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Towards Certified Robustness
of Distance Metric Learning

Xiaochen Yang, Yiwen Guo, Mingzhi Dong and Jing-Hao Xue, Senior Member, IEEE

Abstract—Metric learning aims to learn a distance metric such
that semantically similar instances are pulled together while
dissimilar instances are pushed away. Many existing methods
consider maximizing or at least constraining a distance margin
in the feature space that separates similar and dissimilar pairs of
instances to guarantee their generalization ability. In this paper,
we advocate imposing an adversarial margin in the input space so
as to improve the generalization and robustness of metric learning
algorithms. We first show that, the adversarial margin, defined
as the distance between training instances and their closest
adversarial examples in the input space, takes account of both the
distance margin in the feature space and the correlation between
the metric and triplet constraints. Next, to enhance robustness
to instance perturbation, we propose to enlarge the adversarial
margin through minimizing a derived novel loss function termed
the perturbation loss. The proposed loss can be viewed as a data-
dependent regularizer and easily plugged into any existing metric
learning methods. Finally, we show that the enlarged margin is
beneficial to the generalization ability by using the theoretical
technique of algorithmic robustness. Experimental results on 16
datasets demonstrate the superiority of the proposed method over
existing state-of-the-art methods in both discrimination accuracy
and robustness against possible noise.

Index Terms—Metric learning, Nearest neighbor, Adversarial
perturbation, Robustness, Generalization ability

I. INTRODUCTION

METRIC learning focuses on learning similarity or dis-
similarity between data. Research on metric learning

originates from at least 2002, where [1] first proposes to
formulate it as an optimization problem. Since then, many
metric learning methods have been proposed for classifi-
cation [2]–[4], clustering [5], and information retrieval [6],
[7]. In particular, the methods have shown to be particularly
superior in open-set classification and few-shot classification
with notable applications in, for example, face verification [8],
[9] and person re-identification [10], [11].

One commonly studied distance metric is the generalized
Mahalanobis distance, which defines the distance between any
two instances xi,xj ∈ Rp as

dM (xi,xj) =
√

(xi − xj)TM(xi − xj),
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where M is a positive semidefinite (PSD) matrix. Owing
to its PSD property, M can be decomposed into LTL.
Thus, computing the Mahalanobis distance is equivalent to
linearly transforming the instances from the input space to the
feature space via L and then computing the Euclidean distance
∥Lxi −Lxj∥2 in the transformed space.

To learn a specific distance metric for each task, prior
knowledge on instance similarity and dissimilarity should be
provided as side information. Metric learning methods differ
by the form of side information they use and the supervision
encoded in similar and dissimilar pairs. For example, pairwise
constraints enforce the distance between instances of the same
class to be small (or smaller than a threshold value) and the
distance between instances of different classes to be large (or
larger than a threshold value) [1], [5]. The thresholds could
be either pre-defined or learned for similar and dissimilar
pairs [12], [13]. In triplet constraints (xi,xj ,xl), distance
between the different-class pair (xi,xl) should be larger than
distance between the same-class pair (xi,xj), and typically,
plus a margin [14]–[17]. More recently, quadruplet constraints
are proposed, which require the difference in the distance
of two pairs of instances to exceed a margin [18], and
(N + 1)-tuplet extends the triplet constraint for multi-class
classification [19].

The gap between thresholds in pairwise constraints and the
margin in triplet and quadruplet constraints are both designed
to learn a distance metric that could ensure good generaliza-
tion of the subsequent k-nearest neighbor (kNN) classifier.
However, such a distance margin imposed in the feature
space does not consider the correlation between the data and
the learned metric. Consequently, it may be insufficient to
withstand a small perturbation of the instance occurred in the
input space, thereby failing to certify the robustness or even
possess the anticipated generalization benefit. As illustrated in
Fig. 1(upper), while xi selects the same-class instance xj as
its nearest neighbor in the feature space, a tiny perturbation
from xi to x′

i in the input space can be magnified by the
learned distance metric, leading to a change in its nearest
neighbor from xj to the different-class instance xl. When the
NN algorithm is used as the classifier, the perturbation results
in an incorrect label prediction.

In this paper, we propose a simple yet effective method
to enhance the generalization ability of metric learning al-
gorithms and their robustness against instance perturbation.
As shown in Fig. 1(bottom), the principal idea is to enlarge
the adversarial margin, defined as the distance between a
training instance and its closest adversarial example in the
input space [20].



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. **, NO. **, 2022 2

Fig. 1: Upper: Traditional methods aim to separate the same-
class pair (xi,xj) and the different-class pair (xi,xl) by
a margin in the feature space. While xi has xj as its
nearest neighbor (NN) in the feature space and is correctly
predicted by using the NN classifier, the metric is sensitive
to perturbation in the input space; a tiny perturbation from
xi to x′

i changes the NN to xl and leads to an incorrect
prediction. Bottom: The proposed method aims to enlarge the
adversarial margin in the input space, which equals to the
Euclidean distance between xi and the closest point xi,min

in the input space that lies on the decision boundary in the
feature space (indicated by PB) and quantifies the maximum
degree to which robustness can be certified.

In particular, our contributions are fourfold.
1) We identify that the distance margin, widely used in

existing methods, is insufficient to withstand adversarial
examples, and we introduce a direct measure of robust-
ness termed the adversarial margin, which quantifies the
maximum degree to which a training instance could
be perturbed without changing the label of its nearest
neighbor (or k nearest neighbors if required) in the
feature space. Building on a geometric insight, we derive
an analytically simple solution to the adversarial margin,
which reveals the importance of an adaptive margin
considering the correlation between the data and the
distance metric (Section II-A-II-B).

2) We define a novel hinge-like perturbation loss to pe-
nalize the adversarial margin for being small. The pro-
posed loss function serves as a general approach to
enhancing robustness, as it can be optimized jointly with
any existing triplet-based metric learning methods; the
optimization problem suggests that our method learns a
discriminative metric in a weighted manner and simul-
taneously functions as a data-dependent regularization
(Section II-C).

3) We show the benefit of enlarging the adversarial margin
to the generalization ability of the learned distance
metric by using the theoretical technique of algorithmic
robustness [21] (Theorem 1, Section II-D).

4) We conduct experiments on 16 datasets in both noise-
free and noisy settings. Results show that the proposed
method outperforms state-of-the-art robust metric learn-
ing methods in terms of classification accuracy and
validate its robustness to possible noise in the input

space (Section IV).
Notation: Let {xi, yi}ni=1 denote the set of training instance

and label pairs, where xi ∈ X ⊆ Rp and yi ∈ Y =
{1, . . . , C}; X is called the input space. Our framework is
based on triplet constraints {xi,xj ,xl} and we adopt the
following strategy for generating triplets [14]:

S =
{
(xi,xj) : xj ∈ {kNNs with the same class label of xi}

}
,

R =
{
(xi,xj ,xl) : (xi,xj) ∈ S, yi ̸= yl

}
.

xj is termed the target neighbor of xi and xl is termed the
impostor. |S| and |R| denote the numbers of elements in the
sets S and R, respectively. dE and dM denote the Euclidean
and Mahalanobis distances, respectively; M ∈ Sp+, where Sp+
is the cone of p× p real-valued PSD matrices. M2 = MM .
1[·] denotes the indicator function and [a]+ = max(a, 0) for
a ∈ R.

II. METHODOLOGY

In this section, we introduce our method for enhancing
robustness of triplet-based metric learning algorithms through
maximizing the adversarial margin. First, we review the
existing distance margin and provide the rationale for en-
larging the adversarial margin. Second, an explicit formula
for the adversarial margin is derived. Third, we propose the
perturbation loss to encourage a larger adversarial margin
and present its optimization jointly with the existing large
(distance) margin nearest neighbor (LMNN) algorithm. Lastly,
we show that enlarging the adversarial margin is beneficial to
the generalization ability of the learned distance metric.

A. Motivation for enlarging the adversarial margin

Suppose xi is a training instance and xj , xl are the nearest
neighbor of xi from the same class and from the different class
respectively. Many triplet-based methods, such as LMNN [14],
impose the following constraint on the triplet:

f(xi) := d2M (xi,xl)− d2M (xi,xj) ≥ 1.

When the constraint is satisfied, xi will be correctly classified
using the NN classifier. Moreover, the value one represents the
unit margin at the distance level and is designed to robustify
the model against small noises in training instances.

Nevertheless, the distance margin may be insufficient to
withstand deliberately manipulated perturbations. Let ∆xi

denote a perturbation of xi. When the perturbation size is
constrained as ∥∆xi∥2 ≤ r, f(xi +∆xi) decreases the most
from f(xi) if ∆xi is chosen in the direction of M(xl −xj):
f(xi +∆xi)− f(xi) = 2∆xT

i M(xj −xl) = −2r∥M(xl −
xj)∥2. Therefore, in order to correctly classify the perturbed
instance xi+∆xi, it is required that f(xi+∆xi) is positive,
that is, ∥M(xl − xj)∥2 should be small. One way to reduce
this value is by regularizing the spectral norm of M . However,
it is demanding for the metric to satisfy the large distance
margin for all triplets and meanwhile keep a small spectral
norm.

To achieve robustness against instance perturbation, we
suggest an alternative way by maximizing the adversarial
margin, defined as the distance between the training instance
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and its closest adversarial example [20]. More concretely,
an adversarial example is a perturbed point whose nearest
neighbor, identified based on the learned Mahalanobis dis-
tance, changes from an instance of the same class to one
of a different class; consequently, it will be misclassified by
the NN classifier and increase the risk of misclassification by
kNN. In terms of previous notations, an adversarial example
is a perturbed point xi +∆xi such that f(xi +∆xi) < 0. If
all adversarial examples of an instance are far away from the
instance itself, i.e. there is no ∆xi such that ∥∆xi∥2 ≤ r
and f(xi + ∆xi) < 0, a high degree of robustness is
achieved. Building on this rationale, we will first find the
closest adversarial example and then push this point away
from the training instance. Moreover, since the test instance
can be regarded as a perturbed copy of training instances [21],
improving robustness on correctly classified training instances
also helps enhance the generalization ability of the learned
metric.

B. Derivation of adversarial margin

We start by deriving a closed-form solution to the closest
adversarial example. Given a training instance xi and the
associated triplet constraint (xi,xj ,xl), we aim to find the
closest point xi,min to xi in the input space that lies on the
decision boundary formed by xj and xl in the feature space.
Note that closeness is defined in the input space and will
be calculated using the Euclidean distance since we target at
changes on the original feature of an instance; and that the
decision boundary is found in the feature space since kNNs are
identified by using the Mahalanobis distance. Mathematically,
we can formulate the closest adversarial example xi,min as
follows:

xi,min = argmin
x′
i∈Rp

(x′
i − xi)

T (x′
i − xi)

s.t. (Lx′
i −

Lxj +Lxl

2
)T (Lxl −Lxj) = 0

(1)

The objective function of Eq. 1 corresponds to minimizing
the Euclidean distance from the training instance xi. The
constraint represents the decision boundary, which is the
perpendicular bisector of points Lxj and Lxl. In other words,
it is a hyperplane that is perpendicular to the line joining points
Lxj and Lxl and passes their midpoint Lxj+Lxl

2 ; all points
on the hyperplane are equidistant from Lxj and Lxl.

Since Eq. 1 minimizes a convex quadratic function with
an equality constraint, we can find an explicit formula for
xi,min by using the method of Lagrangian multipliers; detailed
derivation is provided in Appendix A:

xi,min = xi +

(
xj+xl

2
− xi

)T

M(xl − xj)

(xl − xj)TM2(xl − xj)
M(xl − xj). (2)

With the solution of xi,min, we can now calculate the
squared Euclidean distance between xi and xi,min:

d2E(xi,xi,min) =

(
d2M (xi,xl)− d2M (xi,xj)

)2
4d2

M2(xj ,xl)
. (3)

For clarity, we will call dE(xi,xi,min) the adversarial margin,
in contrast to the distance margin as in LMNN. It represents

the maximum amount of tolerance for perturbation while
retaining prediction correctness. The numerator of Eq. 3 is the
square of the standard distance margin, and the denominator
is the squared L2-norm of M(xl−xj). Therefore, in order to
achieve a large adversarial margin, the metric should push xl

away from the neighborhood of xi by expanding the distance
in the direction that has a small correlation with xl −xj (the
optimal direction is orthogonal to xl − xj).

Remark 1: The objective function in Eq. 1 defines a hyper-
sphere in the input space, which characterizes perturbations
of equal magnitude in all directions, e.g., isotropic Gaussian
noise. To model heterogeneous and correlated perturbation,
we can extend the objective function by defining an arbitrary
oriented hyperellipsoid, as discussed in Appendix A.

C. Metric learning via minimizing the perturbation loss

To improve robustness of distance metric, we design a
perturbation loss to promote an increase in the adversarial
margin. Two situations need to be distinguished here. Firstly,
when the nearest neighbor of xi is an instance from the same
class, we will penalize a small adversarial margin by using the
hinge loss [τ2−d2E(xi,xi,min)]+. The reasons are that (a) the
adversarial margin is generally smaller for hard instances that
are close to the class boundary in contrast to those locating
far away and (b) it is these hard instances that are more
vulnerable to perturbation and demand an improvement in their
robustness. Therefore, we introduce τ for directing attention
to hard instances and controlling the desired margin. Secondly,
in the other situation where the nearest neighbor of xi belongs
to a different class, metric learning should focus on satisfying
the distance requirement specified in the triplet constraint. In
this case, we simply assign a large penalty of τ2 to promote a
non-increasing loss function. Integrating these two situations,
we propose the following perturbation loss:

JP =
1

|R|
∑
R

{
[τ2 − d̃2E(xi,xi,min)]+1[d

2
M (xi,xl) > d2M (xi,xj)]

+τ2
1[d2M (xi,xl) ≤ d2M (xi,xj)]

}
,

(4)

where
∑

R is an abbreviation for
∑

(xi,xj ,xl)∈R. To prevent
the denominator of Eq. 3 from being zero, which may happen
when different-class instances xj and xl are close to each
other, we add a small constant ϵ (ϵ=1e-10) to the denominator;
that is, d̃2E(xi,xi,min) =

(d2M (xi,xl)−d2M (xi,xj))
2

4
(
d2
M2 (xj ,xl)+ϵ

) .

The proposed perturbation loss can be readily included in
the objective function of any metric learning methods and is
particularly useful to triplet-based methods. When the same
triplet set is used for supervising metric learning and deriving
adversarial examples, our method can encourage the triplets to
meet the distance margin by learning a discriminative metric.
For this reason, we adapt LMNN as an example for its wide
use and effective classification performance. The objective
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function of LMNN with the perturbation loss is as follows:

min
M∈Sp+

J = JLMNN + λJP,

JLMNN = (1− µ)
1

|S|
∑
S

d2M (xi,xj)

+ µ
1

|R|
∑
R

[
1 + d2M (xi,xj)− d2M (xi,xl)

]
+
,

(5)

where
∑

S stands for
∑

(xi,xj)∈S . The weight parameter λ >
0 controls the importance of perturbation loss (JP) relative to
the loss function of LMNN (JLMNN). µ ∈ (0, 1) balances the
impacts between pulling together target neighbors and pushing
away impostors.

We adopt the projected gradient descent algorithm to solve
the above optimization problem. The gradient of JP and JLMNN
are given as follows:

∂JP

∂M
=

1

|R|
∑
R

αijl

{
d2M (xi,xl)− d2M (xi,xj)

2
(
d2
M2(xj ,xl) + ϵ

) (Xij −Xil)

+

(
d2M (xi,xl)− d2M (xi,xj)

)2
4
(
d2
M2(xj ,xl) + ϵ

)2 (MXjl +XjlM)

}
,

∂JLMNN

∂M
=

1− µ

|S|
∑
S

Xij +
µ

|R|
∑
R

βijl(Xij −Xil),

(6)

where αijl = 1[d2M (xi,xl) > d2M (xi,xj), d̃E(xi,xi,min) ≤
τ ], βijl = 1[1 + d2M (xi,xj) − d2M (xi,xl) ≥ 0]; Xij =
(xi −xj)(xi −xj)

T and Xil,Xjl are defined similarly. The
gradient of JP is a sum of two descent directions. The first
direction Xij − Xil agrees with LMNN, indicating that our
method updates the metric toward better discrimination in
a weighted manner. The second direction MXjl + XjlM
controls the scale of M ; the metric will descend at a faster
pace in the direction of a larger correlation between M and
Xjl. This suggests our method functions as a data-dependent
regularization. Let M t denote the Mahalanobis matrix learned
at the tth iteration. The distance matrix will be updated as

M t+1 = M t − γ

(
∂JLMNN

∂M t
+ λ

∂JP

∂M t

)
,

where γ denotes the learning rate. Following [14]’s work, γ is
increased by 1% if the loss function decreases and decreased
by 50% otherwise. To guarantee the PSD property, we factor-
ize M t+1 as V ΛV T via eigendecomposition and truncate all
negative eigenvalues to zero, i.e. M t+1 = V max(Λ, 0)V T .

Remark 2: The proposed perturbation loss is a generic ap-
proach to improving robustness against possible perturbation.
In Appendix B, we illustrate examples of incorporating the
perturbation loss into two different types of triplet-based meth-
ods, sparse compositional metric learning (SCML) [15] and
proxy neighborhood component analysis (ProxyNCA++) [22].
SCML revises the structure of the Mahalanobis distance by
representing it as a sparse and non-negative combination
of rank-one basis elements, which typically results in less
number of parameters to be estimated. ProxyNCA++ revises
the construction of triplet constraints by replacing nearest
instances xj and xl with nearest proxy points. The proxies
are learned to represent each class, and the resulting method

is shown to generalize well on small datasets [23], robust to
outliers and noisy labels [24], and improves computational
efficiency on large-scale datasets.

Remark 3: Learning a distance metric for extremely high-
dimensional data will result in a large number of parameters
to be estimated and potentially suffer from overfitting. In
order to reduce the input dimensionality, PCA is often applied
to pre-process the data prior to metric learning [14], [25].
In Appendix A-A, we extend the proposed method such
that the distance metric learned in the low-dimensional PCA
subspace could still achieve robustness against perturbation
in the original high-dimensional input space. The decision
boundary of NN classifier (i.e. the constraint of Eq. 1) is
revised in order to take account of the linear transformation
matrix induced by the Mahalanobis distance and that of PCA.
The proposed extension will be evaluated in Section IV-C.

D. Generalization benefit

From the perspective of algorithmic robustness [21], en-
larging the adversarial margin could potentially improve the
generalization ability of triplet-based metric learning methods.
The following generalization bound, i.e. the gap between the
generalization error L and the empirical error ℓemp, follows
from the pseudo-robust theorem of [26]. Preliminaries and
derivations are given in Appendix C.

Theorem 1. Let M∗ be the optimal solution to Eq. 5. Then
for any δ > 0, with probability at least 1− δ we have:

|L(M∗)− ℓemp(M
∗)|

≤ n̂(ts)

n3
+B

(
n3 − n̂(ts)

n3
+ 3

√
2K ln 2 + 2 ln 1/δ

n

)
,

(7)

where n̂(ts) denotes the number of triplets whose adversarial
margins are larger than τ , B is a constant denoting the upper
bound of the loss function (i.e. Eq. 5), and K denotes the
number of disjoint sets that partition the input-label space and
equals to |Y|(1 + 2

τ )
p.

Enlarging the desired adversarial margin τ will affect two
quantities in Eq. 7, namely K and n̂(ts). First, since K equals
to |Y|(1 + 2

τ )
p, increasing τ will cause K to decrease at a

polynomial rate of the input dimensionality p. Moreover, as
the right-hand side of Eq. 7 is a function of K (O(K1/2)), this
means that the upper bound of generalization gap reduces at a
rate of p1/2. Hence, for datasets with a relative large number
of features, a small improvement in the adversarial margin can
greatly benefit the generalization ability of the learned metric.

Secondly, when τ increases, less triplets will satisfy the
condition that their adversarial margin is larger than τ ; that is,
n̂(ts) decreases with τ . Meanwhile, since B > 1, the upper
bound is a decreasing function of n̂(ts). Therefore, enlarging
τ leads to an increase in the upper bound. However, the rate
of such increase depends on the datasets. For example, if most
instances in the dataset are well separated and have a margin
in the original input space, enlarging the desired adversarial
margin τ will not have a large impact on n̂(ts), the upper
bound, and thus the generalization gap.

In summary, for datasets with many features and most
instances being separable, we expect an improvement in the
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generalization ability of the learned distance metric from
enlarging the adversarial margin.

III. RELATED WORK

A. Robust metric learning

To make machine learning models more secure and trust-
worthy, robustness to input perturbations is a crucial dimen-
sion [27]. More importantly, designing such robust metric
learning algorithms is particularly vital to safety-critical ap-
plications, such as healthcare [28], network intrusion de-
tection [29], and surveillance systems based on faces [30],
gaits [31] and other biometric traits [32].

Existing approaches to improving the robustness of Maha-
lanobis distances can be categorized into four main types.
The first type of method imposes structural assumption or
regularization over M so as to avoid overfitting [25], [33]–
[37]. Methods with structural assumption are proposed for
classifying images and achieve robustness by exploiting the
structural information of images; however, such information
is generally unavailable in the symbolic datasets that will
be studied in this paper. Regularization-based methods are
proposed to reduce the risk of overfitting to feature noise in
the training set. Our proposal, which is aimed to withstand
test-time perturbation, does not conflict with these methods
and can be combined with them to learn a more effective and
robust distance metric; an example is shown in Section IV-C.

The second type of method adopts loss functions that are
less sensitive to outlier samples or noisy labels. In most metric
learning methods, loss functions are founded on the squared
L2-norm distance for computational efficiency. However, such
choice may be sensitive to outliers. To overcome this limita-
tion, several remedies have been proposed, such as using L1-
norm distances [38] and metric based on the signal-to-noise
ratio [39], or replacing the square function with the maximum
correntropy criterion [40].

The third type of method studies robustness to training
noise [41], [42]. These methods explicitly model the noise dis-
tribution or identify clean latent examples, and consequently,
use the expected Mahalanobis distance to adjust the value of
the distance margin for each triplet. Our method can also be
viewed as imposing a data-dependent and dynamic margin – to
achieve the same adversarial margin, triplets that have a higher
correlation between xl −xj and the metric M should satisfy
a larger distance margin. However, the focus of our work is
orthogonal to the aforementioned two types of method.

The last type of method generates hard instances through
adversarial learning and trains a metric to fare well in the
new hard problem [43], [44]. While sharing the aim of im-
proving metric robustness, our method is intrinsically different
from them. Their methods approach the task at a data-level,
where real examples are synthesized based on the criterion of
incurring large losses. Our method tackles perturbation at a
model-level, where a loss function is derived by considering
the definition of robustness with respect to the decision maker
kNN. By preventing change in the nearest neighbor in a strict
manner, our method is capable of obtaining a certification on
adversarial margin.

B. Adversarial robustness of deep metric learning

More recently, deep metric learning has been investigated
intensively, which replaces the linear projection induced by
the Mahalanobis distance with deep neural networks. While
deep neural networks improve the discriminability between
classes, they are found to be non-robust and vulnerable to
adversarial examples. Robust optimization [20], [45] is one of
the most effective approaches to improving adversarial robust-
ness, which trains the network to be robust against adversarial
perturbations that are mostly constructed via gradient-based
optimization; [46] adapts it to deep metric learning by con-
sidering the interdependence between data points in pairwise
or triplet constraints. Another way to enhance robustness and
generalization ability is by attaining a large margin in the
input space, which dates back to support vector machines [47]
and inspires this work. Due to the hierarchical nonlinear
nature of deep networks, the input-space margin cannot be
computed exactly and a variety of approximations have been
proposed [48]–[51]. In this work, we investigate such margin
in the framework of metric learning, defines it specifically
with respect to the kNN classifier, and provide an exact and
analytical solution to the margin. The analytical solution to
the margin provides fascinating insights into essential factors
for the robustness of distance metrics.

C. Adversarial robustness of kNN classifiers

While the notion of adversarial examples applies to kNN
classifiers, existing methods for deep neural networks cannot
be implemented directly due to the non-differential nature of
the classifier. [52] and [53] propose continuous substitutes of
kNN, from which gradient-based adversarial examples can be
constructed to attack the classifier. [54] formulates a series
of quadratic programming (QP) problems and proposes an
efficient algorithm to search exhaustively over all training
samples and compute the minimal adversarial perturbation
for the 1-NN classifier. In addition, the dual solution to
these QP problems can be used for robustness verification.
[55] proposes to improve adversarial robustness for kNN by
pruning the training set in order to satisfy the condition defined
through the robustness radius, i.e., the norm of the minimal
adversarial perturbation. Our work also aims to robustify kNN,
but achieves it through enlarging the adversarial margin.

IV. EXPERIMENTS

In this section, we first present two toy examples to illustrate
the difference in the learning mechanisms of LMNN and
the proposed method dubbed LMNN-PL. Next, we com-
pare LMNN-PL with state-of-the-art methods on 16 bench-
mark datasets (13 low/medium-dimensional and three high-
dimensional), and investigate the relationship between adver-
sarial margin, generalization ability and robustness. Finally,
the computational aspect of our method is discussed.

A. Comparisons between LMNN and LMNN-PL

We design two experiments to compare the metrics learned
with the objective of enhancing class discriminability and of
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Fig. 2: Comparison of learning mechanisms of LMNN and LMNN-PL when features exhibit different separability.
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Fig. 3: Comparison of learning mechanisms of LMNN and LMNN-PL when confronting the problem of multicollinearity.

certified robustness. In the first example, a two-dimensional
binary classification dataset is simulated, as shown in Fig. 2a.
The positive class includes 100 instances drawn uniformly
from [−3, 0] in the horizontal (abbr. 1st) direction and [0, 1] in
the vertical (abbr. 2nd) direction. The negative class consists
of two clusters, where the first cluster includes 100 instances
drawn from U(−3, 0) and U(−0.6,−0.5) in the 1st and
2nd directions respectively, and the second cluster includes
20 instances drawn from U(0, 0.1) and U(0, 1) in the two
directions respectively. By design, instances of positive and
negative classes can be separated in both directions, while the
separability in the 1st direction is much smaller than the 2nd
direction. Figs. 2b and 2c show the instances in the projected
feature space with metrics learned from LMNN and LMNN-
PL, respectively; the projection direction is indicated by the
unit vector of red and blue lines; and the metric and the
average of adversarial margins (d̄E(xi,xi,min)) are given in
the caption. The objective of LMNN is to satisfy the distance
margin. Thus, it expands the distance in both directions.
Moreover, since the 1st direction has a small separability in
the original instance space, this direction is assigned with a
larger weight. In contrast, LMNN-PL controls the scale of
M . Moreover, a notable difference is that the 2nd direction is
assigned with a larger weight than the 1st direction, which is
again caused by the small separability in the 1st direction. As

any perturbation in the 1st direction is highly likely to result in
a misclassification, the proposed method diverts more attention
to robust features, i.e. the 2nd direction. Due to the easiness
of the task, all metrics lead to the same classification accuracy
of 99.09% on a separate test set.

In the second example, we simulate a three-dimensional
binary classification dataset, as shown in Fig. 3a. Each class in-
cludes 100 instances. The first two dimensions are drawn from
multivariate Gaussian distributions with µp = [0.45, 0.45],
µn = [−0.45,−0.45], Σp = Σn =

[
1 −0.9

−0.9 1

]
; the third

dimension equals the sum of the first two dimensions, plus
white Gaussian noise with standard deviation of 0.01. By
design, the dataset exhibits the problem of strong multi-
collinearity. This issue has little influence on LMNN as the
data is nearly separable in all directions. However, it will
affect the adversarial margin. Specifically, if the metric assigns
equal weights to all dimensions, then the perturbation should
be small in all directions so as to guarantee that the perturbed
instance stays on the correct side of the decision boundary.
In contrast, if the metric assigns weights only to the third
dimension, then the perturbation in the first two dimensions
will not cause any change in the learned feature space and
hence a larger magnitude of perturbation can be tolerated. This
expectation is supported by the empirical result in Fig. 3c,
where the distance in the third dimension is more important
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than the first two dimensions. LMNN achieves an accuracy of
95.50% and our method achieves an accuracy of 96.00%.

In summary, our method learns a discriminative metric, and
meanwhile, imposes a data-dependent regularization on the
metric. It also achieves larger adversarial margins than LMNN,
demonstrating the effectiveness of the proposed perturbation
loss.

B. Experiments on UCI data

1) Data description and experimental setting: In this ex-
periment, we study 13 datasets from UCI machine learning
repository [56]. Information on sample size, feature dimension
and class information is listed in Table V of Appendix D-A.
All datasets are pre-processed with mean-centering and stan-
dardization, followed by L2 normalization to unit length. To
evaluate the performance, we use 70-30% training-test parti-
tions and report the average result over 20 rounds of random
split. The only exception is the Credit dataset, where we only
run the experiment once as the sample size is relatively large.

We evaluate the effectiveness of the proposed perturba-
tion loss by incorporating it into LMNN, SCML, and Prox-
yNCA++ (abbreviated to PNCA); the resulting methods are
denoted by LMNN-PL, SCML-PL and PNCA-PL, respec-
tively. In addition, we conduct a thorough study by setting
LMNN as the backbone and comparing LMNN-PL with
two types of methods. First, we consider different regu-
larizers on M . Specifically, we replace the regularizer in
LMNN from

∑
S d2M (xi,xj) to the log-determinant diver-

gence (LDD) [12], which encourages learning a metric toward
the identity matrix, the capped trace norm (CAP) [25], which
encourages a low-rank matrix, and the spectral norm (SN),
which has been used to improve adversarial robustness of
deep neural networks [57]. Second, we compare with the
robust metric learning method DRIFT [41], which models the
perturbation distribution explicitly.

Hyperparameters of LMNN-PL are tuned via random
search [58]. We randomly sample 50 sets of values
from the following ranges: µ ∈ U(0.1, 0.9), τ ∈
U (0, P90%{dE(xi,xi,min)}), λ ∈ U(0, 4/τ2). U(a, b) de-
notes the uniform distribution. Pk%{dE(xi,xi,min)} denotes
the kth percentile of dE(xi,xi,min), where the distance is
calculated for all i in the triplet constraints with respect
to the Euclidean distance. Setting the upper bound of the
desired margin τ via the percentile avoids unnecessary large
values, matching our intention to enlarge the adversarial
margin primarily for hard instances. The upper bound of
the weight parameter λ depends on the realization of τ to
ensure that magnitudes of perturbation loss and LMNN loss
are at the same level. The optimal hyperparameters from
five-fold cross-validation on the training data or a separate
validation set are used to learn the metric. SCML-PL and
PNCA-PL are tuned in a similar manner. More details on
the training procedure of the proposed and other methods are
given in Appendix D-B. The MATLAB code for our method
is available at http://github.com/xyang6/LMNNPL.

For LMNN-based and SCML-based methods, we use 3NN
as the classifier; for PNCA-based methods, we use the nearest

prototype classifier. Classification accuracy is used as the
evaluation criterion, except for two highly imbalanced datasets
(Ecoli and Yeast), G-means is used.

2) Evaluation on classification performance: Table I re-
ports the mean value and standard deviation of classification
accuracy or G-means for imbalanced datasets (indicated by
an asterisk). LMNN-PL outperforms LMNN on 12 out of 13
datasets. Among the methods with LMNN as the backbone,
our method achieves the highest accuracy on 8 datasets and
second highest accuracy on the 4 datasets. These experimental
results demonstrate the benefit of perturbation loss to gener-
alization of the learned metric. Similarly, we see that SCML-
CL outperforms or performs equally well with SCML on 9
datasets. The advantage of PNCA-PL becomes less distinct as
it is superior to PNCA only on 7 datasets. However, this is
fairly reasonable as the decision boundary formed by very few
proxies is much smoother than the one from 3NN and hence
the method is less likely to overfit to training data.

3) Investigation into robustness: To test robustness, we
add zero-mean Gaussian noise with a diagonal covariance
matrix and equal variances to test data; the noise intensity
is controlled via the signal-to-noise ratio (SNR) and chosen
as 5 dB. In addition, considering the small sample size of
UCI datasets, we augment test data by adding multiple rounds
of random noise until its size reaches 10,000. As shown in
Table II, the proposed methods achieve higher classification
accuracy or G-means than the corresponding baselines on al-
most all datasets. Moreover, LMNN-PL is superior to existing
regularization techniques or robust metric learning methods
on at least 9 datasets. These results clearly demonstrate the
efficacy of adding perturbation loss for improving robustness
against instance perturbation. Additional experiments with
other noise types and intensities are reported in Appendix D-C,
where we observe similar advantages of the proposed loss.

C. Experiments on high-dimensional data

As mentioned in Remark 3, we extend LMNN-PL for high-
dimensional data with PCA being used as a pre-processing
step. To verify its effectiveness, we test it on the following
three datasets:

1) Isolet [56]: The dataset is a spoken letter database
and is available from UCI. It includes 7,797 instances,
grouped into four training sets and one test set. We apply
PCA to reduce the feature dimension from 617 to 170,
accounting for 95% of total variance. All methods are
trained four times, one time on each training set, and
evaluated on the pre-given test set.

2) MNIST-2k [59]: The dataset includes the first 2,000
training images and first 2,000 test images of the MNIST
database. PCA is applied to reduce the dimension from
784 to 141, retaining 95% of total variance. All methods
are trained and tested once on the pre-given training/test
partition.

3) APS Failure [56]: This is a multivariate dataset with
a highly imbalanced class distribution. The training set
includes 60,000 instances, among which 1,000 belong to
the positive class. The test set includes 16,000 instances

http://github.com/xyang6/LMNNPL.
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TABLE I: Classification accuracy (or G-means indicated by an asterisk next to the dataset name; mean±standard deviation)
of 3NN with different metric learning methods on clean datasets.

LMNN-based SCML-based PNCA-based

Dataset Euclidean LMNN LDD CAP SN DRIFT LMNN-PL SCML SCML-PL PNCA PNCA-PL

Australian 82.76±2.38 83.70±2.43 84.18±2.37 83.97±2.45 83.77±2.50 84.47±2.02 84.47±1.63 84.76±2.08 84.42±2.18 86.30±1.82 86.15±2.24
Breast cancer 97.17±1.33 97.12±1.25 96.95±1.51 97.00±1.08 97.05±1.32 96.98±1.16 97.02±1.30 97.00±1.09 97.07±1.24 97.02±1.30 97.05±1.24
Ecoli* 85.86±8.10 86.42±7.94 85.29±9.78 83.54±10.09 86.44±7.95 86.45±6.54 87.04±7.38 85.53±7.06 86.69±6.58 84.80±6.84 85.54±5.60
Fourclass 75.12±2.35 75.10±2.31 75.15±2.32 75.02±2.48 75.10±2.31 75.08±2.34 75.12±2.35 75.10±2.27 75.12±2.35 75.39±2.21 72.97±5.36
Haberman 72.25±4.41 72.19±3.89 72.42±3.95 71.52±3.54 72.30±4.57 72.02±3.94 72.64±4.29 72.75±3.79 72.36±4.38 75.28±3.55 75.67±3.85
Iris 87.11±4.92 87.11±5.08 87.67±4.70 86.67±5.49 87.22±5.24 85.89±4.46 87.33±4.73 86.89±6.40 87.44±5.31 84.44±6.29 83.22±5.97
Segment 94.79±0.65 95.31±0.89 95.58±0.81 95.51±0.70 95.38±0.83 95.75±0.65 95.64±0.83 92.61±6.65 93.95±1.47 94.73±0.93 94.52±0.99
Sonar 85.16±4.19 86.67±4.10 87.22±3.90 87.22±4.38 86.67±4.04 86.19±4.43 87.78±3.53 82.38±4.15 84.13±4.61 83.25±5.95 83.65±4.83
Voting 93.78±1.76 95.80±1.78 95.80±1.41 95.92±1.45 95.84±1.74 95.31±1.32 96.15±1.56 95.84±1.58 96.26±1.28 95.84±1.65 95.65±1.66
WDBC 96.29±1.61 96.99±1.30 96.96±1.43 96.99±1.51 96.93±1.34 96.70±1.16 97.13±1.33 97.25±1.30 97.25±1.52 97.37±1.49 97.37±0.94
Wine 95.28±2.36 97.31±1.94 96.67±1.76 96.85±2.26 97.41±1.84 97.69±1.79 97.69±1.89 97.69±1.79 97.22±2.04 97.04±2.71 97.22±1.95
Yeast* 70.33±10.50 69.84±10.26 70.26±10.51 70.29±10.52 69.86±10.29 70.32±10.51 70.32±10.51 68.81±11.35 69.90±10.35 66.01±13.21 69.41±10.36
Credit 76.40 76.41 76.68 76.96 76.50 76.87 76.89 76.45 76.29 81.15 81.07

# outperform - 12 11 12 12 12 - 9 - 7 -

For methods with LMNN as the backbone, the best ones are shown in bold and the second best ones are underlined; for methods with SCML or PNCA as the backbone, the
best ones are shown in bold. ‘# outperform’ counts the number of datasets where LMNN-PL (SCML-PL, PNCA-PL resp.) outperforms or performs equally well with LMNN-based
(SCML, PNCA resp.) methods.

TABLE II: Classification accuracy (or G-means indicated by an asterisk) of 3NN noise-contaminated datasets. Gaussian noise
with an SNR of 5 dB is added to test data.

LMNN-based SCML-based PNCA-based

Dataset Euclidean LMNN LDD CAP SN DRIFT LMNN-PL SCML SCML-PL PNCA PNCA-PL

Australian 82.28±1.67 82.46±1.58 83.02±1.58 82.36±1.56 82.56±1.54 82.58±1.45 83.50±1.56 82.93±1.65 83.42±1.68 82.79±2.37 83.66±2.28
Breast cancer 96.79±1.05 96.25±1.09 96.69±1.09 96.35±1.02 96.29±1.11 96.66±1.00 96.71±1.08 96.40±1.05 96.65±1.06 96.20±1.37 96.77±1.14
Ecoli* 79.95±7.67 74.96±7.16 79.13±7.67 74.46±9.36 75.19±7.23 77.86±7.76 80.04±7.51 76.49±6.78 78.38±7.92 75.52±6.08 77.04±6.20
Fourclass 69.11±1.12 67.62±1.23 68.77±1.14 67.63±1.12 68.55±1.30 69.03±1.13 69.01±1.17 68.07±1.16 68.86±1.06 70.42±2.17 69.39±4.60
Haberman 69.93±1.88 69.84±1.79 69.92±1.87 69.23±2.00 69.90±1.88 69.09±2.49 69.89±1.90 69.65±1.63 69.88±1.83 74.32±3.22 74.32±3.10
Iris 79.75±3.26 78.61±2.97 78.87±3.16 77.79±3.27 78.70±3.08 78.43±3.09 79.04±3.09 78.16±3.58 79.01±3.12 77.95±4.53 78.20±3.90
Segment 88.18±0.64 81.02±3.55 86.15±1.26 85.34±2.47 82.10±3.41 86.63±1.09 84.72±2.62 60.18±9.73 61.33±9.05 78.27±2.83 80.28±3.35
Sonar 83.47±3.21 83.56±4.27 86.18±2.95 85.41±2.82 83.52±4.28 84.65±3.30 85.00±3.15 77.01±4.23 79.49±3.80 80.74±4.36 81.74±3.43
Voting 93.19±1.15 94.00±1.00 94.25±1.14 94.37±1.17 94.06±1.00 93.95±1.12 94.64±1.21 93.99±1.15 94.64±1.09 92.61±1.64 93.46±1.77
WDBC 95.92±1.30 91.71±1.90 96.30±0.94 96.16±1.08 92.46±1.80 96.04±0.86 96.11±0.88 95.74±1.30 96.21±1.16 96.03±1.54 96.22±1.15
Wine 94.20±1.46 93.33±1.63 94.03±1.39 93.97±1.47 93.45±1.70 94.66±1.15 94.51±1.20 94.01±1.56 94.61±1.32 94.19±1.94 93.48±1.48
Yeast* 69.36±10.47 54.13±8.24 68.62±10.43 66.48±10.18 55.49±9.45 69.64±10.49 69.82±10.44 55.96±7.64 60.47±10.39 61.41±17.97 63.59±18.33
Credit 76.28 76.16 76.22 76.05 76.30 76.37 76.15 75.93 75.55 78.24 79.13

# outperform - 12 9 10 11 9 - 12 - 11 -

with 375 positive ones. The training set is further split
into 40,000 instances for training and 20,000 instances
for selecting hyperparameters. All methods are tested
once on the test set. Applying PCA reduces the feature
dimension from 161 to 79. Due to the large sample size,
we only evaluate LMNN and LMNN-PL on this dataset.

In addition to aforementioned methods, we introduce CAP-
PL, which comprises the triplet loss of LMNN, the regularizer
of CAP, and the proposed perturbation loss. CAP enforces
M to be low-rank, which is a suitable constraint for high-
dimensional data. With the inclusion of perturbation loss,
we expect the learned compact metric to be more robust to
perturbation. For a fair comparison, in CAP-PL, we use the
same rank and regularization weight as CAP, and tune τ, λ
from 10 randomly sampled sets of values.

Table III compares the generalization and robustness per-
formance of LMNN, CAP, SCML, and our method; the
generalization performance of other methods are inferior to
LMNN-PL and reported in Table VIII of Appendix D-C.
First, on all three original datasets, our method achieves better
performance than the baseline methods, validating its efficacy
in improving the generalization ability of the learned metric.
Secondly, when the SNR is 20 dB, the average perturbation

size is smaller than the average adversarial margin. In this
case, our method maintains its superiority. When the SNR is
5 dB, the average perturbation size is larger than the average
adversarial margin. Nonetheless, our method produces even
larger gain in classification performance for LMNN on all
datasets except APS Failure with the Gaussian noise, for
SCML on MNIST and on Isolet with the Gaussian noise,
for CAP on Isolet. These results suggest that adversarial
margin is indeed a contributing factor in enhancing robustness.
Thirdly, CAP-PL obtains higher accuracy on both clean and
noise-contaminated data than LMNN-PL. This supports our
discussion in Section III that regularization and perturbation
loss impose different requirements on M and combining them
has the potential for learning a more effective distance metric.

D. Computational cost

We now analyze the computational complexity of LMNN-
PL. According to Eq. 6, our method requires additional
calculations on d2M2(xj ,xl) and MXjl. Given n training
instances, k target neighbors and p features, the computational
complexities of d2M2(xj ,xl) and MXjl are O(np2 + n2p)
and O(n2p2), respectively. The total complexity is O(p3 +
n2p2 + kn2p), same as that of LMNN.
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Fig. 4: Sensitivity of LMNN-PL to hyperparameters (indicated by the straight line). The optimal accuracy and parameter value
found via CV are indicated by the dashed line and asterisk, respectively.

TABLE III: Generalization and robustness of selected metric
learning methods on high-dimensional datasets.

Isolet

Method Clean IG,SNR=20 IG,SNR=5 AG,SNR=20 AG,SNR=5 Adv.
(0.0809) (0.4233) (0.0588) (0.3181) margin

LMNN 90.14±4.45 90.09±4.15 86.02±3.48 90.17±4.03 87.81±3.87 0.1095
LMNN-PL 91.08±3.71 91.02±3.77 87.91±3.30 91.05±3.73 89.40±3.76 0.1249

SCML 90.73±4.10 90.33±4.21 86.50±4.18 90.51±4.14 88.50±3.71 0.0683
SCML-PL 90.83±4.16 90.67±4.12 86.55±3.75 90.83±4.16 88.41±4.07 0.0822

CAP 91.05±3.66 91.13±3.85 88.97±4.00 91.10±3.73 89.90±3.87 0.1514
CAP-PL 91.58±3.96 91.52±3.86 89.91±3.74 91.47±3.91 90.65±3.73 0.1559

MNIST

Method Clean IG,SNR=20 IG,SNR=5 AG,SNR=20 AG,SNR=5 Adv.
(0.0540) (0.2939) (0.0649) (0.3482) margin

LMNN 90.55 90.00 88.40 90.10 88.40 0.1528
LMNN-PL 91.15 91.35 90.80 91.45 90.35 0.2235

SCML 88.95 88.75 87.35 88.85 86.45 0.1217
SCML-PL 89.15 89.20 88.50 89.35 88.05 0.1432

CAP 91.65 91.80 91.40 91.80 90.70 0.2219
CAP-PL 92.00 91.90 90.85 91.95 90.65 0.2264

APS Failure

Method Clean IG,SNR=20 IG,SNR=5 AG,SNR=20 AG,SNR=5 Adv.
(0.0906) (0.5097) (0.0996) (0.5604) margin

LMNN 80.69 80.20 75.66 81.18 75.13 0.1773
LMNN-PL 80.89 82.15 74.13 82.33 77.92 0.2583

Columns 3-6 report methods’ robustness against isotropic Gaussian noise (IG) and
anisotropic Gaussian noise (AG). Values in brackets give the average perturbation
size, calculated as the mean value of the L2-norm of noises (∥∆xi∥2).

TABLE IV: Average training time (in seconds) of LMNN-
based methods.

LMNN LDD CAP SN DRIFT LMNN-PL

Australian 13.44 0.83 3.07 7.60 1.00 2.15
Segment 27.48 10.45 11.47 24.66 5.12 19.54
Sonar 4.93 4.08 4.65 30.39 0.92 6.75
WDBC 9.38 2.94 5.22 16.54 5.12 8.17
Credit 724.42 34.65 115.22 966.63 130.36 138.63
Isolet 339.57 207.69 176.50 540.26 NA 190.55
MNIST 369.55 68.98 289.18 197.50 37.51 391.04

Table IV compares the running time of LMNN-based
methods on five UCI datasets that are large in sample size
or in dimensionality and two high-dimensional datasets. The
computational cost of our method is comparable to LMNN.

E. Parameter sensitivity
The proposed LMNN-PL includes three hyperparameters –

µ for the weight of similarity constraints, λ for the weight
of the perturbation loss, and τ for the desired adversarial
margin. We investigate their influences on the classification
performance by varying one hyperparameter and fixing the
other two at their optimal values. Fig. 4 shows the accuracy on
MNIST evaluated over the range of the hyperparameter. The
performance changes smoothly with respect to µ. It is stable
over a wide range of λ. When λ equals 0, LMNN-PL fails to
learn a metric and returns a zero matrix. The performance is
most affected by τ . Indeed, τ plays the central role in LMNN-
PL as it determines the distribution of adversarial margins. A
small value of τ has little influence on the objective function as
the adversarial margin of most instances may already exceed
it before optimization, and a large value may greatly reduce
the number of triplets that satisfy the loss condition in the
definition of pseudo-robustness (i.e. n̂(ts) in Theorem 1).
Therefore, we shall strive to search for its optimal value.

V. CONCLUSION

In this paper, we propose to enhance the robustness and
generalization of distance metrics. This is easily achievable by
taking advantage of the linear transformation induced by the
Mahalanobis distance. Specifically, we find an explicit formula
for the adversarial margin, which is defined as the Euclidean
distance between benign instances and their closest adversarial
examples, and advocate to enlarge it through penalizing the
perturbation loss designed on the basis of the derivation.
Experiments verify that our method effectively enlarges the
adversarial margin, sustains classification excellence, and en-
hances robustness to instance perturbation. The proposed loss
term is generic in nature and could be readily embedded
in other Mahalanobis-based metric learning methods. In the
future, we will consider extending the idea to metric learning
methods with nonlinear feature extraction and/or nonlinear
metric learning methods.
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APPENDIX A
DERIVATION OF THE CLOSEST ADVERSARIAL EXAMPLE,

ADVERSARIAL MARGIN AND GRADIENT OF PERTURBATION
LOSS

In the following derivations, we consider heterogeneous and
correlated perturbations; the homogeneous and uncorrelated
perturbations, discussed in the main text, can be seen as a
special case.

First, we characterize heterogeneous and correlated per-
turbations through hyperellipsoids. In terms of the quadratic
form, an arbitrarily oriented hyperellipsoid, centered at µ ∈
Rp, is defined by the solutions to the equation

{x ∈ Rp : (x− µ)TA0(x− µ) = r2},

where A0 is a positive definite matrix. By the Cholesky
decomposition, A0 = AAT . Therefore, finding the closest
adversarial example of xi on the hyperellipsoid is equivalent
to finding the point x′

i that defines the smallest hypersphere
given by (AT (x′

i − xi))
T (AT (x′

i − xi)) = r2.
The closest adversarial example is identified by optimizing

Eq. 8; its equivalent form is given in Eq. 9:

xi,min = arg min
x′
i∈Rp

(x′
i − xi)

TA0(x
′
i − xi)

s.t. (Lx′
i −

Lxj +Lxl

2
)T (Lxl −Lxj) = 0.

(8)

xi,min = arg min
x′
i∈Rp

(
AT (x′

i − xi)
)T (

AT (x′
i − xi)

)
s.t. (Lx′

i −
Lxj +Lxl

2
)T (Lxl −Lxj) = 0.

(9)

Applying the method of Lagrangian multiplier, we transform
the above problem to the following Lagrangian function by
introducing the Lagrangian multiplier λ and then solve it by
setting the first partial derivatives to zero:

min
x′
i

(
A

T
(x

′
i − xi)

)T (
A

T
(x

′
i − xi)

)
− λ(Lx

′
i −

Lxj + Lxl

2
)
T
(Lxl − Lxj)

δ

δx′
i

: 2AA
T
(x

′
i − xi) − λL

T
L(xl − xj) = 0

x
′
i = xi +

λ

2
A

−1
0 L

T
L(xl − xj)(

Lxi +
λ

2
LA

−1
0 L

T
L(xl − xj) −

Lxj + Lxl

2

)T
(Lxl − Lxj) = 0

λ

2
=

(
xj+xl

2 − xi)
TLTL(xl − xj)

(xl − xj)TLTLA−1
0 LTL(xl − xj)

xi,min = xi +
(
xj+xl

2 − xi)
TM(xl − xj)

(xl − xj)TMA−1
0 M(xl − xj)

A
−1
0 M(xl − xj)

The Hessian matrix equals 2A0, which is positive definite,
and hence xi,min is the minimum point. Replacing A0 = I
(identity matrix) gives Eq. 2.

Next, we calculate the squared adversarial margin by first
simplifying xi,min and then computing r2 as follows:

(
xj + xl

2
− xi)

TM(xl − xj)

=
1

2
[(xj − xi) + (xl − xi)]

TM [(xl − xi)− (xj − xi)]

=
1

2
[d2M (xi,xl)− d2M (xi,xj)]

r2 =(xi − xi,min)
TA0(xi − xi,min)

=

(
d2M (xi,xl)− d2M (xi,xj)

2(xl − xj)TMA−1
0 M(xl − xj)

A−1
0 LTL(xl − xj)

)T

A0

(
d2M (xi,xl)− d2M (xi,xj)

2(xl − xj)TMA−1
0 M(xl − xj)

A−1
0 LTL(xl − xj)

)

=

(
d2M (xi,xl)− d2M (xi,xj)

)2
4
(
(xl − xj)TMA−1

0 M(xl − xj)
)2 ·

(xl − xj)
TLTLA−1

0 A0A
−1
0 LTL(xl − xj)

=

(
d2M (xi,xl)− d2M (xi,xj)

)2
4
(
(xl − xj)TMA−1

0 M(xl − xj)
)

Substituting A0 = I gives Eq. 3.
Finally, we derive the gradient of JP with respect to

M . When d2M (xi,xl) > d2M (xi,xj) and r ≥ τ (i.e.
d̃E(xi,xi,min) ≥ τ in the hypersphere case), or d2M (xi,xl) ≤
d2M (xi,xj), the gradient equals zero. When d2M (xi,xl) >
d2M (xi,xj) and r < τ , the gradient of JP equals the gradient
of −r2 (i.e. −d̃2E(xi,xi,min) in the hypersphere case), which
can be calculated by using the quotient rule and the derivative
of trace [60]:

∂

∂M

(
d2M (xi,xl)− d2M (xi,xj)

)2
=2
(
d2M (xi,xl)− d2M (xi,xj)

)
(Xil −Xij)

∂

∂M
(xl − xj)

TMA−1
0 M(xl − xj) =

∂

∂M
tr(XjlMA−1

0 M)

=XjlMA−1
0 +A−1

0 MXjl

∂

∂M

(
d2M (xi,xl)− d2M (xi,xj)

)2
4
(
(xl − xj)TMA−1

0 M(xl − xj) + ϵ
)

=
2
(
d2M (xi,xl)− d2M (xi,xj)

)
(Xil −Xij)

4
(
(xl − xj)TMA−1

0 M(xl − xj) + ϵ
)

−
(
d2M (xi,xl)− d2M (xi,xj)

)2
(XjlMA−1

0 +A−1
0 MXjl)

4
(
(xl − xj)TMA−1

0 M(xl − xj) + ϵ
)2 ,

where tr(·) denotes the trace operator. Xij = (xi −xj)(xi −
xj)

T and Xil,Xjl are defined similarly. Substituting A0 = I
gives Eq. 6.

http://www.cad.zju.edu.cn/home/dengcai/Data/MLData.html
http://www2.imm.dtu. dk/pubdb/p.php
https://www.stat.cmu.edu/~ryantibs/convexopt-S15/lectures/08-prox-grad.pdf
https://www.stat.cmu.edu/~ryantibs/convexopt-S15/lectures/08-prox-grad.pdf
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A. Derivation of closest adversarial example, adversarial
margin, and gradient of perturbation loss in the high-
dimensional case

The closet adversarial example, adversarial margin and
gradient of the perturbation loss with dimensionality reduction
are derived by following the same principle as in Appendix A.

The method of Lagrangian multiplier is applied to derive a
closed-form solution to the closest adversarial example:

min
x′
i

(
AT (x′

i − xi)
)T (

AT (x′
i − xi)

)
−λ(x′

i −
xj + xl

2
)TDTLTLD(xl − xj)

δ

δx′
i

: x′
i =xi +

λ

2
A−1

0 DTLTLD(xl − xj)

λ

2
=

(
xj+xl

2
− xi)

TDTLTLD(xl − xj)

(xl − xj)TDTLTLDA−1
0 DTLTLD(xl − xj)

xPCA
i,min =xi +

(
x̃j+x̃l

2
− x̃i)

TM(x̃l − x̃j)

(x̃l − x̃j)TMDA−1
0 DTM(x̃l − x̃j)

·

A−1
0 DTM(x̃l − x̃j),

where x̃ denotes Dx.
The squared adversarial margin is calculated from the

definition of the hyperellipsoid:

r2 =(xi − xPCA
min)

TA0(xi − xPCA
min)

=

(
d2M (x̃i, x̃l)− d2M (x̃i, x̃j)

)2
4
(
(x̃l − x̃j)TLTLDA−1

0 DTLTL(x̃l − x̃j)
)2

· (x̃l − x̃j)
TLTLDA−1

0 A0A
−1
0 DTLTL(x̃l − x̃j)

=

(
d2M (x̃i, x̃l)− d2M (x̃i, x̃j)

)2
4(x̃l − x̃j)TMDA−1

0 DTM(x̃l − x̃j)

The perturbation loss is defined similarly to Eq. 4 as follows:

JPCA
P =

1

|R|
∑
R

{
[τ2 − d̃2E(xi,x

PCA
i,min)]+1{d2

M
(x̃i,x̃l)>d2

M
(x̃i,x̃j)}

+τ21[d2M (x̃i, x̃l) ≤ d2M (x̃i, x̃j)]
}
,

where d̃2E(xi,x
PCA
i,min) =

(
d2
M (x̃i,x̃l)−d2

M (x̃i,x̃j)
)2

4((x̃l−x̃j)TMDDTM(x̃l−x̃j)+ϵ)
.

The gradient of JPCA
P is given as:

∂JPCA
P

∂M
=

1

|R|
∑
R

αijl

{ (
d2
M (x̃i, x̃l) − d2

M (x̃i, x̃j)
)
(X̃ij − X̃il)

2
(
(x̃l − x̃j)TMDA−1

0 DTM(x̃l − x̃j) + ϵ
)

+

(
d2
M (x̃i, x̃l) − d2

M (x̃i, x̃j)
)2

4
(
(x̃l − x̃j)TMDA−1

0 DTM(x̃l − x̃j) + ϵ
)2

· (X̃jlMDA
−1
0 D

T
+ DA

−1
0 D

T
MX̃jl)

}
.

APPENDIX B
ADDITIONAL ILLUSTRATIONS OF ROBUSTIFYING METRIC

LEARNING METHODS

In this section, we incorporate the proposed perturbation
loss into two triplet-based metric learning methods, sparse
compositional metric learning (SCML) and proxy neighbor-
hood component analysis (PNCA).

A. Sparse compositional metric learning with perturbation
loss

We start by briefly revisiting SCML [15]. The core idea
is to represent the Mahalanobis distance as a non-negative
combination of K basis elements; that is,

M =

K∑
k=1

wkbkb
T
k , w ≥ 0,

where the basis set {bk}Kk=1 is generated by using the Fisher
discriminative analysis at several local regions. To learn a
discriminative metric with good generalization ability, the
learning objective comprises a margin-based hinge loss func-
tion and an L1-norm regularization term as follows:

min
w

JSCML =
1

|R|
∑
R

[
1 + d2w(xi,xj)− d2w(xi,xl)

]
+
+ η∥w∥1,

where η ≥ 0 controls the degree of sparsity.
Now, we illustrate how to incorporate the perturbation loss

into SCML and solve the associated optimization problem.
The solution to the closest adversarial example and the form of
perturbation loss remain the same as LMNN-PL; the learning
of the Mahalanobis distance is replaced by learning the sparse
coefficients, and the optimization problem is solved via the
accelerated proximal gradient descent algorithm.

First, we incorporate the proposed perturbation loss JP
(Eq. 4) into the original objective function JSCML:

min
M∈Sp+

J = JSCML + λJP. (10)

The squared adversarial margin of Eq. 3 is now a function of
w:

d
2
E(xi,xi,min) =

[d2
w(xi,xl) − d2

w(xi,xj)]
2

4d2
w2 (xj ,xl)

d
2
w(xi,xj) = (xi − xj)

T ( K∑
k=1

wkbkb
T
k

)
(xi − xj)

d
2
w2 (xj ,xl) = (xj − xl)

T ( K∑
k1=1

K∑
k2=1

wk1
wk2

bk1
b
T
k1

bk2
b
T
k2

)
(xj − xl).

Next, to optimize problem (10), we apply the accelerated
proximal gradient descent algorithm with a backtracking step-
size rule [61]. The gradient of JP with respect to w is as
follows:

∂JP

∂wk

=
1

|R|
∑
R

αijl

{
d2
M (xi,xl) − d2

M (xi,xj)

2
(
d2
M2 (xj ,xl) + ϵ

) tr
(
bkb

T
k (Xij − Xil)

)

+
[d2

M (xi,xl) − d2
M (xi,xj)]

2

4
(
d2
M2 (xj ,xl) + ϵ

)2
tr
(
(bkb

T
k M + Mbkb

T
k )Xjl

)}
,

where ϵ is a small constant added to the denominator of
d2E(xi,xi,min).

B. Proxy neighborhood component analysis with perturbation
loss

Neighborhood component analysis is first proposed in [62],
and in this paper, we build on one of its latest variants,
ProxyNCA++ [22]. ProxyNCA++ aims to maximize the proxy
assignment probability as follows:

JProxyNCA++ = − log

(
exp

(
− d( xi

∥xi∥2
, f(xi)
∥f(xi)∥2

) · 1
T

)∑
f(a)∈A exp

(
− d( xi

∥xi∥2
, f(a)
∥f(a)∥2

) · 1
T

)),
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where f(a) is a proxy function which maps each instance a
to its class proxy, A denotes the set of all proxies, and T is
the temperature scaling parameter. As the method is proposed
in the context of deep metric learning, xi is assumed to be the
feature vector after the embedding network and d is chosen as
the Euclidean distance. In our work, we will use the original
features and the Mahalanobis distance.

There are two sets of learning parameters in ProxyNCA++,
the Mahalanobis distance and the proxies. We optimize them
alternatively, and in each step, we apply the gradient descent
algorithm. The gradient of the ProxyNCA++ term is analogous
to the classical NCA and can be found in [62].

The perturbation loss has been revised slightly to include
the adversarial margin from instances whose nearest proxy is
from a different class:

JP =
1

n

∑
xi

{
[τ2 − d̃2E(xi,xi,min)]+1[d

2
M (xi,a

−) > d2M (xi,a
+)]

+(τ2 + d̃2E(xi,xi,min))1[d
2
M (xi,a

−) ≤ d2M (xi,a
+)]

}
,

where a+ and a− denote the nearest proxy to xi from the
same class and different class, respectively. The gradient of
the perturbation loss with respect to M is given in Eq. 6; the
gradient of the perturbation loss with respect to the proxies is
given as follows:

∂JP

∂ai

=
∑

x∈A
+
i

{d2
M (x,a−) − d2

M (x,ai)

(d2
M2 (ai,a−) + ϵ)

M(ai − x)

+
[d2

M (x,a−) − d2
M (x,ai)]

2

2(d2
M2 (ai,a−) + ϵ)2

M
2
(ai − a

−
)
}

+
∑

x∈A
−
i

{
−

d2
M (x,ai) − d2

M (x,a+)

(d2
M2 (a

+,ai) + ϵ)2
M(ai − x)

+
[d2

M (x,ai) − d2
M (x,a+)]2

2(d2
M2 (a

+,ai) + ϵ)2
M

2
(ai − a

+
)
}
,

where x ∈ A+
i is a set of instances whose nearest proxy is

ai, and x and ai have the same class label; x ∈ A−
i denotes

a set of instances whose different-class nearest proxy is ai.

APPENDIX C
PRELIMINARIES AND PROOF OF GENERALIZATION BENEFIT

A. Preliminaries

Definition 2. [26] An algorithm A is (K, ϵ(·), n̂(·)) pseudo-
robust for K ∈ N, ϵ(·) : (Z × Z × Z)n → R and
n̂(·) : (Z × Z × Z)n → {1, . . . , n3} if Z = (X × Y) can
be partitioned into K disjoint sets, denoted by {Ck}Kk=1, such
that for all training samples s ∈ Zn drawn independently and
identically distributed (IID) from the probability distribution
P , there exists a subset of training triplets t̂s ⊆ ts, with
|t̂s| = n̂(ts), such that the following holds: ∀(s1, s2, s3) ∈ t̂s,
∀z1, z2, z3 ∈ Z , ∀i, j, l = 1, . . . ,K, if s1, z1 ∈ Ci,
s2, z2 ∈ Cj and s3, z3 ∈ Cl, then

|ℓ(Ats , s1, s2, s3)− ℓ(Ats ,z1,z2,z3)| ≤ ϵ(ts).

Theorem 3. [26] If A is (K, ϵ(·), n̂(·)) pseudo-robust and
the training triplets ts come from a sample generated by n

IID draws from P , then for any δ > 0, with probability at
least 1− δ we have:

|L(Ats )− ℓemp(Ats )|

≤
n̂(ts)

n3
ϵ(ts) +B

(n3 − n̂(ts)

n3
+ 3

√
2K ln 2 + 2 ln 1/δ

n

)
,

(11)

where L denotes the expected error, ℓemp is the empirical
error, and B is a constant denoting the upper bound of the
loss function ℓ. |L − ℓemp| is termed the generalization gap.

Definition 4. [63] A δ-cover of a set Θ with respect to a
metric ρ is a set {θ1, . . . , θN} ⊂ Θ such that for each θ ∈ Θ,
there exists some i ∈ {1, . . . , N} such that ρ(θ, θi) ≤ δ. The
δ-covering number N(δ,Θ, ρ) is the cardinality of the smallest
δ-cover.

B. Theorem and proof

Theorem 5. Let M∗ be the optimal solution to Eq. 5. Then
for any δ > 0, with probability at least 1− δ we have:

|L(M∗)− ℓemp(M
∗)|

≤
n̂(ts)

n3
+B

(n3 − n̂(ts)

n3
+ 3

√
2K ln 2 + 2 ln 1/δ

n

)
,

where n̂(ts) denotes the number of triplets whose adversarial
margins are larger than τ , B is a constant denoting the upper
bound of the loss function (i.e. Eq. 5), and K denotes the
number of disjoint sets that partition the input-label space and
equals to |Y|(1 + 2

τ )
p.

Proof. After embedding the perturbation loss, learning al-
gorithms that minimize the classical triplet loss, i.e.[
1 + d2M (xi,xj)− d2M (xi,xl)

]
+
·1{yi=yj ̸=yl}, are (|Y|(1+

2
τ )

p, 1, n̂(·; τ)) pseudo-robust. ϵ = 1 since, by definition of
adversarial margin, any x that falls into the Euclidean ball
with center xi and a radius of the desired margin τ will
satisfy d2M (x,xl) > d2M (x,xj). Therefore, any change in the
triplet loss is bounded by 1. The value of K can be determined
via the covering number [26]. The instance space X can be
partitioned by using the covering number N(τ,X , ∥ · ∥2). By
normalizing all instances to have unit L2-norm, we obtain a
finite covering number as N ≤ (1+ 2

τ )
p [63]. The label space

Y can be partitioned into |Y| sets. Therefore, the number of
disjoint sets, i.e. K, is always smaller than |Y|(1 + 2

τ )
p.

APPENDIX D
EXPERIMENTAL SETUP AND ADDITIONAL RESULTS

A. Datasets

Table V lists information on sample size, feature dimen-
sion and class information. The class distribution of datasets
Ecoli, Yeast and APS Failure is highly imbalanced and their
imbalanced ratios (IR) are also listed.

B. Experimental setting

Hyperparameter tuning of compared methods: LMNN,
SCML, and DRIFT are implemented by using the official
codes provided by the authors; all parameters are set as
default apart from the trade-off parameter. For LMNN, the
trade-off parameter µ is chosen from {0.1, 0.2, . . . , 0.9}. For
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Fig. 5: Robustness of LMNN-based methods on the Australian dataset with different noise types and intensities.

TABLE V: Characteristics of the datasets.

Dataset # instances # features # classes # rounds
(training,test,valid.) (reduced dimensions)

UCI data
Australian 690 14 2 20
Breast cancer 683 9 2 20
Ecoli 336 7 2 (IR:10.59) 20
(0-1-4-7 vs 2-3-5-6)
Fourclass 862 2 2 20
Haberman 306 3 2 20
Iris 150 4 3 20
Segment 2310 19 7 20
Sonar 208 60 2 20
Voting 435 16 2 20
WDBC 569 30 2 20
Wine 178 13 3 20
Yeast (CYT vs POX) 483 8 2 (IR:23.15) 20
Credit (Taiwan) 30000 23 2 1

(10k,10k,10k)

High-dimensional data
Isolet 7797 617 26 4

(1560,1558) (170)
MNIST 4000 784 10 1

(2000,2000) (141)
APS Failure 76000 171 2 (IR:58.90) 1

(40k,20k,16k) (79)

SCML, the weight of the regularization term η is chosen
from {10−5, 10−4, . . . , 103}, and the number of bases is set
as 200, 400 and 1000 for UCI datasets whose sample size
is smaller than 500, larger than 500, and large-scale/high-
dimensional datasets (i.e. Credit, Isolet, and MNIST), re-
spectively. For LDD, the regularizer weight is chosen from
{10−6, 10−5, . . . , 102}. For CAP, the regularizer weight is
chosen from {10−3, 10−2, . . . , 10}, and the rank of M is
chosen from 10 values equally spaced between 1 and p.
For PNCA, the temperature scaling parameter is chosen from
{10−2, 10−1, . . . , 102}, and the number of proxies per class
is chosen from [1, 2, 3, 5, 10] for all UCI datasets except
[1, 3, 5, 10, 20] for Credit. For DRIFT, we search the grid
suggested by the authors. Trade-off parameters are tuned via
five-fold cross-validation on the training data or on a separate
validation set as listed in Table V. For all these methods,
triplet constraints are generated from 3 target neighbors and
10 nearest impostors, calculated under the Euclidean distance.

Experimental setting of LMNN-PL: M is initialized as
the identity matrix. The learning rate γ is initialized to 1.
Following [14]’s work, γ is increased by 1% if the loss
function decreases and decreased by 50% otherwise. The

training stops if the relative change in the objective function
is smaller than the threshold of 10−7 or reaches the maximum
number of iterations of 1000.

Experimental setting of SCML-PL: SCML-PL is tuned in
the same manner as LMNN-PL via random search; the range
of η and the number of bases are same as SCML, and the
ranges of τ and λ are same as LMNN-PL. The method
is optimised via the accelerated proximal gradient descent
algorithm with a backtracking stepsize rule [61]. The initial
learning rate is set as 1 and the shrinkage factor is set as 0.8.
w is initialized as the unit vector.

Experimental setting of PNCA-PL: Ranges of hyperparame-
ters are same as PNCA and LMNN-PL, except that λ is chosen
from {10−2, 10−1, . . . , 102}. In addition, for training stability,
we update proxies only in the first 200 iterations and fix them
afterwards.

C. Additional experimental results

In addition to the isotropic Gaussian noise presented
in the main text, we test the robustness performance
against anistropic Gaussian noise and adversarial perturba-
tions. Anistropic Gaussian noise is generated from a zero-
mean Gaussian with a diagonal covariance matrix and unequal
variances estimated from the training data; its noise intensity is
determined via SNR. Adversarial perturbations are computed
according to Eq. 2 with the nearest target neighbor and
impostor found from using the learned distance metric; the
magnitude of perturbations is controlled via L2 norm.

To start with, we conduct an in-depth experiment on the
Australian dataset by altering the noise intensity. Fig. 5a plots
the classification accuracy of LMNN-based methods under
different levels of isotropic Gaussian noise (equal variances).
When the noise intensity is low, the performance of LMNN
and LMNN-PL remain stable. When the noise intensity in-
creases to the SNR of 10 dB or 5 dB, the performances
of both method degrade. Owing to the enlarged adversarial
margin, the influence on LMNN-PL is slightly smaller than
that on LMNN. When the SNR equals 1 dB, the performance
gain from using LMNN-PL becomes smaller. This result is
reasonable as the desired margin τ is selected according to
the criterion of classification accuracy and hence may be too
small to withstand a high level of noise. LMNN-PL surpasses
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TABLE VI: Classification accuracy (or G-means indicated by an asterisk) of 3NN on datasets contaminated with anisotropic
Gaussian noise (SNR=5 dB).

LMNN-based SCML-based PNCA-based

Dataset Euclidean LMNN LDD CAP SN DRIFT LMNN-PL SCML SCML-PL PNCA PNCA-PL

Australian 81.88±1.72 82.13±1.52 82.57±1.55 81.82±1.52 82.20±1.54 81.97±1.53 82.90±1.53 82.59±1.70 82.84±1.64 83.21±1.69 83.68±1.81
Breast cancer 96.76±1.06 96.24±1.06 96.66±1.07 96.27±1.03 96.27±1.07 96.61±0.97 96.69±1.07 96.34±1.03 96.63±1.03 96.05±1.39 96.74±1.13
Ecoli* 78.28±7.53 75.13±7.58 76.97±7.64 72.64±9.06 75.27±7.60 76.18±7.65 78.58±7.53 75.02±6.89 77.14±7.97 90.91±3.17 91.40±2.55
Fourclass 69.20±1.11 67.74±1.25 68.84±1.14 67.84±1.19 68.61±1.26 69.13±1.02 69.04±1.11 68.22±1.10 68.96±1.11 70.54±2.14 69.49±4.62
Haberman 70.30±1.89 70.21±1.84 70.25±1.82 69.39±2.06 70.23±1.85 69.31±2.50 70.25±1.90 69.98±1.64 70.24±1.85 74.72±3.15 74.76±3.09
Iris 79.84±3.28 78.75±2.96 79.04±3.17 77.90±3.31 78.84±3.08 78.57±3.09 79.20±3.08 78.32±3.60 79.18±3.13 78.13±4.55 78.34±3.91
Segment 86.27±0.70 79.03±3.37 83.49±1.17 82.77±2.49 80.04±3.25 83.88±1.33 82.13±2.70 61.28±9.78 62.86±8.76 76.30±2.74 78.28±3.32
Sonar 83.50±3.19 83.54±4.30 86.18±2.93 85.44±2.79 83.50±4.32 84.65±3.30 84.99±3.13 76.91±4.32 79.49±3.80 80.71±4.35 81.76±3.43
Voting 93.19±1.14 94.01±1.00 94.24±1.13 94.37±1.17 94.05±1.01 93.94±1.12 94.64±1.21 93.99±1.15 94.65±1.09 92.61±1.64 93.45±1.77
WDBC 95.89±1.31 92.01±1.65 96.30±0.94 96.14±1.11 92.67±1.69 96.02±0.88 96.07±0.89 95.75±1.29 96.22±1.14 96.02±1.51 96.24±1.14
Wine 94.13±1.47 93.27±1.62 93.97±1.38 93.87±1.49 93.38±1.68 94.55±1.15 94.44±1.21 93.92±1.55 94.52±1.33 94.08±1.93 93.37±1.49
Yeast* 69.91±10.46 59.00±8.78 68.63±10.66 65.74±10.26 59.58±8.98 70.15±10.56 70.23±10.48 56.43±8.74 60.32±9.07 61.84±18.45 63.70±18.69
Credit 76.01 76.07 76.22 74.52 76.29 76.12 76.06 75.73 75.73 78.89 79.73

# outperform - 12 9 10 12 9 - 13 - 11 -

TABLE VII: Classification accuracy (or G-means indicated by an asterisk) of 3NN on datasets contaminated with adversarial
perturbations (L2-norm=0.2).

LMNN-based SCML-based PNCA-based

Dataset Euclidean LMNN LDD CAP SN DRIFT LMNN-PL SCML SCML-PL PNCA PNCA-PL

Australian 79.09±2.57 79.98±2.95 80.79±2.72 76.95±3.86 80.14±2.78 78.87±3.13 81.78±2.53 79.64±3.11 81.08±2.58 83.89±2.91 84.35±3.04
Breast cancer 96.29±1.57 95.44±1.69 96.00±1.84 95.68±1.44 95.46±1.77 95.85±1.67 96.00±1.53 95.59±1.60 95.71±1.66 96.37±1.91 96.66±1.67
Ecoli* 80.60±11.55 72.82±16.67 80.70±11.42 68.78±21.39 73.84±16.43 78.59±10.55 79.97±13.37 74.80±14.62 75.20±13.99 71.58±20.12 79.07±9.35
Fourclass 66.27±2.64 60.73±4.97 66.53±2.34 64.34±3.18 64.05±4.44 66.22±2.66 66.35±3.00 64.90±3.18 66.49±2.89 72.80±3.32 71.29±5.21
Haberman 57.58±4.26 57.25±5.28 57.19±4.67 57.53±5.07 57.19±5.05 59.16±6.17 57.30±4.55 56.40±5.37 57.02±3.75 74.94±4.39 75.45±4.38
Iris 78.67±5.37 76.33±6.70 76.67±6.22 76.78±5.42 76.11±7.06 76.44±6.93 76.78±6.39 74.00±6.99 76.67±6.26 78.22±8.14 77.67±7.33
Segment 76.10±1.70 56.80±6.21 67.86±3.12 67.37±6.19 59.21±6.54 71.31±2.83 65.53±5.17 29.49±9.00 30.56±12.95 68.71±4.31 71.61±4.66
Sonar 71.75±6.11 42.38±16.87 64.13±6.36 58.33±6.89 41.67±16.92 64.44±5.46 56.03±8.43 28.17±11.22 40.24±11.81 60.40±5.93 61.90±11.01
Voting 90.88±2.06 89.54±2.97 91.11±2.62 91.03±2.70 89.47±3.05 91.22±2.26 92.71±1.99 90.08±2.46 92.25±2.92 87.79±3.70 89.89±6.93
WDBC 93.57±1.89 59.27±12.73 91.05±2.08 90.56±3.02 65.03±12.00 90.91±2.40 90.41±3.58 87.51±4.15 90.73±2.97 90.85±3.24 91.64±2.64
Wine 90.28±3.23 84.07±6.02 90.09±3.08 86.94±3.53 84.63±6.16 87.59±3.40 88.43±4.07 86.02±5.39 88.98±4.55 88.70±3.75 86.20±4.55
Yeast* 70.21±10.47 53.42±26.38 70.19±10.50 68.15±12.59 52.15±25.54 70.14±10.49 70.19±10.49 59.83±13.44 62.61±18.96 61.65±19.36 66.65±19.05
Credit 67.22 67.14 67.21 65.02 67.29 67.23 66.96 66.03 66.44 80.60 80.27

- 12 6 9 12 8 - 13 - 9 -

all other LMNN-based methods until the noise intensity is
very large. Fig. 5b plots the accuracy under anisotropic Gaus-
sian noise (unequal variances). Compared with the case of
isotropic Gaussian noise, the degradation of all methods is
more pronounced in this case, but the pattern remains similar.
Fig. 5c presents the results under adversarial perturbations.
The proposed method achieves the highest accuracy over
the range of perturbation size. The method LDD is also
quite robust to adversarial perturbations. This should not be
surprising as it encourages learning a metric close to the
Euclidean distance, and the Euclidean distance is less sensitive
to perturbation than the discriminative Mahalanobis distance.

Tables VI and VII list the classification accuracy or G-
means for all datasets contaminated by the anistropic Gaussian
noise with the SNR of 5 dB and the adversarial perturbations
with the perturbation size of 0.2, respectively. Comparing the
case of adversarial perturbations with that of Gaussian-type
noises, we see three clear differences. First, LMNN performs
much worse than the Euclidean distance in the presence of
adversarial perturbations, especially on datasets with a large
number of features relative to the sample size such as Sonar
and WDBC. A potential reason is that the learned metric will
stretch the distances in a few directions for discriminability,
and hence adding perturbations in these directions is very
likely to change the decision of kNN. Secondly, robustness

TABLE VIII: Generalization and robustness of metric learning
methods on high-dimensional datasets (additional results).

Isolet

Method Clean IG,SNR=20 IG,SNR=5 AG,SNR=20 AG,SNR=5 Margin

Euclidean 84.16±4.09 83.93±4.30 82.73±3.70 83.93±4.30 83.18±3.59 0.1009
AML 86.75±3.16 86.59±3.49 85.97±3.69 86.69±3.59 86.24±3.82 0.1261
LDD 90.91±3.90 90.81±4.12 87.97±3.83 90.75±4.12 89.13±4.05 0.1333

MNIST

Method Clean IG,SNR=20 IG,SNR=5 AG,SNR=20 AG,SNR=5 Margin

Euclidean 88.70 88.90 88.25 89.05 88.05 0.2091
AML 89.25 88.70 88.85 89.30 89.20 0.2142
LDD 90.85 90.85 87.90 90.95 90.30 0.2232
DRIFT 90.85 90.75 87.45 90.65 89.45 0.2054

DRIFT is unable to learn a metric on Isolet and hence is not reported.

to adversarial perturbations differs markedly across the types
of methods. SCML-based deteriorates drastically on some
datasets while PNCA-based methods are much more robust.
Thirdly, the proposed method is effective in safeguarding the
baseline methods against adversarial perturbations on most of
the datasets.

Table VIII is a supplement to Table III of main text. It
reports the performance of Euclidean, AML, LDD and DRIFT
on high-dimensional datasets.
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D. Convergence analysis

The objective function of the proposed perturbation loss
(Eq. 4) includes several indicator functions. As a consequence,
we cannot guarantee that the optimization algorithm will
converge to a global or local optimum. Empirically, we decay
the learning rate as training progresses and stop training when
the change in the objective function is small or if it reaches
the maximum iteration. Figure 6 shows the classification
accuracy of the proposed LMNN-PL on the MNIST dataset
along training. The test accuracy increases in the initial stage,
oscillates afterwards, and stabilizes after around 500 iterations.

Fig. 6: Convergence curve of LMNN-PL on MNIST.
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