoluted effects should manifest in real data sets.

Our approach of using synthetic data is deceptively simple, for it simul-
taneously offers an accessible entry-point for using HeFTy and illustrates the 
central features of thermal history modeling that form the foundation of the 
rest of this paper. As a complement to this text, in the Supplemental Material 
we provide a set of activities useful to readers interested in replicating and 
exploring these exercises for themselves.

Forward Modeling

The forward modeling capabilities of HeFTy enable the user to predict cooling 
age(s) for the apatite fission track (AFT) and zircon fission track (ZFT) systems 
and zircon (ZHe) and apatite (AHe) (U-Th)/He systems and/or AFT lengths given 
a single specific tT path (Fig. 2; Table 1). These predictions can be compared with 
measured data to test hypothesized cooling histories and eliminate geologic 
scenarios that predict thermochronometric ages that are inconsistent with obser-
vations. Forward model predictions are also useful for learning and research 
planning. The user can, for example, test whether hypothesized rock tT histories 
can actually be distinguished from each other using thermo chronology, eval-
uate how specific parameters (such as length distributions in the AFT system) 
or multi-chronometer approaches may more clearly constrain tT histories, or 
explore the consequences of choosing to use one set of published kinetics over 
another during thermal history modeling. Here, we illustrate the utility and lim-
itations of forward modeling using six specific tT paths that are each consistent 
with a different geologic setting or process (Table 1, Fig. 2A). This exercise is 
useful for developing intuition about what types of thermal histories produce 
distinctive thermochronologic data trends and why.

We forward model six hypothetical tT paths that include rapid cooling, 
slow cooling, episodic cooling, or non-monotonic cooling over a 100 m.y. time 

TABLE 1. SUMMARY OF THE SIX tT PATHS

Path 1 Path 2 Path 3 Path 4 Path 5 Path 6

Geologic process Volcanic cooling Erosion of a 
stable craton

Erosion of a stable 
craton followed 

by rifting

Erosion of thrust 
belt topography

Basin burial and 
exhumation

Local igneous 
intrusion and cooling

Thermal history Time Temp Time Temp Time Temp Time Temp Time Temp Time Temp
40 200 100 145 100 90 100 90 100 5 100 20
39.9 5 0 5 20 60 75 70 5 82.5 41 20
0 5 19.9 5 29.5 70 0 5 40.5 200

0 5 0 5 40 5
0 5

Predicted AHe age (Ma)* 39.8 40.4 40.5 41.4 42.5 40.1
AFT age (Ma)** 41.3 61.8 79.5 81.6 75.3 41.6
AFT mTL (µm)** 14.92 ± 1.07 13.25 ± 2.19 12.06 ± 2.75 11.83 ± 2.49 10.32 ± 2.00 14.91 ± 1.09

Note: *Rs = 60 µm, [eU] = 60 ppm. **Dpar of 2.05 μm, etched in 5.5M HNO3 at 20° C for 20 s, corrected for c‑axis projection. AFT—apatite fission track.
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period (Fig. 2A; Table 1) and are designed to demonstrate the temperature 
sensitivity of the AHe system (after Wolf et al., 1998). The AHe system has 
a bulk closure temperature of 80–40 °C (Flowers et al., 2009). By choosing a 
model start date of 100 Ma, we are assuming that the apatite grains formed 
100 m.y. ago. Forward models for each of the six tT paths all predict the same 
AHe cooling age of ca. 40 Ma using the kinetics of Flowers et al. (2009) for a 
single 60 ppm [eU] apatite grain (i.e., a standard Durango-like composition) 
and a 60 µm radius (Rs, Fig. 2; Table 1).

Forward models of these six tT paths in HeFTy can also predict cooling 
ages for various other chronometric systems, additional observations such 
as track lengths (Fig. 2D), or He age trends that arise from well-documented 
sources of age variability such as grain size (Fig. 2C; Reiners and Farley, 2001) 
or U-Th composition (Fig. 2B; Flowers et al., 2009; Gautheron et al., 2009). In 
the examples below, we use forward models to predict He ages for six apatite 
grains with variable parent-nuclide concentration ([eU], 10–300 ppm) and com-
pare the predicted AHe age variability produced from each of our six tT paths 
(Figs. 2–3). We also predict and examine AFT ages and lengths for each history.

Grain [eU] Composition Effects

As previously described, variations in grain [eU] can result in significant 
intra-sample He age variability for some types of thermal histories; for the 
AHe system, this variability takes the form of a positive-slope relationship 
between He age and [eU] (Flowers et al., 2009; Gautheron et al., 2009). To 
evaluate if variable grain [eU] can produce distinctive data trends that permit 
differentiation among our six hypothetical tT paths, we use forward models 
to predict the AHe ages of grains with a size of 60 µm and [eU] of 10 ppm, 
30 ppm, 60 ppm, 90 ppm, 150 ppm, and 300 ppm (Fig. 2B). By design, grains 
with an [eU] of 60 ppm yield an AHe cooling age of ca. 40 Ma for each tT his-
tory. Paths 1 and 6 yield ca. 40 Ma ages for all grains regardless of composition 
(Fig. 2B). The AHe ages predicted for these paths have variability that is ≤15% 
of the standard deviation of the mean age, which is well within the range that 
we define as “reproducible” for He thermochronometers (Flowers et al., 2015; 
see also Flowers et al., 2022). Path 2 yields ages of 31–52 Ma (18% variability). 
In contrast, the predicted AHe ages for Paths 3, 4, and 5 have 42%, 46%, and 
78% variability; Path 5 yields He ages from 4.1 Ma to 96 Ma (Fig. 2B).

The predicted age-[eU] trends can be used to qualitatively distinguish 
among some, but not all, of the six paths considered here (Fig. 2B). For exam-
ple, although the age-[eU] trend is similar for Paths 3 and 4, this data trend 
would clearly be inconsistent with the tT histories of Paths 1, 2, 5, and 6. 
Similarly, Paths 1, 2, and 6 have negligible age-[eU] trends (i.e., they produce 

“reproducible” ages), but such data sets are clearly inconsistent with the pre-
dicted positive age-[eU] trends for the tT histories of Paths 3, 4, and 5 (Fig. 2B).

More broadly, these forward model results concretely demonstrate the 
substantial impact radiation damage accumulation and annealing can have 
on AHe ages for particular thermal histories (Flowers et al., 2009; Gautheron 

et al., 2009). Age variability and age-[eU] trends arising from radiation damage 
effects are most extreme in thermal histories during which (1) grains reside 
in the partial-retention zone (PRZ) for tens of millions of years (Paths 2–4), 
enabling differential accumulation of radiation damage and retained radiogenic 
He, or (2) grains are colder than the PRZ for tens of millions of years, differ-
entially accumulating radiation damage, and are then reheated and partially 
reset with variable He retention as a function of each grain’s accumulated 
radiation damage. For Path 5, the lowest [eU] grain (10 ppm) has a predicted 
age of 4.1 Ma; this crystal was entirely degassed of He during peak reheating 
at ca. 5 Ma. In contrast, the highest [eU] grain has a predicted age of 96 Ma 
and thus retained nearly all of its He, despite experiencing the same reheating 
event. Higher reheating temperatures (or longer time at the peak temperature) 
would be required to reset the He content of the high-[eU] apatite grain; even 
more significant reheating would be required to anneal the radiation damage 
accumulated in these grains.

Predicted AFT Ages and Lengths

Although the six paths are tuned specifically to exploit the partial-retention 
behavior of the AHe system, we can use HeFTy to predict the ages of other 
low-temperature thermochronometers using these same paths and thus eval-
uate whether these other systems could help discriminate between these tT 
histories. For example, here we report the predicted ages and track lengths 
from the AFT system (Fig. 2D; Table 1), which has a bulk closure temperature 
of 140–90 °C (Green et al., 1989; Ketcham et al., 2007). We assume that the 
apatite grains have an average Dpar of 2.05 μm and etched in 5.5M HNO3 at 
20 °C for 20 s. The data are corrected for c-axis projection.

The AFT data predicted using the six paths vary more than the AHe age 
versus grain-size trends and in a way that is similar to the age-[eU] trends 
(Fig. 2; Table 1). Like the predicted AHe ages for Paths 1 and 6, the predicted 
AFT ages and track lengths for these paths are indistinguishable (41.3 Ma and 
41.6 Ma and 15.63 μm and 15.62 μm, respectively). Path 2 yields significantly 
older AFT age and shortened mean track lengths (61.8 Ma and 14.47 µm) than 
Path 1, so AFT analysis would likely be useful in distinguishing Path 2 from 
Paths 1 or 6 for a rock that had a limited range of apatite [eU] compositions 
(and thus limited apatite age variability as a function of either [eU] or grain 
size). In contrast, the AFT mean ages and lengths predicted for Paths 3 and 4 
are similar (79.5 Ma and 81.6 Ma and 13.87 µm and 13.82 µm, respectively); 
thus, distinguishing between these paths is difficult even with the addition 
of AFT data.

Forward Modeling Take-Aways

A forward modeling approach has clear utility for exploring, learning about, 
and evaluating intra- and inter-thermochronometer cooling age variability. It is 
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a particularly valuable tool for assessing whether observed cooling age vari-
ability in a real data set is quantitatively consistent with these known sources 
of data “dispersion.” For example, in real He data sets, it is common for both 
grain size and [eU] to vary in the AHe and ZHe systems (e.g., Flowers and Kelley, 
2011). In the AFT system, track annealing is dependent on chemical composition 
(Green et al., 1986; Carlson et al., 1999). Especially for rock thermal histories 
with reheating events or long residence times at conditions under which a 
system is partially retaining or annealing daughter products, the compound 
effects of natural grain variability can result in “dispersed” cooling ages that 
do not, on first appearance, have clear age trends. Such convoluted variability 
makes it difficult to qualitatively assess the source(s) of age variability on simple 
bivariate plots; however, constructing forward models is an effective way of 
evaluating these trends. Forward models can also serve as important guides 
for constructing inverse thermal history models, understanding inverse model 
results, and designing a geologic study using thermochronologic data sets.

What is the range of possible tT histories that could produce a specific He 
age-[eU] trend or a specific multi-chronometer data set? How much better 
constrained is a model result with the addition of the AFT data, or with an 
apatite [eU] range of 10–300 ppm versus 20–60 ppm? These questions are 
best explored using an inverse approach.

Inverse Modeling

Unlike forward modeling, inverse modeling takes data inputs and finds 
the range of tT histories that are consistent with them. An inverse thermal 
history model result is the collection of tT paths that all result in statistically 
significant fits to the input data, given the model’s design. To demonstrate 
how data trends and model design choices impact HeFTy model results, we 
present a series of inversion models for synthetic AHe ages and age-[eU] trends 
predicted by the forward models of Paths 1–6 in the previous section (Fig. 3).

HeFTy Inverse Modeling Basics

In HeFTy, inverse model results are produced by proposing thousands 
to millions of tT paths, predicting cooling ages and other data (e.g., track-
length distributions) for each path, and then comparing predicted data to 
each piece of input data using a goodness of fit (GOF) statistical test (Ketcham, 
2005). For each attempted tT path, the results of each statistical test are con-
sidered together (Ketcham, 2005; Ketcham et al., 2009), and HeFTy accepts 
paths that pass specific statistical criteria as either “acceptable” or “good” 
fits. An acceptable- fit path has minimum(GOF)>0.05. A good-fit path has both 
a mean(GOF) = 0.5 and minimum(GOF) = 1/(N+1), where N is the number of 
statistical tests (i.e., data inputs; Ketcham et al., 2009). Inverse models that 
include multiple chronometers, track-length distributions, or a range of grain 
sizes or [eU] will generally be better constrained than those that lack these 

data and/or features, as we demonstrate next, although more data inputs also 
offer more opportunities to fail the GOF test. More information and published 
discussions of these fit criteria can be found in Ketcham (2005); Ketcham et al. 
(2009); and Flowers et al. (2015).

Additionally, HeFTy users dictate an inverse model’s exploration of 
time-temperature space by creating boxes through which tT paths must pass 
and prescribing the behavior of the tT paths between these boxes. When 
used deliberately, these boxes are one of the strengths of HeFTy because they 
narrow the range of tT histories generated by a non-learning Monte Carlo 
algorithm in a simple, explicit manner. HeFTy does not use an optimization 
algorithm to search for candidate thermal histories (Ketcham, 2005), unlike the 
Bayesian Markov Chain Monte Carlo approach employed by QTQt (Gallagher, 
2012). The simple Monte Carlo approach makes HeFTy particularly well-suited 
to investigating complex or deep-time problems, when many degrees of free-
dom are useful for identifying the range of possible thermal histories. Unlike 
QTQt, HeFTy has no limit on the number of constraint boxes. Constraint boxes 
in HeFTy typically represent independent geologic information; for example, 
they can require a sample to be at surface temperatures at the time of an 
independently dated unconformity. Boxes can also be used to explore (or 
prescribe) a particular tT path behavior during testing of a hypothesis, for 
example, sample reheating at a specific time. For other important discussions 
of the role of constraint boxes in HeFTy, see Ketcham (2005), Vermeesch and 
Tian (2014, 2018, 2020), Gallagher and Ketcham (2018, 2020).

Inverse Model Design for a Simple Exploration of “Perfect” Data

Here, we illustrate how data trends and constraint boxes control HeFTy 
inversion results. Each inverse model has the same set up, which is deliber-
ately designed so that the tT paths explore a very wide range of monotonic 
and non-monotonic cooling histories within the 100–0 Ma and 200–0 °C tT 
space. This requires two constraint boxes (Fig. 3A). Box 1 spans 100–95 Ma 
and 0–180 °C, which creates tT paths that begin above, within, and below the 
AHe PRZ. Box 2 spans 95–0.1 Ma and 0–200 °C; this large box is necessary 
because we are interested in considering non-monotonic cooling histories (i.e., 
Paths 5 and 6), and HeFTy will only generate tT paths that include reheating 
if the maximum temperature between boxes increases with time (i.e., in this 
case Box 1 has a maximum temperature of 180 °C and Box 2 has a maximum 
temperature of 200 °C) or the maximum temperature of two side-by-side boxes 
is the same. We prescribe a present-day surface temperature of 5° ± 5 °C, which 
includes the present day temperature used to generate these synthetic data 
(5 °C). We choose “episodic” and “variable” path behaviors between the tT 
constraints to allow, but not require, sudden changes in path behavior and 
both heating or cooling of paths between constraints, which ensures that the 
model attempts the widest possible range of paths.

To input our synthetic data, we assigned a 10% error to each predicted 
He age. We set each inverse model to run until it found 100 good-fit tT paths 
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Figure 3. (A) Inversion result for a single 40 ± 4 Ma AHe age (Rs = 60 µm, [eU] = 60 ppm); the “true” paths from Figure 2 (overlaid on the lower panel) are among many 
histories that yield a single 40 Ma age. (B) Expected thermal history and (C) maximum likelihood plots for the same 40 Ma AHe age modeled in QTQt demonstrate key 
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so that model runs can be compared. The number of total attempted paths 
required to reach this end-condition ranges from <2500 to >1,000,000. We 
visualize the model results both in tT space and in age-[eU] trends (Fig. 3). 
We note that because He data inputs for these inverse models are synthetic, 
the model results reflect an ideal scenario in which one has “perfect” He data 
that span a remarkably wide range of [eU] and vary only as a function of [eU]. 
For readers interested in exploring this inverse modeling for themselves, we 
have provided a set of activities in the Supplemental Materials (see footnote 1) 
that replicates and expands upon this demonstration.

Inverse Model of a Single 40 Ma Apatite He Age

We first present the result of an inverse model of a single 40 Ma AHe age 
(Rs = 60 µm, [eU] = 60 ppm). This illustrates how the nonuniqueness of a single 
cooling age, together with our generic model design, looks in HeFTy (Fig. 3A).

As expected (Wolf et al., 1998), a very wide range of histories yields a single 
40 Ma age, including the paths we forward modeled in the previous section 
(Figs. 2A and 3A). Because the inverse model lacks additional thermochro-
nologic data (inputs) or geologic information (narrower constraint boxes or 
restricted path behavior), it does not constrain the thermal history prior to ca. 
40 Ma. After ca. 40 Ma, the model result overall requires the grain to have 
been colder than 90 °C after ca. 35 Ma, and the good-fit paths support cooling 
to <70 °C (i.e., cooling to at or below partial-retention temperatures) by 35 Ma.

Good-fit tT paths that exactly follow Paths 5 and 6 are missing from this 
HeFTy inversion result (Fig. 3A); this is due to our model design. One simple 
consequence of many different paths yielding a single 40 Ma age is that 100 
good-fit paths are found after only 2,326 attempts. Thus, all of the specific paths 
that yield a 40 Ma age will not be attempted during this short model run. Paths 5 
and 6 are different from Paths 1–4, because to find a good fit, HeFTy needs to 
randomly generate a path nearly identical to these distinctive “true” paths. Very 
similar paths that are shifted only a few degrees or millions of years would not 
yield a 40 Ma age. The generic design of our constraint boxes is not optimized 
for exploring these specific histories, although it does not exclude them. As we 
discuss below, a Path 5-like tT history only accounts for ~0.01% of the attempted 
paths with this very generic model set-up. Importantly, this is not a statement 
about the likelihood that a sample would experience this tT history in nature.

A comparison of this HeFTy inversion (Fig. 3A) to a QTQt inversion of the 
same single 40 Ma AHe age (Figs. 3B–3C) illustrates several fundamental 
differences in the way these programs search tT space and present inver-
sion results to the user. In contrast to the non-learning random Monte Carlo 
search of tT space that HeFTy employs, QTQt’s Bayesian transdimensional 
Markov Chain Monte Carlo algorithm prefers and thus converges on simple, 
Path 2-like solutions. As a result of this focused sampling of Path 2-like histories, 
the color map of relative probability presented in an expected thermal his-
tory plot—the QTQt visualization commonly used for geologic interpretations 
(Fig. 3B)—may suggest to someone unfamiliar with Bayesian modeling that a 

Path 2-like history is preferred or most likely to fit this single 40 Ma age, which 
we know is not the case (Wolf et al., 1998). Indeed, individual tT paths similar 
to Paths 1–6 have >80% likelihoods, as is visualized in the maximum likelihood 
plot (Fig. 3C), which is similar to a HeFTy visualization (e.g., Fig. 3A). As with 
the HeFTy result, the small number of Path 5-like histories in the QTQt result 
reflects the way the program searches tT space—that is to say, the design of 
this particular inversion and the underlying philosophy of the modeling pro-
gram. See also Fox and Carter (2020) and the commentaries related to Flowers 
et al. (2015) (Flowers et al., 2016; Gallagher, 2016) and Vermeesch and Tian 
(2014) (Vermeesch and Tian, 2018, 2020; Gallagher and Ketcham, 2018, 2020).

Inverse Models of Synthetic Age-[eU] Trends

Paths 1 and 6 involve very rapid cooling (>100 °C/m.y.) at ca. 40 Ma from 
>140 °C to 5 °C, which yields invariant 40 Ma AHe ages regardless of grain [eU] 
or the previous history of these grains. When this “flat” age–[eU] trend is an 
inverse model input, the thermal history prior to ca. 40 Ma is unconstrained by 
the model result (Figs. 3D and 3I). The thermal history after 40 Ma is better con-
strained, and it is also better constrained than the model of a single 40 Ma grain 
(Fig. 3A). The model result for Path 6 (Fig. 3I) does not include the exact “true” tT 
history because Path 6 is a very extreme reheating event at temperatures hotter 
than the closure temperature of the AHe system; consequently, HeFTy is unlikely 
to randomly generate such a “just right” path, given the constraint box config-
uration used here, even when set to explore “episodic and variable” histories.

Paths 2, 3, and 4 have slow monotonic cooling through the AHe PRZ, which 
produces positive-slope AHe age-[eU] trends (Figs. 3E–3G). This is because the 
longer a sample resides at partial-retention conditions, the more variable the 
AHe ages are. In each inverse model result, the early part of the tT history is 
poorly constrained, but it is still better constrained here than in inverse mod-
els of the Path 1 and Path 6 data that have no age-[eU] trend. The age-[eU] 
trends that arise from Paths 3 and 4 are very similar (ages of 22–74 Ma and 
22–81 Ma, respectively; Fig 2B), and thus the results of inverse modeling these 
trends, given the identical model design, are indistinguishable (Figs. 3F–3G). 
In other words, even with age variability that arises from radiation damage 
accumulation and annealing effects, it is not possible for our models to dis-
tinguish a history with rapid cooling from PRZ to surface conditions at 20 Ma 
(Path 3) from a history in which slow, steady cooling (2.2 °C/m.y.) from PRZ 
to surface conditions starts at 25 Ma (Path 4) (Fig. 2A); these are two thermal 
histories from which very different geologic interpretations would be made.

In Path 5, gradual heating from the surface to the PRZ prior to rapid cooling 
(15.5 °C/m.y.) during the last 5 m.y. produces an extreme and distinctive apatite 
He age-[eU] trend (Fig. 2B). The inverse model set-up for this exercise is not 
designed to efficiently find this tT history, and a narrow range of tT histories 
yields the observed age-[eU] trend, so therefore it takes tens of thousands of 
attempted paths to find a single good- or acceptable-fit path (Fig. 3H). Criti-
cally, this apparent difficulty in finding acceptable or good paths in HeFTy is 
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a useful indicator that the observed age-[eU] trend requires a distinctive tT 
history and may provide a narrow, and thus powerful, constraint on the tT 
history of the sample.

If available, independent geologic information or assumptions in the form 
of smaller constraint boxes can significantly narrow the range of attempted 
tT paths and improve the efficiency (i.e., optimize) of the search of tT space 
in HeFTy (Fig. 4; Table S1, see footnote 1). For example, if it were known 
from the geologic record that the Path 5 sample was at surface conditions 

at 100–95 Ma, we could narrow the temperature range of Box 1–0–20 °C 
(Fig. 4A). All attempted tT paths would start at near-surface conditions and, 
because of the position of Box 2 relative to Box 1, most paths would explore a 
non-monotonic history. An inversion with this model set-up finds 100 good-fit 
paths after 906,473 attempted paths (Fig. 4A). In contrast, changing the max-
imum temperature of Box 2 from 200 °C (Fig. 3H) to 100 °C (Fig. 4B)—which 
could be justified given the observed 96 Ma AHe age—narrows the range of 
attempted paths but does not improve the efficiency of finding good-fit paths. 
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Figure 4. (A–D) Examples of testing the sensitivity of an inversion result (Fig. 3H) to the configuration of constraint boxes. In each case, the model result 
(i.e., the peak burial temperature and timing of the onset of final cooling at ca. 5 Ma) is similar. This analysis suggests that so long as it is not important to 
consider (D) very short duration (<1 m.y.) high- temperature thermal events, the model result is not sensitive to the design of the constraint boxes; moreover, 
narrowing the constraint boxes can optimize the time it takes to find good fits to the data (Ketcham, 2005) without excluding possible alternative families 
of tT paths. However, it is always important to clearly articulate the assumption(s) and/or justification(s) inherent in a particular constraint box design.
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If both narrow constraints, along with their corresponding assumptions, are 
combined (Fig. 4C), the inversion is substantially more efficient at finding 
good-fit paths. However, the “true” Path 5 is equally well resolved in each 
case (Figs. 3H and 4A–4C).

In Path 5 models with a narrower Box 2 (Figs. 4B–4C), several of the good- 
and acceptable-fit tT paths touch the high-temperature (100 °C) bound on this 
box, which suggests that the box is limiting the full range of tT paths that fit 
the data. Indeed, if the maximum temperature bound is 130 °C (Fig. 4D), the 
model randomly finds a good-fit tT path with a geologically rapid (<1 m.y.), 
high-temperature (125 °C) heating event at ca. 5 Ma. This path’s fit to the age-
[eU] trend predicted from Path 5 reflects the fundamental trade-off between 
rock cooling rate and a thermochronometer’s effective closure temperature 
(Dodson, 1973). The details of this good-fit path, as with Path 6 (Fig. 3I), had to 
be just right to fit the data. Whether it is important for a thermal history model 
to explore such histories depends on the sample’s geologic context. In fact, 
HeFTy is useful for modeling very short-duration thermal events (e.g., Min and 
Reiners, 2007), but effective consideration of geologic histories that include 
such events requires a deliberate search of tT space using constraint boxes.

As with all model design choices, optimizing the boxes and the number of 
attempted or good-fit paths in HeFTy ultimately depends on a model’s purpose 
and geologic context.

Inverse Modeling Take-Aways

HeFTy inverse models serve the user best when they offer a comprehensive 
range of possible tT paths that fit a given set of thermochronologic data and 
geologic constraints. It is then up to the model user to consider which histo-
ries are reasonable, given the geologic setting and the scientific questions of 
interest. However, as we have begun to demonstrate in this simple exercise 
with synthetic data, inverse model results can be extraordinarily sensitive to 
details of the model set-up in ways that may not be clear to the user—even the 
experienced user—without systematic exploration of alternative models. This 
requires an iterative modeling approach that documents, justifies, and explains 
decisions that affect both model design and thermal history interpretation.

We refer readers to the Supplemental Material (see footnote 1) for comple-
mentary and additional guided exploration of these simple synthetic examples 
in HeFTy. Indeed, we suggest that everyone should perform a modeling exer-
cise with synthetic data, whether in HeFTy or another program of choice, before 
modeling real data for the first time.

 ■ STRATEGIES FOR AND EXAMPLES OF THERMAL HISTORY 
MODELING USING HeFTy

Next, we present a range of model design and interpretation strategies 
in HeFTy, using the synthetic data generated from Path 5 and examples from 

real (measured) thermochronologic data sets from our own work. The details 
of these examples are tailored to HeFTy’s approach to searching tT space, to 
the fact that HeFTy inversion results are suites of individual tT histories that 
each fit the data, and to the important role of constraint boxes in controlling 
HeFTy model results. However, many of the approaches are applicable to other 
thermal history modeling programs and support other recent discussions of 
thermal history modeling practices (e.g., Fox and Carter, 2020; Flowers et 
al., 2022). We also emphasize that there are many appropriate approaches 
to handling thermal history modeling results; so, one’s preferred method 
will depend on the data and modeling tools available as well as the geologic 
problem(s) of interest.

Examples of Sensitivity Testing

Whenever a thermal history model resolves a tT history that appears useful 
for geologic interpretation, we argue that the next step is to clearly identify “the 
why.” That is to say, the reason(s) that a model produces a particular result, be 
it the power of a geologic constraint, a data trend, a spatial relationship among 
samples, the choice of kinetic model, etc., should be articulated. Thermal his-
tory modeling programs like HeFTy are tools for not only generating preferred 
model results that are geologically interpretable but also for systematically 
testing the sensitivity of the results to model design and data inputs. Here, we 
illustrate this sensitivity testing approach in HeFTy using the synthetic AHe data 
predicted from Path 5 (Fig. 3H) and then a real data set modeled in deep time.

When a model result is only sensitive to parts of the model design that 
are supported by geologic observations or assumptions that are clearly articu-
lated and justified, we consider that result robust. In other words, an arbitrary 
choice should not significantly change the result, and modeling choices that 
do impact the result should be identified and explained. Although sensitiv-
ity testing is most efficient when guided by specific ideas about the factors 
that likely control the model result, this part of a modeling project—even for 
experienced modelers—is commonly an iterative learning process because 
of the complex, non-unique nature of thermochronometer behavior and how 
this manifests on geologic timescales.

Sensitivity Testing an Inverse Model Result

Path 5 offers an excellent synthetic example of the power of sensitivity- 
testing the result of an inverse model in HeFTy. As previously discussed, Path 5′s 
simple burial history produces a distinctive age-[eU] trend ([eU] = 10–300 ppm, 
AHe = 4–96 Ma; Fig. 2B) that when modeled resolves the “true” tT history—
particularly the requirement of reheating, the peak reheating temperature, and 
the timing of cooling to surface conditions—remarkably well (Fig. 3H). We use 
HeFTy to investigate how robust this model result is using suites of additional 
models in which we vary the model design and data input.
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To assess the robustness of the Path 5 inverse model result (Fig. 3H), as if 
we did not know the “true” tT history, we first test its sensitivity to the inclusion 
of individual AHe ages. Systematically removing the lowest and highest [eU] 
grains reveals that the model’s ability to resolve the “true” path is strongly 
controlled by young, low-[eU] grains (Figs. 5A–5C). Indeed, if the two low-[eU] 
grains are removed (Fig. 5C), the model is unable to resolve any details of the 

thermal history, except a requirement that the sample must have been colder 
than ~90 °C since ca. 80 Ma. Less intuitively, it appears to be the 6 Ma, 30 ppm 
[eU] grain (Fig. 5B), and not the youngest, lowest [eU] apatite grain (Fig. 5A), 
that is most important for documenting the “true” timing of peak heating at 
ca. 5 Ma. In contrast, when the oldest, highest [eU] grains are removed from 
the model (Figs. 5D–5E), reheating is still required to fit the remaining data, 
and the model result is largely unchanged. If we were interpreting a real data 
set with an unknown tT history, these additional model results would guide 
our assessment of the robustness of the original result. For example, we could 
(1) articulate why the apatite radiation damage model (Flowers et al., 2009) 
is most sensitive to the lowest [eU] apatite data and consider if alternative 
kinetics for the AHe system (Gautheron et al., 2009; Willett et al., 2017) would 
yield a different fit to the data, or (2) interrogate the quality of the lowest [eU] 
grain analyses (Peyton et al., 2012; Murray et al., 2014), or (3) offer a clear 
explanation for why some rocks from a field area preserve this reheating signal, 
while others do not, because samples with no low-[eU] apatite grains would 
not document this reheating event even if they experienced it.

A second useful test is to remove Box 2, which permits us to assess the 
requirement of reheating to produce the observed age-[eU] trend. Previously 
(see section above on Inverse Models of Synthetic Age-[eU] Trends), we exam-
ined the impact of changing the maximum temperature of Boxes 1 and 2 on the 
Path 5 model result (Fig. 4). Now, by removing Box 2 entirely, we ask HeFTy to 
assume only monotonic cooling from Box 1 to the modern surface temperature 
condition. This model design yields no good or acceptable fits to the Path 5 
age-[eU] trend. This result may appear obvious here because we know that the 

“true” answer requires reheating. However, in the case of modeling an unknown 
sample, demonstrating this reheating requirement would offer valuable insight. 
In this way, sensitivity testing can also be used to reject alternative hypotheses 
or to demonstrate that two hypotheses are, in fact, distinguishable from one 
another using a particular data set and/or model design.

Removing Box 2 from the Path 5 model design, and finding no fits to the 
perfect synthetic data, also highlights a critical feature of HeFTy model results: 
when a HeFTy inversion does not return good or acceptable paths, even after 
hundreds of thousands of attempts, it does not necessarily mean that the data 
are of poor quality, too over-dispersed to be interpreted, or inconsistent with 
the kinetic model being used (Ketcham, 2005). Thus, it is critical to consider 
each piece of the model design and the assumptions inherent in those design 
choices. Systematically testing alternative model set-ups as a part of routine 
tT modeling practice is a useful way of revealing such assumptions.

Sensitivity Testing a Deep-Time Model

Testing the sensitivity of inverse model results is particularly important 
when investigating deep-time (i.e., >500 m.y.) thermal histories, because deep-
time models are most successful when they leverage multiple chronometers 
and a large number of geologic constraints (McDannell and Flowers, 2020). 
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Figure 5. Systematically removing individual data inputs from a model permits the user 
to explore which parts of a data set most impact the model result. Here, we system-
atically remove apatite He grain ages from the age-[eU] trend generated from Path 5, 
remodel the remaining data, and compare the result to Figure 3H. (A) Without the low-
est [eU] grain, the timing of cooling onset is poorly resolved. (B) Without the 30 ppm 
grain, both the heating and cooling history are poorly resolved. (C) When both low-[eU] 
grains are removed, the remaining data are not sensitive to the burial history. (D–E) In 
contrast, removing the high-[eU] grains does not substantially change the model result.
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These model components are then integrated over hundreds of millions or 
billions of years, so it is remarkably easy to accumulate unintentional assump-
tions. HeFTy permits the user to impose an unlimited number of geologic 
constraints, so it is a useful tool for deep-time applications, when the resolving 
power of models in Precambrian time commonly leverages the fact that much 
of a sample’s Phanerozoic tT history is already well known.

We illustrate a sensitivity-testing approach for evaluating thermal history 
models with an example of a deep-time model with three samples from Paleo-
proterozoic crystalline basement in the Colorado Rocky Mountains, which 
incorporates He and Ar data (Murray et al., 2022) in the context of multiple 
geologic constraints from local and regional field relationships (Table S2; 
see footnote 1). The model starts at 1.75 Ga and 800 °C, when the rocks 
formed (Premo and Fanning, 2000), and ends at modern surface conditions. 
Hornblende and biotite 40Ar/39Ar ages from nearby samples are 1450 Ma and 
1350 Ma, respectively (Shaw et al., 1999). Zircon He ages from three samples 
form a negative-slope relationship between age and [eU] (Fig. 6A), which is 
qualitatively consistent with radiation damage accumulation and annealing 
in zircon (Guenthner et al., 2013) and suggests that these data document a 
deep-time history.

To quantitatively test this assessment of the data and resolve parts of the 
Precambrian history of these rocks, we combine three samples into one ther-
mal history model (Fig. 6A). By jointly modeling these data, we make the 
assumption that these samples share the same thermal history from 1.7 Ga 
to present. The model design uses high-temperature constraints derived from 
separate HeFTy models of the Ar ages (Figs. 7A and S1, see footnote 1). It 
also incorporates low-temperature constraints from local and regional field 
relationships, which place the sampled basement rocks in near-surface at 
three times prior to Cenozoic time (ca. 700 Ma, 500 Ma, and 300 Ma) and 
document their Paleozoic and Mesozoic burial history. Little is known about 
the Proterozoic history of these rocks, so we use exploration boxes to investi-
gate a wide range of monotonic and non-monotonic histories from 1300 Ma 
to 700 Ma and 700–500 Ma. The resulting model (Fig. 6A, hereafter referred 
to as the preferred model result) requires a distinctive Neoproterozoic history, 
in which the rocks are heated to ~235–285 °C after ca. 700 Ma and cooled to 
near-surface conditions by ca. 500 Ma. But why is this?

First, we assess which parts of the ZHe age-[eU] trend the result is most 
sensitive to, because like in the Path 5 synthetic AHe data set, the age-[eU] 
trend is central to resolving the distinctive Neoproterozoic history (e.g., Orme 
et al., 2016). As is typical when modeling He data trends in HeFTy (Flowers 
and Kelley, 2011; Flowers et al., 2015), the 21 zircon He ages were grouped by 
[eU] and five average synthetic zircons were used as the HeFTy data inputs to 
capture the first-order age-[eU] relationship and smooth out the second-order 
age variability. This grouping and averaging is done at the discretion of the 
modeler, so it is important to ask how these choices impact the model result.

One way to address this question is to systematically remove the synthetic 
grains that represent the low, middle, and high [eU] parts of the age-[eU] trend 
(Figs. 6B–6D, respectively) and remodel the remaining data. This sensitivity 

test demonstrates, for example, that the model result is not different when the 
middle-[eU] part of the ZHe trend (Fig. 6C) is removed. Thus, we would not 
expect modest changes in the choice of synthetic grain that represents this part 
of the trend to impact the results. Additionally, the models without the highest 
and lowest [eU] grains reveal that, counterintuitively, it is the young, ca. 70 Ma 
highest [eU] grains (Fig. 6D) and not the oldest Paleozoic–Proterozoic grains 
(Fig. 6B) that most strongly require the distinctive Neoproterozoic history. 
This gives us insight into how the zircon radiation damage accumulation and 
annealing model (ZrDAAM; Guenthner et al., 2013) is fitting the age-[eU] trend.

The high-[eU] zircon grains are those that accumulate the most damage; if 
sufficient damage accumulates, the grains cannot retain He, and the ZrDAAM 
predicts a very young or 0 Ma age (Guenthner et al., 2013; Guenthner, 2021). 
In this data set, the high-[eU] grains do retain He and have measured He 
ages of ca. 70 Ma. Thus, these high-[eU] grains provide an upper bound on 
how much damage they have accumulated since 1.7 Ga and thereby the time 
that has elapsed since both the He content and radiation damage were com-
pletely reset, which is no more than 600–700 m.y. Forward models (Fig. 6E) 
support this assessment and further demonstrate that known heating during 
Cretaceous time cannot reset the highest [eU] grains without eliminating the 
age-[eU] pattern entirely. These forward models also explicitly test, and reject, 
an alternative hypothesized thermal history in which these rocks exhume 
to surface conditions by ca. 717 Ma and then stay in the near surface until 
Phanero zoic time (i.e., Flowers et al., 2020). Thus, the one reason the preferred 
model resolves a heating event is that there is no more than 600–700 m.y. of 
radiation damage accumulated in the zircons from this sample, and therefore 
any damage accumulated before ca. 700 Ma had to be subsequently annealed 
during a significant thermal event. The ability of the current ZrDAAM to fit 
high-[eU] ages is an area of active debate (Guenthner, 2021, and references 
therein), so the impact of the high-[eU] grains would be particularly important 
to note as a part of a geologic interpretation of this model result.

Next, we examine how the Ar data contribute to resolving the preferred 
deep-time history. Mesoproterozoic hornblende and biotite Ar ages require that 
these rocks have not reached temperatures sufficient to reset these systems 
partially or fully since Mesoproterozoic time and thus provide the maximum 
temperature bound on the exploration boxes (highlighted with orange in 
Fig. 7B). Although the Ar chronometers are not built into HeFTy, any diffu-
sion-based chronometer can be modeled in HeFTy by manually inputting 
published or preferred kinetic values for a system.

By inverse modeling the He alone and Ar data alone, with no geologic 
constraints (Fig. 7A), we can investigate the independent contributions of each 
data set. The apatite and zircon He data alone do not resolve the Precambrian 
history of these rocks, whereas the Ar ages—specifically the ca. 1350 Ma biotite 
Ar ages—require that rocks have been colder than ~250 °C since ca. 1300 Ma, 
with heating events as warm as ~285 °C permissible on timescales of tens 
of millions of years (Fig. S1). These temperatures directly overlap with the 
temperature sensitivity of the zircon He system, which according to current 
kinetic models requires temperatures >~140–220 °C to reset the He content and 
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Figure 6. (A) An example of a deep-time thermal history model result, which requires a Neoproterozoic reheating event with a narrow range of peak T between ~235 °C and 285 °C. 
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ages. Forward models also illustrate why these data do not support an alternative thermal history for these rocks (Flowers et al., 2020).
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temperatures >~260–350 °C to reset the radiation damage content of zircon 
crystals, respectively (Guenthner et al., 2013). Therefore, when considered 
together, the biotite Ar and zircon He chronometers narrow the range of pos-
sible deep-time thermal histories substantially (Figs. 7A–7B).

Thus, sensitivity testing has revealed that the narrow range of Neopro-
terozoic peak temperatures in the preferred model result is bounded by the 
Mesozoic biotite Ar age at high temperature (<285 °C) and the requirement of 
radiation damage annealing in zircon crystals at low temperature (>235 °C). 
In fact, an outlier acceptable-fit tT path in the preferred model result (Fig. 6A, 
green line), which does not require Neoproterozoic reheating, supports this 
relationship between the two chronometric systems. This path sits at T = 
245 °C from ca. 1400–700 Ma; this history produces minimal radiation dam-
age accumulation in zircon crystals and therefore does not require heating in 
Neoproterozoic time. However, it would also result in a biotite Ar age that is 
hundreds of millions of years younger than the measured age and is there-
fore not consistent with what is known about these rocks. The current kinetic 
models for the He and Ar systems require a narrow temperature range of 
reheating, but this may change as new kinetic models for these chronome-
ters are produced or our understanding of damage annealing in the high-[eU] 
zircons improves (i.e., Guenthner, 2021, and references therein).

Finally, we test the impact of the constraints derived from geological field 
relationships on the preferred model result (Fig. 6A) by designing a generic, 
no-geologic-constraints model (Fig. 7A) and systematically adding, remov-
ing, and adjusting how geologic information is implemented in tT space (e.g., 
Figs. 7B–7D). It is clear from this approach that the Neoproterozoic heating in 
the preferred model is not a product of the data alone (Fig. 7A). In particular, 
the timing of the heating required to reset the ZHe system depends on if and 
how the ca. 700 Ma and 500 Ma near-surface constraints are implemented 
in the model (Figs. 6A and 7B–7D). In all cases, the rocks reach a tempera-
ture of ~250 °C for tens of millions of years in Neoproterozoic–Paleozoic time 
because, as previously demonstrated, these rocks had to get hot enough for 
long enough to completely reset the ZHe system but not perturb the biotite Ar 
system. However, when heating and cooling occurred during this ca. 500 m.y. 
time period depends upon how narrowly the modeler defines the geologic 
constraints (compare, for example, Figs. 6A and 7D). This is a critical insight; 
it emphasizes the powerful role of independent geologic observations, and 
the boxes that represent them in tT space, in HeFTy model results. Without 
strong evidence for the timing of this heating and cooling, it could be difficult 
to interpret this model result and argue, for example, that heating and cooling 
is the result of one particular geologic process or event.

In summary, there are three principal reasons that the preferred deep-time 
model (Fig. 6A) requires a Neoproterozoic heating event. First, the high-[eU] 
zircon crystals retain He today, so the ZrDAAM requires that these crystals 
have been cold and accumulating radiation damage for no longer than ~600–
700 m.y. (Figs. 6B–6E). Second, Mesoproterozoic biotite Ar ages require that 
the rocks have been cold enough to accumulate radiation damage in zircon 
crystals for much of the last 1300 m.y. (Fig. 7A). Third, the geologic record 

places these rocks in the near-surface up to three times prior to Cenozoic 
time and for much of the Phanerozoic (Fig. 6A). These three conditions are 
reconciled by a reheating event that reset the He content and radiation dam-
age in zircon crystals without perturbing the Ar chronometers, but the timing 
of this reheating depends on if and how we choose to translate independent 
geologic observations into model space (Figs. 7B–7D). A sensitivity analysis 
like this builds a clear framework for a geologic interpretation of a preferred 
model result and an accompanying discussion.

Sensitivity Testing Take-Aways

Sensitivity testing guides the modeler, and those who review and read 
their work, to critically examine the parts of a model that matter most to a 
preferred result. This can be particularly valuable when sensitivity testing 
reveals model behaviors that are not otherwise obvious. For example, in the 
Path 5 assessment of the He data inputs (Fig. 5C), it is intuitive that the ca. 
5 Ma burial heating event is documented by the ca. 5 Ma apatite He age. In 
contrast, a similar assessment of the zircon He data inputs in the deep-time 
example suggests the opposite: it is the youngest, and not the oldest, zircon 
crystals that are most sensitive to the Proterozoic thermal history (Fig. 6). In 
this way, sensitivity tests can facilitate productive comparisons to other studies, 
focus discussion of how confident we are in the parts of our data and model 
set-up that produce a preferred result, and direct future research to address 
key knowledge gaps that can continue to narrow thermal history model results.

There is no one right way to model thermochronologic data—and, as mod-
elers are fond of reminding us, all models are wrong (Vermeesch and Tian, 
2014, 2018, 2020; Gallagher and Ketcham, 2018, 2020). So, how do we know 
when the sensitivity testing of a thermal history model is sufficient? We argue 
that one is simply obligated to clearly document their modeling process and 
demonstrate the “why” of their preferred model, allowing others to replicate 
their results or even in some cases arrive at alternative interpretations for 
clearly articulated reasons.

Codifying Heating and Cooling Trends from Thermal History Models

As has been demonstrated throughout this text, thermal histories provide 
information about the timing and rate of heating and cooling events that are 
not always clearly identified by cooling ages alone. Extracting thermal history 
patterns from a set of forward or inverse models can reveal trends that are 
critical to recognizing the thermal signatures of geologic processes (Ketcham, 
2005; Gallagher, 2012). We encourage modelers to begin this process by ask-
ing themselves the following questions. Is a heating or cooling event defined 
by its rate, timing of initiation, or duration? Should individual paths, a mean 
path, or a path envelope be used to define the timing of a thermal event? Once 
timing is assigned to a heating or cooling event, is there a way to quantify 
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uncertainty? The answers to these questions may vary depending on the 
goals of a study. In all cases, workers should establish a set of objective and 
consistent criteria to identify and define thermal trends and strive to quantify 
uncertainty associated with these definitions.

Extracting tT Trends from Synthetic Inverse Model Results

To illustrate the value of extracting trends from HeFTy, consider Path 5 
(Fig. 3H). In this tT Path, long-lived heating from 100 Ma to 5 Ma is followed 
by relatively rapid cooling beginning at 5 Ma (Fig. 2A). Both parts of this 
thermal history are poorly documented by a single AHe age or even multiple 
cooling ages at face value (Fig. 2B); however, Path 5 is clearly represented 
among the range of good-fit tT paths identified in the inverse model of the 
Path 5-generated age-[eU] trend (Fig. 3H). Defining and then extracting thermal 
history features from model results when the true tT path is unknown is an 
important part of data analysis and interpretation for which there are several 
potential strategies. HeFTy inverse model results can be saved in a text file 
format that enables the modeler to evaluate these quantitative metrics in their 
software of choice.

A study designed to define the duration of heating using the Path 5 inverse 
model result (Fig. 3H) might decide to define heating by the earliest possible 
start of heating at ca. 100 Ma and the last possible instance of reheating at 
ca. 4 Ma (Fig. 8A). Although not every individual path shows reheating between 
these periods—some paths stay at surface temperatures for tens of millions of 
years before reheating, whereas others stop heating and begin cooling by as 
early as ca. 13 Ma—the criteria are consistent and can be applied objectively 
to more than one sample or model result. Additionally, the range of possible 
initial timing of heating start or end could be used to approximate uncertainty 
in the model results. For example, in the Path 5 inversion result, heating starts 

between ca. 100 Ma and 75 Ma and ends between ca. 13 Ma—the earliest time 
an individual path stops cooling and starts heating—and 4 Ma, the time when 
all paths record cooling (Fig. 8A).

Alternatively, one might decide to define the duration of heating or the 
onset of cooling by identifying a temperature threshold and the time that each 
tT path passes through that threshold (e.g., Murray et al., 2016). For example, 
we calculate the fraction of paths in the Path 5 model result that heat to tem-
peratures above 10 °C, 20 °C, 30 °C, 40 °C, and 50 °C between 100 Ma and 20 Ma 
(Fig. 8B). Because the inverse results from Path 5 are constrained by AHe data 
only, to then interpret this information we choose a temperature threshold 
of 40 °C, the lower threshold of the AHe closure temperature window. Using 
this metric, by 80 Ma, ~11% of good-fit paths are >40 °C, and by 20 Ma, ~89% 
of good-fit paths are >40 °C, which supports that heating occurred during this 
time window (Figs. 8A–8B). Overall, this description of the duration of heat-
ing is consistent with the strategy for defining heating described above. The 
hallmark of both strategies is the generation of reproducible and quantitative 
metrics for extracting heating duration from an inverse model result.

A modeler interested in the Path 5 cooling history, rather than the heating 
history, may want to objectively define the range of possible cooling start 
times in the inverse model result. One approach is to use HeFTy’s good-fit 
path envelope, which encompasses the range of all individual good-fit paths, 
to identify both the earliest and latest possible start times of the required 
cooling event. For the inverse results of Path 5, this time span, between ca. 
7 Ma and 3.5 Ma, provides a range of uncertainty for the initiation of cooling 
and includes the true start of cooling at 5 Ma (Fig. 8C).

These are just a few of many ways to define and quantify heating and cool-
ing trends using HeFTy inverse model results. Because they are objectively 
defined, such model interpretations can be effectively compared among many 
independently modeled samples to identify the presence and distribution of 
regional geologic processes that drive rock heating and/or cooling.
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Figure 8. (A) Example of one objective strategy to quantify the duration of a long-lived heating event using the inverse model results for Path 5. This strategy uses individual 
paths to identify the earliest and latest start of heating and the earliest and latest end of heating. (B) Example of one objective strategy for quantifying the onset of a long-lived 
heating event using the inverse model results for Path 5. This strategy identifies the fraction of tT paths that have heated across five temperature thresholds between 100 Ma 
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Extracting tT Trends from a Regional Thermochronologic Data Set

Developing an objective set of criteria to codify thermal history trends 
allows one to compare trends among many independently modeled samples 
and identify spatiotemporal trends that are not represented in cooling ages 
alone. We highlight an example from recent work in the southern Patagonian 
Andes that codified inverse thermal history model outputs from HeFTy to 
resolve rapid regional Miocene cooling with a distinct spatiotemporal signa-
ture that had been previously unrecognized (Stevens Goddard and Fosdick, 
2019a, 2019b) despite the existence of abundant thermochronologic data sets 
(Thomson et al., 2010; Fosdick et al., 2013; Herman et al., 2013; Herman and 
Brandon, 2015; Christeleit et al., 2017).

Inverse thermal history models of new and existing data by Stevens God-
dard and Fosdick (2019a) used a multi-chronometer approach, which required 
that each independently modeled sample included data from two or three, 
thermochronometric systems—a combination of ZHe, AFT, or AHe data. The 
ZHe and AHe cooling ages exhibited no clear age-[eU] or age-size trends, and 
AFT data yielded insufficient track lengths for analysis. The model design was 
simple, as it was intended to interrogate a relatively recent event (Neogene) 
over a short period of geologic time with ZHe, AFT, and AHe cooling ages that 
are Late Cretaceous or younger in a region where ZFT dates all reflect local 
batholith cooling primarily in Late Cretaceous–Paleogene time (Thomson et 
al., 2001). The final model design included a broad initial condition between 
80 Ma and 50 Ma of 100–300 °C temperatures (Fig. 9A), which is consistent 
with the geologic history of the samples, including thrust belt and/or sediment 
burial (Thomson et al., 2001; Fosdick et al., 2013; Stevens Goddard and Fos-
dick, 2019a) and final cooling to surface temperatures of 10° ± 5 °C . A suite 
of sensitivity tests was run using alternate model designs with constraint 

boxes that allowed or required reheating; however, no good-fit paths with 
non-monotonic solutions were identified, which suggests that the preferred 
model design was appropriate and included a comprehensive set of good-fit 
paths that were consistent with the measured data.

The inverse modeling results required accelerated rock cooling in Neogene 
time (Fig. 9A), the timing of which was not evident from individual thermo-
chronologic ages. The cooling was visually evident in a qualitative examination 
of thermal history model results in tT space (e.g., Fig 9A) and is described specifi-
cally as “required” to indicate that although the cooling could have started earlier, 
it is tightly constrained by a temporal threshold. In this study, required cooling 
was identified at different temperatures for different samples (Stevens Goddard 
and Fosdick, 2019a). However, meaningfully extracting information about this 
rock cooling from model results required consideration of the geologic context. 
In this case, the study prioritized resolving the timing of rapid cooling regard-
less of the temperature threshold for which this cooling was observed as long 
as the temperature threshold was within the thermal sensitivity window of the 
thermochronometers used to model that particular sample. The authors of this 
study inspected the good-fit path envelope of each inverse model result to iden-
tify periods of required accelerated cooling and recorded the earliest and latest 
possible required cooling (Fig. 9A). The mean of these two times was used as the 
timing of required cooling, and the range of times was used to reflect uncertainty 
in the timing (Fig. 9A). Once the timing was extracted from many independent 
model results across the region, a clear spatial trend emerged: the required 
cooling—constrained at different temperature levels across samples—varied 
systematically across all samples according to latitude, with well-constrained 
rapid cooling progressively younging from south to north (Fig. 9B).

The latitudinal migration of a Miocene cooling signal (Fig. 9B) was a new 
observation with implications for tectonic plate-scale geologic processes, and 
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it was revealed by codifying trends observed in inverse thermal history models. 
This required development of a set of consistent rules to define and assign both 
a date and an uncertainty to the cooling. In this case, a temperature threshold 
was not used as a rule because required cooling was observed across variable 
temperature ranges for different samples; however, in other studies, incorpo-
rating a temperature threshold may be useful and appropriate (e.g., Willett, 
1997; Fox and Shuster, 2014; Fraser et al., 2021). Importantly, the rules used 
in this study can be used to codify future thermal history models developed 
from samples in this region. Although geologic interpretations of the signal 
may vary (Husson et al., 2019; Stevens Goddard and Fosdick, 2019a, 2019b), 
the existence of this trend is robust.

A Path Family Approach to Identifying Trends in Inverse Model Results

Ideally, inverse thermal history modeling is used to determine the full 
range of plausible tT paths that are consistent with the available thermochro-
nologic data and geologic observations. However, in cases for which there 
is significant tT path diversity in an inverse model result, it can be difficult to 
interpret a geologic history because the results vary widely and may appear 
inconclusive. There is no one single way to handle these challenges. Here, we 
present a strategy for handling a diverse set of HeFTy inverse model results 
we call the Path Family Approach, which can be used to evaluate such model 
results from a geologic process-based perspective.

An Example Sample with a Non-Unique Inverse Model Result

To illustrate the Path Family Approach, we use an inverse model result for 
a real sample (Fig. 10A) with a measured ZFT age of 49.9 ± 2.0 Ma and three 
ZHe grains with ages of 20.5 ± 1.5 Ma, 21.6 ± 0.5 Ma, and 30.0 ± 0.5 Ma (Tables 
S3–S4, see footnote 1). We know from field relationships and previous analyt-
ical work that this sample is a ca. 160 Ma volcanic/volcaniclastic unit, which is 
in depositional contact with an overlying sedimentary unit deposited between 
ca. 150 Ma and 130 Ma. Given these geologic relationships, our inverse model 
has an initial geologic constraint box between 160 Ma and 130 Ma and 0–100 °C 
(Fig. 10A, Box 1). A second geologic constraint box between 120 Ma and 70 Ma 
and 300 °C and 400 °C reflects the timing of observed greenschist grade meta-
morphism (Fig. 10A, Box 2). We also impose a present-day surface thermal 
condition of 10 ± 5 °C. Otherwise, little is known about the sample’s post-70 Ma 
thermal history. The goal of this inverse model is to use the thermochronologic 
data to fill this knowledge gap.

We first performed sensitivity testing of several different model designs 
(not shown) to find a configuration of post-70 Ma exploration boxes (Boxes 
3 and 4 in Fig. 10A) that ask HeFTy to explore a wide range of thermal history 
behaviors during this unconstrained time. This testing reminds us that if there 
are no boxes between Box 2 and the modern surface temperature, or just one 

box with a maximum temperature bound colder than 400 °C, then no matter 
what path behavior we select, HeFTy will only attempt monotonic cooling 
histories from 70 Ma to 0 Ma. For HeFTy to also explore nonmonotonic his-
tories, and thus consider more than one episode of cooling since 70 Ma, two 
side-by-side exploration boxes are required (also see the model design of the 
synthetic examples in Fig. 3). Because the geologic record offers us no justifi-
cation to only consider continuously cooling paths after 70 Ma, we choose a 
model design that explores a range of monotonic, variable, and episodic paths.

The resulting inverse model result (Fig. 10A) shows that all tT paths con-
verge on monotonic cooling between ca. 50 Ma and 20 Ma. However, the 
period between 70 Ma and 35 Ma, the time period of greatest interest in this 
case, is not well constrained by the model results. When model results do not 
reveal a distinctive or narrow set of good-fit paths in a time period of interest, 
it is challenging to interpret the results geologically.

One general reason why parts of a thermal history model result can be 
poorly constrained is that cooling ages represent the cumulative thermal his-
tory of a sample, so it is common for different parts of good-fit thermal histories 
to trade off particular thermal history features (for example, the data could 
be consistent with either being hot in the Eocene and cold in the Miocene, or 
cold in the Eocene and hot in the Miocene). These relationships are commonly 
identified through sensitivity testing exercises (e.g., Fox and Shuster, 2014; 
Murray et al., 2019) and can be thought of as a kind of correlation amongst 
thermal history features (Fox and Carter, 2020). When an inverse model result 
is visualized in HeFTy, all of these possible scenarios are stacked on top of 
each other (i.e., Figs. 3A, 10A). However, all the good- and acceptable-fit tT 
paths can be exported from HeFTy and assessed using a spreadsheet or a 
script written in one’s programming language of choice.

Many workers using HeFTy, as well as other modeling programs, have 
recognized the challenge of teasing out distinct thermal histories from a com-
plete set of inversion results (Fox and Carter, 2020). For example, Willett (1997) 
used a convergence sequence to find paths with similar features and then 
proposed post-modeling analysis of results with similar characteristics, such 
as peak temperature. Other workers have iterated between inverse model 
results and forward models to test the relationship between thermal behav-
iors in a time-temperature history (e.g., Fox and Shuster, 2014; DeLucia et al., 
2018; Stevens Goddard et al., 2018). The Path Family Approach we suggest 
here shares commonalities with these previous studies.

Our Path Family Approach categorizes each good-fit tT path into one of 
several groups, which are referred to as path families. By grouping paths 
based on thermal behaviors or features, one can evaluate path families from a 
geologic processes-based perspective. To define a path family, a modeler must 
designate objective criteria that yield reproducible classifications. The criteria 
used to define a path family will depend on the objectives of the study and may 
focus on characteristics such as monotonic versus non-monotonic path behav-
ior, the timing or rate of heating or cooling, and/or residence temperatures. 
The Path Family Approach works well with HeFTy, which uses a Monte Carlo 
method to generate independent tT paths without automatically optimizing 
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Figure 10. A demonstration of the Path Family 
Approach. (A) Inversion results show 100 good-
fit paths. Boxes 1 and 2 represent information 
from the geologic record, whereas Boxes 3 and 4 
are exploration boxes that ask HeFTy to explore 
a wide range of thermal histories from 70 Ma to 
present, during which time little is known about 
the thermal history of this sample independent 
of the thermochronologic data. (B–D) Three path 
families were defined and used for classifica-
tion of individual paths for inversion results. The 
left panel illustrates the schematic definitions 
of these path families, which are described in 
detail in the text. The right panel shows the 
classification of individual paths from the inver-
sion results, overlaid in color on the light gray 
good-fit path envelope.
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the search of tT space. This inversion approach facilitates the search for indi-
vidual paths with different thermal behaviors within a single model run and 
avoids convergence on paths with similar thermal behaviors (Ketcham, 2005).

We use the Path Family Approach to identify three path families with distinct 
thermal behaviors within the inversion result in Figure 10A. In this example, 
we categorize the paths based on their behavior during the time period of 
interest between 70 Ma and 0 Ma. The path behavior during this time is clas-
sified according to path monotonicity and timing of initial monotonic cooling. 
Path Family 1 contains non-monotonic paths that, during the time period of 
interest, cool to temperatures of <200 °C and are then reheated by 100–300 °C 
with the initiation of final cooling beginning sometime after 35 Ma (Fig. 10B). 
Path Family 2 contains monotonic cooling paths that exhibit little to no heat-
ing or cooling during the time period of interest with final cooling beginning 
sometime after 35 Ma (Fig. 10C). Path Family 3 includes both monotonic and 
non-monotonic cooling paths during the time period of interest, but final 
cooling starts earlier, between 50 Ma and 35 Ma (Fig. 10D).

These three path families exhibit thermal behaviors that represent quite 
different geologic histories. The magnitude of cooling and reheating required 
by Path Family 1 is likely to be corroborated by independent evidence of the 
geologic processes needed to produce these thermal histories—for example, 
evidence of several kilometers of erosion followed by evidence of several kilo-
meters of sedimentary or tectonic burial (or an alternative heating mechanism). 
In contrast, the minor change in temperature experienced by Path Family 2 
during this time suggests relative quiescence of erosion, burial, or geothermal 
activity (Fig. 10C). Path Family 3 has the greatest heterogeneity, because it 
includes both monotonic and non-monotonic tT paths. Additionally, although 
not a condition for Path Family 3 classification, the magnitude of initial cooling 
and reheating observed in the non-monotonic paths in Path Family 3 is lower 
than the magnitude of heating and cooling observed in the paths in Path Family 
1, which provides further thermal distinction (Fig. 10). The timing of final mono-
tonic cooling in Path Family 3 also occurs earlier than in Path Families 1 and 2.

It is important to remember that from a purely thermochronologic per-
spective, it is equally likely that each path in each family represents the true 
thermal history; however, when considered in the context of the regional 
geology, one may be able to reject one or more path families or advocate for 
a preferred path family. Even if no path families can be rejected on the basis 
of independent geologic evidence, path family classification allows workers 
to evaluate process-based geologic hypotheses, constrain plausible interpre-
tations, and even design future work to discriminate among the path family 
solutions using new geologic observations.

Path Family Approach Take-Aways

The Path Family Approach is a useful alternative or companion exercise to 
a forward modeling approach that tests the sensitivity of thermochronologic 
data to specific path behaviors, because it does not require the modeler to 

manually predict the full set of plausible thermal histories in a forward sense. 
Instead, the Path Family Approach relies on HeFTy’s inversion algorithm to 
explore many possible solutions. This method pairs particularly well with 
HeFTy’s non-learning Monte Carlo search of tT space and emphasis on report-
ing all of the individual tT paths that fit the input data, but it could be adapted 
to inversion results generated by other modeling programs. The Path Family 
Approach cannot, however, overcome the fundamental limitations of thermo-
chronologic data. For example, path variability at temperatures higher than 
the closure temperature of the modeled systems is unlikely to be effectively 
categorized using this approach. Additionally, the Path Family Approach is 
also less likely to be useful for inverse models with limited data or geologic 
inputs. For example, the results of inverse modeling a single 40 Ma apatite 
grain (Fig. 3A) could be classified according to path families, but the number 
of path families required to fully categorize this model result may be quite 
large and difficult to evaluate geologically.

 ■ FEATURES OF ROBUST THERMAL HISTORY MODELS IN HEFTY

Thermal history models offer powerful geological insights with implica-
tions for a broad range of Earth scientists who may never produce thermal 
history models in the course of their own research. Although much of this 
contribution is dedicated to guiding modelers in the design and interpretation 
of thermal history model results in HeFTy, key principles identified in previous 
work (Ketcham, 2005; Flowers et al., 2015; Fox and Carter, 2020; Flowers et 
al., 2022) and expanded upon here can be distilled for non-expert consumers 
keen to evaluate published interpretations of thermal history models. First, the 
model design must be clearly documented so that it can be replicated (Flowers 
et al., 2015). Second, any codification or classification of thermal history trends 
and associated uncertainties should be objective and reproducible. Finally, 
we argue that inverse thermal history models should be accompanied by an 
explicit interrogation of what factors control the model results (e.g., model 
design, geologic constraints, selected diffusion model, and data inputs) such 
that the “why” of the result is clear. We also recommend the routine use of 
sensitivity testing to explore alternative solutions. In HeFTy, such sensitivity 
tests could include (1) additional inverse models that assess the role of con-
straint boxes in restricting the attempted thermal histories, with particular 
attention to the power of geologic constraints and whether exploration boxes 
are required to avoid the assumption of monotonicity and (2) additional for-
ward or inverse models that examine how the inclusion or binning of data 
impacts a model result.

 ■ CONCLUSION

Thermal history modeling allows us to leverage the richness of low- 
temperature thermochronologic data in a wide variety of applications. As new 
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workers generate and model these data, an explicit and ongoing discussion of 
modeling approaches and interpretation strategies is needed to highlight the 
opportunities and limitations of thermal history modeling to resolve geologic 
problems. Although this contribution features examples using HeFTy, many 
of the strategies are transferable to forward and inverse thermal history mod-
eling exercises using alternative programs. Our contribution is designed to:
(1) Cultivate an intuitive approach to thermal history modeling. The synthetic 

data sets used in this study are “perfect” data with known true thermal his-
tories and thus provide an opportunity to develop an intuitive understanding 
of the capacity of thermochronologic data sets to distinguish among distinct 
thermal histories using both forward and inverse modeling. This awareness 
is useful both during research planning—for example, in deciding which 
types of data will need to be collected to test competing hypotheses—as 
well as in the modeling and data-interpretation stages of a project.

(2) Suggest best practices for testing the sensitivity of inverse model results to 
model design choices in HeFTy. We use both synthetic data and examples 
from real data sets to demonstrate strategies for sensitivity testing ther-
mal history models. Sensitivity modeling can be used to avoid “black box” 
solutions by interrogating what factor(s) control model behavior including, 
but not limited to, the model design or inversion algorithm, a geologic 
constraint, a data trend, the spatial relationship between samples, or the 
choice of kinetic model.

(3) Demonstrate interpretation strategies well-suited to HeFTy’s thermal history 
model results. Describing, interrogating, and interpreting thermal history 
model results can be challenging. We provide examples of reproducible 
methods to define and/or quantify thermal trends among non-unique ther-
mal history results and introduce a strategy called the Path Family Approach 
to interpret inverse model results that display variable thermal behaviors.
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