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An Implementation of Real-time Activity Sensing
using Wi-Fi: Identifying Optimal Machine

Learning Techniques for Performance Evaluation
William Taylor, Muhammad Zakir Khan, Ahsen Tahir, Ahmad Taha, Qammer H. Abbasi, Muhammad Imran.

Abstract— The elderly population is growing, and the health care
system is experiencing a strain on services provided to the elderly.
The recent COVID-19 pandemic has increased this strain and has
resulted in an increased risk of exposure during visits to elderly
homes. Increasing the desire to provide technological solutions to
counteract this. Currently, there lack reliable real-time non-invasive
sensing systems. This paper makes use of Radio Frequency sens-
ing, where signal propagation is observed in Channel State Informa-
tion (CSI) reports on Activities of Daily Living (ADLs). Real-time data
has been collected for three classifications, ”movement”, ”empty
room”, and ”no activity”. A filter is applied to reduce the noise of
the CSI data. Then the mean, max, min, kurtosis, skew and standard
deviation features are extracted from the CSI data. A machine learning model provides classification for the real-time
monitoring system allowing detection of abnormalities in the expected ADLs of the elderly. The timing of classifications
gives insight into the real-time capabilities of the system. The Random Forest algorithm is chosen to create the machine
learning model based on accuracy and timing capabilities. The model was able to achieve an accuracy of 100 % on new
unseen testing data with an average classification time of 7.31 milliseconds.

Index Terms— Channel State Information, Real-time, Activities of Daily Living, Elderly Care, Machine Learning, Python

I. INTRODUCTION

The elderly population is increasing worldwide due an
increase in life expectancy [1]. This leads to a strain on

healthcare systems globally [2]. With the recent COVID-19
pandemic, it has now become dangerous for family members
and care staff to visit elderly homes as elderly people are
considered high-risk [3]. This contributes to the desired use
of technologies to provide assistance to care and provide
safety monitoring. Technology can be used to monitor the
home and report irregularities in activities and vital signs.
Supporting elderly people in daily routines and living within
their residence [4]. Technologies can be divided into two
subcategories, Invasive and non-invasive [5]. Invasive tech-
nologies include wearable devices, where the devices must be
worn on the body for the sensors to report readings. Non-
invasive techniques remove the need to wear devices and
sensors can report on the environment and sense the move-
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ments of humans. A wearable sensor that can detect human
movements tends to use accelerometers [6]. Systems can make
use of accelerometers, gyroscopes, and magnetometers to
detect movements [7]. The disadvantage is that the sensor can
be uncomfortable for individuals to wear and there is limited
battery life. Additionally, elderly people may forget to wear
the devices. This can be attributed to pre-existing conditions
which can affect memory. Non-invasive techniques remove
these disadvantages as the system is no longer dependent
on the user wearing a device and/or device battery life.
Non-invasive techniques can include ultrasonic sensing [8],
camera technology [9], radar[10] and Radio Frequency (RF)
sensing [11]. These different types of technologies can be
used with AI for classifying different activities. Implementing
systems such as ultrasonic sensing, vibration Sensing and radar
can be expensive for purchasing additional equipment and
the intrusion of the additional equipment around the home.
Camera technology can also be expensive depending on the
quality of the camera device and there may be issues with
ambient lighting [12] and privacy concerns of cameras being
present. RF sensing can be achieved by observing changes in
the propagation of the radio signal caused by movements. The
sensing aspect is concerned with continually monitoring the
propagation information in the received signals and using this
data to sense what is occurring between the transmitter and
receiver. The use of RF sensing has clear benefits as it can be
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implemented using ambient Wi-Fi signals already present in
many homes [13]. This means that the cost is inexpensive and
there is no intrusiveness of additional equipment in the home.
It has become acceptable for homes to have Wi-Fi systems
present. Currently, RF sensing research looks at how signals
represent movements and how AI can classify movements.
There is a lack of research on implementing a real-time
working system. This paper looks to introduce the use of RF
sensing into a working monitoring system.

The contributions in this paper can be summarised in the
following points:

1) A real-time analysis of the monitoring system looking at
the timing of machine learning algorithms. Fast classifi-
cation timing is essential in real-time AI applications as
the AI model needs to be able to perform classifications
before the next sample of data is received from the
continuous sensing system so that warnings of critical
events can be reported in real-time.
The development of a monitoring system that makes
use of RF signals to accurately sense if a person is
present in a room and performing movements within the
monitored room. Machine learning is used to recognise
patterns of signal amplitude associated with the signal
reflection of the human body. This will serve to provide a
significant monitoring system that can be used to detect
disruptions to elderly people’s expected activities. If
there are changes in expected activities, then this can be
indicative of further issues and health care professionals
or family members can take further actions if required.

2) A dashboard which displays the current classification
from the real-time system. A dashboard is an important
feature of any monitoring system as it must communi-
cate the classification of the AI model to family mem-
bers and healthcare professionals so that appropriate
action can be taken to care for any irregularities detected
by the system. The dashboard is designed with simplicity
in mind. There are minimal elements that show only the
important aspects required to report. The classification
is shown as a heading and there is an image of the RF
signal which can show how much disruption the event
has caused to the RF signals.

II. RELATED WORK

The authors in [14] developed a real-time activity moni-
toring system using wristbands paired with mobile devices.
The work makes use of data fusion to combine data from
both wristbands and mobile devices. Data fusion provides a
contingency for when users forget to wear the wristband, it is
still possible that the user will have their mobile device on their
person and vice versa. The work included a diverse dataset of
many different activities which is possible by using the many
sensors included in the mobile device and the wristbands.
The smartphone is also able to identify the location of the
person and thus provides the presence or non-presence of the
person. However, the paper still relies on wearable devices
and will be ineffective without users wearing the devices.
Our proposed system seeks to provide the monitoring aspect

of this work but removes the need for wearable devices.
The authors of [15] used RF sensing to detect four people
performing activities. The work was able to have the highest
accuracy of 91.25 % accuracy when using a single subject.
Our work will seek to implement real-time sensing using a
single subject. The paper [16] detailed how falls in the homes
of elderly people can be detected by using Ultra Wide Band
(UWB) radar technology. This, therefore, provides a contact-
less sensing fall detection system and the results of the paper
show that this proposed approach can be applied in real-time
by streaming incoming data from the UWB device. The paper
aims to distinguish between normal activities and falling. The
system is beneficial for fall detection but is not designed
to provide broader monitoring of elderly people’s activities
which may be indicative of a fall risk rather than providing
notification of a fall that occurs when harm may have already
been caused to the individual. In our paper, we seek to make
use of the cheaper more available WiFi technology compared
to this work using radar technology. Aziz Shah, Syed, et al.
[17] made use of contactless sensing using Wi-Fi for real-
time classification of human activities picking up an object;
walking; sitting on a chair; jogging and leaving a room.
The work takes the amplitude of the Wi-Fi subcarriers and
converts them to scalogram images and passes these images
through deep learning algorithms. The deep learning provided
an accuracy result of 91.1 %. The paper mentions the use
of real-time but does not detail the process of how a real-
time approach is carried out. One of the main focuses of this
paper is the privacy factor of activity classification. Our paper
expands on the ideas detailed in this work and implements a
working real-time system to provide continuous monitoring.
Zhang, Daqing, et al. [18] present a real-time fall sensing
system using Channel State Information (CSI) of RF signals.
The classifications are made using Support Vector Machine
(SVM). The set-up uses a camera to serve as ground truth
while the CSI stream records the data being collected. The data
is then labelled using the camera footage as a reference. This
shows that the data is collected in real-time and classifications
are made on the real-time data. The paper does not detail
how long it takes for a classification to be made following
all the data processing steps detailed in the paper. Therefore
our paper seeks to provide an analysis of machine learning
algorithms to select an appropriate algorithm to provide a real-
time classification of new incoming data. The authors of [19]
made use of RF signals to sense sit down, stand up and static
stand activities in real-time. The paper made use of Linear
Discriminant Analysis and SVM machine learning algorithms.
The authors of this paper considered the timing component
of the algorithms concerning the sample rate. The results
concluded the AI model created could make classifications
within 300 milliseconds with an accuracy of 70 %. The work
of our paper will seek to increase the accuracy of a real-time
system by reducing the complexity of detected movements and
keeping the classification time in milliseconds.

The paper [20] made use of Wi-Fi to sense that social
distancing is present in elevators and office space with an
accuracy of 92 % for the elevator and 97 % in the office space.
This is achieved by using the CSI to calculate the number
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Fig. 1: Process of Real-Time Activity Monitoring

of occupants within an elevator and office space. The paper
made use of description features of the CSI amplitude like the
work of our paper. The features they used to describe the CSI
amplitude were mean, standard deviation, MAD, min, max,
skewness, kurtosis, and entropy. The paper did not compare
the difference in results between using describing features
against the full CSI amplitude data which the work of our
paper looks to add to current literature. The authors of [21]
recorded the timings of each algorithm in the application
of detecting diseases by use of medical records as datasets.
Algorithms tested like this paper was Support Vector Machine,
K Nearest Neighbours and Random Forest. Results showed
that on average Support Vector Machine was the fastest at
classifying the data. Our paper provides a similar analysis in
the field of activity detection using RF sensing.

Fig. 2: Full system diagram

III. METHODOLOGY

This section details the hardware setup, software config-
uration, data pre-processing and dashboard design. Figure 1
displays the process of real-time activity monitoring with
the human movement taking place between the transmitter
and receiver. The amplitude CSI of a selected subcarrier

is processed for machine learning classification and output.
Figure 2 details the system architecture and data flow including
data collection, data preprocessing, classification and output
display on the web interface.

A. Hardware Setup
This work makes use of an X300 Universal Software-

defined Radio Peripheral (USRP). As seen in Figure 3, the
person performs activities in front of the USRP and the CSI
is transferred to the computer using 1 Gigabyte Ethernet. Table
I lists the parameters used to configure the USRP device for
communication.

Fig. 3: Experimental setup of USRP placement with chair

B. Software Configuration
This paper makes use of GNU radio open-source software

running in an Ubuntu virtual environment. GNU radio is used
to create a python script using the parameters listed in Table
I, to define the USRP operation. The output of this script
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TABLE I: Parameters set for USRP OFDM Communication

Parameter Value
Number of Subcarriers 64
Pilot carriers 12,26,40, 54
Sample Rate 400 kHz
Centre Frequency 2.4 GHz
Bandwidth 20 MHz

contains the CSI information. The Raw output is piped to a
buffer. A second python script is used to read the buffer and
extract the CSI information.

C. Data Collection
The training data is collected from a real-time stream. Three

phases of data collection are completed for each of the three
classifications. The three classifications used in this model
are an ”empty room”, ”no activity” and movement. Figure
3 is used for the initial demonstration of a real-time sensing
system using RF signals. The concept of using RF signals to
sense movements in real-time has been mentioned in works
such as [22] but our work seeks to contribute to the real-
time application of RF sensing monitoring. Our work looks
to implement multiple classifications in real-time, which are
missing from works [18] and [20]. For real-life scenarios,
multiple devices can be used as a transmitter and receiver and
placed 2 metres apart. This can allow for a larger monitoring
area. The CSI data is collected and saved in CSV format.
300 CSV files for each classification are collected. The data
collected for movement consisted of a person performing
sitting and standing simultaneously while the USRP transmits
and receives RF signals until 300 CSVs of the movement
action are collected. For ”no activity” the person remains still
sitting for 150 samples and a further 150 samples of standing
still are collected. The reason for this is to allow the real-
time model to account for any differences between sitting still
and standing still to remain as ”no activity”. For the ”empty
room” samples, participants leave the room while CSI data is
collected. Steps 1, 2 and 3 in Figure 2 show the steps taken
in the data collection stage. The extracted data is then saved
into CSV format for the training stage.

D. Proposed Real-Time Activity Monitoring System
1) Sub carrier selection: During the training phase of the

real-time system, the data must be processed to improve the
machine learning classification accuracy. This was performed
in two stages, the first is to select one subcarrier from the
64 captured ones. Subcarrier selection is used to remove
redundant CSI subcarriers which can result in overfitting dur-
ing machine learning processes [23]. Overfitting is when too
much data is passed through the algorithm, and it causes the
algorithm to memorise the training data rather than recognise
patterns of the data. The selection of the subcarrier is decided
in two steps; firstly by looking at the pilot subcarriers which
show the variations caused by the human movement as they
are used to carry the pilot symbols in the Channel Estimation
process [24]. Subcarrier number 40 shows to have the most
variation. This is calculated by taking the standard deviation

of each of the pilot subcarriers. standard deviation is selected
as the metric to show this as it provides a measure of variation
amongst the group of pilot subcarriers. subcarrier 40 was
shown to have the highest standard deviation value in all
collected movement samples.

2) Pre-processing of Selected Sub Carrier: The pre-
processing stage consists of two steps to finalise the data for
Machine Learning. The first step is to filter the data and then
once a filter is taken, the features can be extracted. A butter-
worth low-pass filter with an order of 1 and a cut-off frequency
of 0.5 is applied to the data to remove high-frequency noise
from the signal. high-frequency noise is not the result of
human activity as human activity is detected at low frequencies
[25]. Figure 4 shows a comparison of a movement sample
before and after the pre-processing.

Fig. 4: Non-Filtered vs Filtered CSI data

The last step is to take the features of the filtered 1000
CSI data points. Six features are taken to summarise all the
CSI amplitude data of subcarrier 40. The six features used
are mean, max, min, kurtosis, skew, and standard deviation
[26]. These features describe the wave of the signal including
the peaks and size of peaks. Mean is used to show the mean
of each value. CSI samples with peaks caused by movements
will show a higher mean than samples with fewer peaks in
amplitude. Similarly to the min and max values, where lower
movement samples will have a lower max value and may
display lower min values. Kurtosis and skew will also vary on
the shape of the peaks observed in the CSI samples. Standard
deviation will take note of the variance of the samples.
These features provide an effective way of highlighting the
differences between the 3 classifications. During the training
phase, this process is carried out for each sample and the
appropriate label is added. In the real-time process, the CSI
data is processed and then fed via the AI model to give the
prediction of the model.

3) Machine Learning: A selection of machine learning algo-
rithms is tested against the data. The selected algorithms are
selected based on the related work using these algorithms with
CSI data. These algorithms are Random Forest [11], Bagged
Trees [27], K Nearest Neighbours (KNN) and SVM [28].

4) Real-time Classification: This paper aims to provide users
with the detection of movement as it happens. A real-time
system is defined as a system in which input data is processed
within milliseconds so that it is available virtually immedi-
ately.
In this experiment, the sensing data is the CSI and it is
constantly being collected from received RF signals. The
system works by using a window size of 1000 CSI data points.
During the time of classifying the CSI window, another 1000
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CSI data points are collected. 1000 CSI data points are equal
to approximately 2.5 seconds due to the 400 kHz sample rate
used in the RF communication. The real-time system must
classify the data before the new data is received. Therefore
the system must perform classification within the 2.5 seconds
time frame as the next CSI window will be complete by the
end of this time frame. Within this time frame, raw samples
are passed to code which will carry out all pre-processing of
the data and then pass the pre-processed data to the machine
learning model. The entire process is recorded by taking
timestamps before and after classification is provided. The
time of classification is taken on a virtual machine with an
i7 9700 3.00GHz CPU and 12GB of RAM.
To evaluate the timing performance 20 samples from each
classification are removed from the training data. The re-
maining 240 samples are used to train a model and that
model is used on the new testing samples and the time and
accuracy are recorded. Additionally, a real-time comparison is
made between the different algorithms using full CSI data and
features to justify a choice in algorithm and between complete
CSI data and the extracted features of the CSI data.

5) Dashboard Design: The Dashboard is created using the
Flask python package. Flask is a micro framework that uses
python to create web pages. The web page is designed with
simplicity in mind. The reason for a simplistic design is to
refrain from distractions as this system is designed with alerts
in mind. The web page is comprised of a title banner, a heading
declaring the classification of the data and a visual image of the
current CSI to which the classification relates. Additionally,
for this paper, the web page displays the total time of the
classification at the bottom of the web page. This is used to
calculate the total time between stages 3, 4, 5 and 6 shown
in Figure 2. Python is used to take a timestamp at the start
of stage 3 and JavaScript is used on the web page in stage 6
to take the end timestamp and duration can be calculated by
using these two timestamps.

IV. RESULTS

A. Comparison of Machine Learning Algorithms

Figure 5 displays the accuracy of each of the algorithms
when using 10-fold cross-validation. Table II shows the results
achieved after all data has been tested during each of the
10 folds of the k-fold cross validation method including the
Accuracy, Precision, Recall and F1 score which are common
indicators of how machine learning algorithms perform.

The results show that Random Forest performed the best
with an accuracy of 99.33 %. KNN had an accuracy result of
99.11 % and SVM had an accuracy score of 98.22 %. Bagged
trees showed the lowest accuracy score of 93.11 %. All the
algorithms however were able to achieve an accuracy score of
over 90 %. This, therefore, indicates that the data of the three
classifications are distinctive. Figure 6 shows the confusion
matrix of the best-performing Random Forest algorithm. The
figure shows how all 300 samples were classified in each of
the 10-folds during cross-validation testing. The 10-fold cross-
validation testing method splits the data into 10 groups, with
each group taking a turn as the testing data and the remaining

Fig. 5: Accuracy comparison of selected algorithms

TABLE II: Results from Comparison of Machine Learning
Algorithms

Algorithm Accuracy
(%)

Classification Precision Recall F1
Score

Random 99.33 Empty 0.99 0.99 0.99
Forest Movement 1 1 1

No Activity 0.99 0.99 0.99
Bagged 93.11 Empty 0.86 0.95 0.90
Trees Movement 1 1 1

No Activity 0.94 0.85 0.89
KNN 99.11 Empty 0.99 0.99 0.99

Movement 1 1 1
No Activity 0.99 0.99 0.99

SVM 98.22 Empty 0.99 0.96 0.97
Movement 0.97 1 0.99
No Activity 0.98 0.99 0.99

9 groups are used as training data. Once all 10 groups have
been used as testing data once, then the classification results
for all samples can be presented.

The Random Forest confusion matrix shows all the move-
ment samples were correctly classified. 299 out of 300 samples
were correctly classified as ”no activity” samples. The ”empty
room” correctly classified 295 samples. As expected, most of
the algorithm results have been able to establish the movement.
The difficulty lies with differentiating between ”empty room”
and ”no activity” as this is where most of the errors in the
classification occur. The algorithms have classified most of
the samples correctly for all three classifications. hence the
high accuracy score achieved. For the implementation of a real
system, some inference can be implemented which will work
on the assumption that a movement must take place before a
room can be empty. This can eliminate the small error rate in
classifying between ”empty room” and ”no activity”.

1) CSI data vs Feature selection: The above results are
achieved by using features from the CSI data described in
Section III-D.2. To justify the use of features in this paper
a comparison is made between the processed CSI data and
extracted features. Figure 7 shows the comparison of accuracy
between using the CSI data vs the Features.

The algorithms perform better when using the features of
the CSI data except for SVM. Random Forest had the highest
accuracy out of all results of 99.11 % when using features.
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Fig. 6: Confusion Matrix’s of the Random Forest Algorithm

Fig. 7: Accuracy comparison of CSI data vs features

The Bagged Trees and KNN had significantly better results
using extracted features. This improved accuracy is used as
justification in this paper to use features in the real-time
system.

B. Evaluation of Real-time Classification
Due to the real-time nature of the proposed system, the

section will evaluate the real-time aspect of this work. To
evaluate real-time classification the data is split into 80 %
training data and 20 % testing data. Models are trained with
the training data and then used to classify and record the time
of the testing data. The results are displayed in the below table
III. Table III presents the results of the average classification
time and accuracy of 20 % testing samples of the data with
full data vs feature extraction.

The results show that all algorithms can classify the data
in milliseconds which would therefore be considered real-time
classification. The results of the full features show the Random
Forest algorithm as being the most accurate at 100 % and the
fastest time at 7.31 milliseconds. The Bagged Trees algorithm
has the lowest accuracy of 50 % and took the longest time
of 940.13 milliseconds. KNN had an average time of 215.77
milliseconds and an accuracy of 85 %. The SVM algorithm
had the second-best accuracy of 96.67 % with an average time
of 49.30 milliseconds.

TABLE III: Results from Comparison of Machine Learning
Algorithms

Algorithm Average CSI Average Features CSI Extracted
runtime cost runtime cost Accuracy Features
(Milliseconds) (Milliseconds) Accuracy

Random
Forest

7.31 12.63 100.00% 95.00%

Bagged
Trees

940.13 17.81 50.00% 91.67%

KNN 215.77 10.86 85.00% 95.00%

SVM 49.30 8.47 96.67% 95.00%

When the features were reduced Random Forest, KNN and
SVM all had the same accuracy of 95 % with SVM performing
the fastest at 8.47 milliseconds, KNN with 10.86 milliseconds
and Random Forest with 12.63 milliseconds. The Bagged Tree
algorithm was still the lowest-performing algorithm with an
accuracy score of 91.67 % and an average time of 17.81
seconds.
The results show that the Bagged Trees, KNN and SVM show
improvement in timing when the features are reduced. The
best time in all of the results is the Random Forest algorithm
when using full features. This suggests that Random Forest
classification time is not affected by the size of the data and
the additional time is due to the extra steps of producing the
features of the full CSI data. To prove this the classification
time is recalculated by not including the pre-processing steps
and purely the classification time. The results showed that with
full features the Random Forest was able to obtain an average
classification time of 6.42 milliseconds and with the features,
it was 6.48 milliseconds. This is a negligible difference of 0.02
milliseconds.
From these results, the authors have chosen Random Forest
with features as the algorithm to create the AI model for the
real-time system. This is justified by the fast classification
time paired with the highest accuracy using a 10-fold cross-
validation shown in Table II. All algorithms can perform
real-time classification, but Random Forest had the highest
accuracy when using the 10-fold cross-validation Therefore
has been selected as the algorithm for the real-time model.

C. Classification of Unseen Data

As presented in the previous section, Random Forest with
reduced features is best suited to our proposed system. We can
collect new unseen data and test how the trained model can
classify new unseen data using the selected methods. This will
indicate how the model will classify new incoming data during
the operation of the real-time system. A total of 100 additional
samples are collected and compiled into a new testing dataset.
All the Data collected and tested in previous sections is used
in the creation of an AI model which is applied to each sample
and results are recorded. Figure 8 shows the confusion matrix
and it shows that all new unseen testing samples were correctly
classified. This provides sufficient evidence that our model will
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Fig. 8: Model Classification of New Unseen Data

be able to classify the 3 classifications during the real-time
operation of the monitoring system.

D. Dashboard

Fig. 9: Dashboard Output for all Three Classifications

The Dashboard is used to provide visualisation of the
classification produced from the AI model. The result of the AI
must be presented, and it is not expected that family members
or care staff to read from terminal outputs. The result of the AI
model is passed to the dashboard python code as a variable.
Then the dashboard loads the web page based on the contents
of the variable. Rules can also be set to create alerts if any
activity is detected which is not considered regular and then
raise an alert. These alerts can be used to assist. The dashboard
displays the detected classification and a visual representation
of the CSI. Figure 9 shows all of the classes outputted on the
dashboard with images and time for classification. It can be
seen how the amplitude is affected in the movement sample.
The difference between ”empty room” and ”no activity” is
less clear to visualise but it can be noted that the ”empty
room” sample has a slightly higher amplitude than the ”no
activity”. This is the reason why most errors in classification

were caused by the ”empty room” and ”no activity” classes
as shown in Figure 6.

Due to the current system’s constraint of range from the
use of a single USRP shown in Figure 3, as soon as the
person leaves the small monitoring area, the system will then
trigger the empty classification. The timing recording is done
by taking a UNIX timestamp from python when the web page
is first loaded then the processes of the web app take place
and then when the web page is displayed on the browser,
JavaScript is applied to take a new UNIX timestamp which is
then subtracted from the first timestamp and thus providing
a time for how long the entire process took. This time is
displayed on the bottom of the web page shown in Figure
9. The time is still in milliseconds but much larger than the
times shown for Random Forest model classification in Section
IV-B. This extra time is due to the extra functions of the
web page such as creating the CSI image displayed on the
web page additionally time is taken for retrieving the data
before data processing and model classification can take place.
However, the time is still in milliseconds and clearly in line
with the definition of real-time. It is worth considering that
more complex web pages may result in higher latency and
will thus affect the real-time functionality of the web page. It
is also worth considering the processing power of web servers
that will host the dashboard.

V. CONCLUSION

In this paper, a novel real-time sensing system is presented.
The system makes use of AI to identify the moving or presence
of a person in a room using Wi-Fi. The use of Wi-Fi ensures a
non-contact method of movement detection where a wearable
device is not required. A USRP device is set up to use Wi-
Fi between a transmitting antenna and a receiving antenna.
The Wi-Fi signals are then transmitted through the atmosphere
and when a person is present or moves the Wi-Fi signal is
disrupted. These disruptions are present in the CSI. Every 1000
CSI data points received at the receiver side is then processed
and passed to AI models to make a classification on whether
the disruption indicates an ”empty room”, the presence of a
person or movement. 300 training samples are collected for
each classification and the accuracy and computational time
of 4 machine learning algorithms are compared. The results
are presented, and the justification is given for the choice
of algorithm to create an AI model. The AI model which
achieved 100 % accuracy on new unseen testing data is used
in a dashboard to create a real-time monitoring system. Future
work will seek to create an alert system where irregularities in
movements can be flagged up as an alert. Which will create
a more effective monitoring system which will not require
constant monitoring of a dashboard.
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