Theoretically probing the relationship between barrier length and resistance in Al/AlOx/Al tunnel junctions

Lapham, P. and Georgiev, V. (2022) Theoretically probing the relationship between barrier length and resistance in Al/AlOx/Al tunnel junctions. Solid-State Electronics, 197, 108442. (doi: 10.1016/j.sse.2022.108442)

[img] Text
277651.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

Al/AlOx/Al tunnel junctions, also known as Josephson Junctions, are key components of many established and emerging electronic devices. They are an essential component of superconducting qubits. A major drawback is a lack of understanding of how the amorphous AlOx barrier influences the electron transport properties. In this work we combined Tight Binding Density Functional Theory (DFTB) with Non Equilibrium Greens Function (NEGF) to study computationally several Al/AlOx/Al with different barrier lengths. The simulations reveal a weak exponential relationship between barrier length and resistance of the device. However, considerable variability is found between junctions of similar barrier length. The calculations provide evidence of an “effective” barrier length significantly smaller than the actual (physical) barrier length. The resistance and effective barrier is found to be sensitively influenced by the local atomic structure of the amorphous barrier, which explains the junction to junction variability.

Item Type:Articles
Additional Information:Paul Lapham reports financial support was provided by Engineering and Physical Sciences Research Council (EP/P009972/1). Vihar Georgiev reports financial support was provided by Quantum Computng and Simulaton ub Partnership Resource Fund.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Lapham, Mr Paul and Georgiev, Professor Vihar
Authors: Lapham, P., and Georgiev, V.
College/School:College of Science and Engineering
College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:Solid-State Electronics
Publisher:Elsevier
ISSN:0038-1101
ISSN (Online):1879-2405
Published Online:30 August 2022
Copyright Holders:Copyright © 2022 The Author(s)
First Published:First published in Solid-State Electronics 197: 108442
Publisher Policy:Reproduced under a Creative Commons license

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
173715Quantum Electronics Device Modelling (QUANTDEVMOD)Vihar GeorgievEngineering and Physical Sciences Research Council (EPSRC)EP/P009972/1ENG - Electronics & Nanoscale Engineering