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Wide-Bandwidth Nanocomposite-Sensor Integrated Smart
Mask for Tracking Multiphase Respiratory Activities

Jiao Suo, Yifan Liu, Cong Wu, Meng Chen, Qingyun Huang, Yiming Liu, Kuanming Yao,
Yangbin Chen, Qiqi Pan, Xiaoyu Chang, Alice Yeuk Lan Leung, Ho-yin Chan,*
Guanglie Zhang, Zhengbao Yang, Walid Daoud, Xinyue Li, Vellaisamy A. L. Roy,
Jiangang Shen, Xinge Yu,* Jianping Wang,* and Wen Jung Li*

Wearing masks has been a recommended protective measure due to the risks
of coronavirus disease 2019 (COVID-19) even in its coming endemic phase.
Therefore, deploying a “smart mask” to monitor human physiological signals
is highly beneficial for personal and public health. This work presents a smart
mask integrating an ultrathin nanocomposite sponge structure-based
soundwave sensor (≈400 μm), which allows the high sensitivity in a
wide-bandwidth dynamic pressure range, i.e., capable of detecting various
respiratory sounds of breathing, speaking, and coughing. Thirty-one subjects
test the smart mask in recording their respiratory activities. Machine/deep
learning methods, i.e., support vector machine and convolutional neural
networks, are used to recognize these activities, which show average
macro-recalls of ≈95% in both individual and generalized models. With rich
high-frequency (≈4000 Hz) information recorded, the two-/tri-phase coughs
can be mapped while speaking words can be identified, demonstrating that
the smart mask can be applicable as a daily wearable Internet of Things (IoT)
device for respiratory disease identification, voice interaction tool, etc. in the
future. This work bridges the technological gap between ultra-lightweight but
high-frequency response sensor material fabrication, signal transduction and
processing, and machining/deep learning to demonstrate a wearable device
for potential applications in continual health monitoring in daily life.
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1. Introduction

Since the emergence of the coronavirus dis-
ease 2019 (COVID-19),[1] it has been gen-
erally accepted that universal masking is
a necessary measure against the world-
wide spread of COVID-19 because wearing
masks can effectively prevent the transmis-
sion of coronavirus and influenza viruses
from infected individuals.[2–5] Many coun-
tries established laws requiring the use of
masks,[6,7] and wearing masks has become
a daily necessity, including as a part of peo-
ple’s social lives. Across the globe, there was
a sentiment in early 2022 that the COVID-
19 virus could soon become endemic, sim-
ilar to common cold flu viruses. However,
as warned by A. Katzourakis of Oxford Uni-
versity recently,[8] we must set aside opti-
mism and be more realistic about the likely
levels of death, disability, and illness that
will be caused by a “COVID-19” endemic
phase. It is important to remember that
endemicity does not correspond to harm-
lessness. Malaria, for example, was widely
recognized in ancient Greece by the 4th
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century BC, but it is still considered an endemic disease in
87 countries worldwide, as reported by the Centers for Dis-
ease and Prevention (CDC) in 2021.[9] In fact, nearly half of the
world’s population lives in areas at risk of malaria transmission,
and malaria caused an estimated 241 million clinical cases and
627 000 deaths in 2020. Moreover, the world must also consider
that circulating virus could give rise to new variants, such as the
new BA.2 variant (a subvariant of Omicron), which continues to
spread across the world.[10] Hence, globally, we must use available
and proven weapons to continue to fight the COVID-19 viruses,
e.g., wearing masks. In addition, wearing face masks is also an
effective way to prevent the spread of other respiratory viruses,
such as seasonal human coronaviruses, influenza viruses, and
rhinoviruses.[2]

Therefore, deploying a face mask to monitor human physio-
logical signals has been highly beneficial for personal and public
health.[11–25] Different kinds of smart masks have been proposed
to detect body signals, including respiratory rate/heart rate,[11–18]

skin temperature,[12,16,19–23] cough count (based on tempera-
ture and pressure change),[16,18] blood oxygen[12] and airborne
pathogens.[24,25] Among them, respiratory activities, coughing in
particular, are key symptoms of respiratory illness and are usu-
ally of great importance for diagnosing diseases, such as pertus-
sis and asthma.[26–28] Additionally, the latest research also further
indicates that the impact of COVID-19 on the respiratory system
may lead to notable changes in the voice of infected people, which
can be determined by speaking, breathing, and coughing.[29–31]

Currently, many researchers are collecting respiratory sound au-
dio samples from the public to build AI models and improve ma-
chine learning algorithms through smartphone apps and web-
based platforms. However, from a hygiene perspective, coughing
or speaking on open surfaces is not desirable, as it may result
in further transmission of respiratory diseases. Therefore, it is
highly desirable to develop smart masks to monitor respiratory
activities, such as breathing, coughing, and speaking.

As one of the most important respiratory activities, breath-
related signals (e.g., heart rate and breath rate) are usually de-
tected by off-the-shelf photoplethysmography (PPG) sensors[12,13]

and thermistors[16] integrated with masks. In addition to com-
mercial sensors, advanced nanogenerators and flexible sensors
based on new nanomaterials have also been used recently. It is
known that breath is the process of air flowing in and out of the
lungs, namely, exhalation and inhalation.[32] Therefore, it can also
be detected as air-flow-driven pressure. For example, nanogener-
ators based on nanofibrous[11] and nanostructured polytetraflu-
oroethylene (n-PTFE) thin films[14] have been used to success-
fully detect breath activities. An ultrathin pressure sensor with
piezoelectric-like properties was also integrated into a face mask
to detect human breath activities.[18] For coughing, researchers
used integrated sensors to detect the temperature change[16] and
air flow[18] during coughing. These coughing detection sensors
focused only on cough counting, and the obtained information
would be limited since coughing is a process that consists of
several stages. Coughing initiates a series of respiratory activi-
ties that cause a sudden explosion of air along with the cough-
ing sound, which usually consists of three phases.[33–36] The first
stage is an explosion of the air with a glottal opening producing
some noise-like waveform, and then at the second steady stage
when the airflow is decreased, it causes the sound amplitude to

also decrease. The third stage is the voiced stage, which is the in-
terruption of the air flow due to the closure of the glottal and peri-
odic vibration of part of the glottis, and it is not always present.[36]

Therefore, sensors used for cough detection should be sensitive
to not only subtle air pressure but also to high-frequency vibra-
tions.

Another function of the smart mask that draws attention is
speech detection. Speech is produced by vocal fold vibration-
induced air vibration when vocal folds come close as the air
passes through during the exhalation of air from the lung.[37] Re-
cent investigations have demonstrated that both standard surgi-
cal masks and N95/KN95 respirators influence the acoustic char-
acteristics of voice,[38–41] attenuating the mean spectral level by
2.0–5.2 dB in the high-frequency region from 1 to 8 kHz while
not considerably affecting the low-frequency range from 0 to
1 kHz.[38] Masks have a greater impact on human speech recog-
nition against a higher level of background noise.[42] The high-
frequency components of the human voice provide perceptual
information for individual speaker gender[43,44] and contribute to
speech intelligibility;[45] thus, wearing masks causes the damp-
ening of high-frequency spectral energy, which leads to a decline
in clarity of speech, and may consequently affect communica-
tion efficiency while interfacing with voice-recognition devices.
For example, mobile phone software that requires voice recogni-
tion may not work properly in noisy environments when a per-
son is wearing a mask, and the health monitoring related to the
human voice will also be affected. Therefore, integrating a “voice
recorder” inside of the mask would be beneficial for speech recog-
nition and understanding when wearing a face mask. Moreover,
human speech could also provide health information and poten-
tially be used for disease diagnosis.[46–48]

Based on the above facts, this work presents the devel-
opment of a smart mask integrating an ultrathin flexible
sponge structure-based soundwave sensor made of carbon nan-
otube/polydimethylsiloxane (CNT/PDMS) nanocomposites. A
unique double sugar cubes imprint process was used to realize
the ultrathin sponge sensing elements that enable high sensitiv-
ity in both static and dynamic pressure measurement ranges for
tracking, classifying, and recognizing different respiratory activ-
ities, including breathing, speaking, and coughing. The 400 μm
thick sponge sensing elements show a static pressure sensitiv-
ity of approximately 0.79 kPa–1 and respond to high-frequency
dynamic pressure generated by the human voice, i.e., sound har-
monic energy up to 4000 Hz. Air pressure caused by air move-
ments consisting of air directional flow and air vibration could
also be detected, and their frequency composition features were
investigated. Various characteristics of the three different respira-
tory activities were successfully captured. Thirty-one human sub-
jects were recruited to collect respiratory activities while wearing
the smart mask. These data were further processed and classified
by support vector machine (SVM) and convolutional neural net-
works (CNNs). For individual subjects, all 31 human subjects had
macro recalls above 90% (with a maximum as high as 100%), and
the average reached 95.23% for these three different types of res-
piratory sounds. The macro-recall reached approximately 95.88%
for the three respiratory sounds among all 31 subjects. Several
applications could be developed using this smart mask. For ex-
ample, as shown in Figure 1, important health-related signals,
respiratory rate (and further heart rate, which is approximately
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Figure 1. The application of smart masks for monitoring human daily respiratory activities.

four times the respiratory rate during rest) and cough could be
used for the screening and diagnosis of cough-related diseases.

2. Results

2.1. Ultrathin, Porous Sponge Structure-Based Sensor

Figure 2a illustrates the preparation process of the nanocom-
posites of CNT/PDMS by mixing PDMS with multiwall CNTs
(MWCNTs) while isopropyl alcohol (IPA) was applied as the sol-
vent. This mixture solution with CNTs embedded in PDMS ma-
trix could be processed into different structures with templates
and curing processes. Solutions with different CNT concentra-
tions (2–5 wt%) were prepared. Figure 2b presents the fabrication
of the thin film sponge structure with the CNT/PDMS materials
using a novel modified imprint technique with a double sugar
cube template. The porous sponge had a minimum thickness of
approximately 400 μm (area size of 19.6 × 18.4 mm, the same
as the sugar template) with high flexibility (Figure 2c). It has a
varied pore size in the range of approximately 150–550 μm. Two
pieces of soft copper tape serving as the electrodes were bonded
with the thin sponge structure with silver paste to ensure that
this sensor could be connected to a circuit to study its electrical
properties and sensing performance.

2.2. Electrical Properties and the Static Pressure Sensing
Performance of the Sensor

This kind of synthetic nanocomposite obtained by mixing poly-
mer and nanoconductive materials usually has complex electrical
properties depending on the ratio of the conductive materials
and cannot be treated simply as a capacitor or a resistor.[49–52]

Therefore, it was necessary to study the electrical properties
of the prepared CNT/PDMS sponge (≈400 μm) sensors with
different CNT concentrations in detail to lay the foundation for
their application. Figure 3a shows the experimental setup and
Figure 3b–d shows the electrical properties of the CNT/PDMS
nanocomposite sponge-based sensors with different CNT
contents from 2 to 5 wt%, which were measured without an
applied external pressure. The direct current resistance (RDC)
values of the sensors with different CNT contents are shown
in Figure 3b. A higher CNT concentration is associated with
a lower resistance of the CNT/PDMS sponge, while the RDC
exhibited a slight change at CNT concentrations of 3 wt% or
higher. Regarding the impedance properties, the changes in the
phase angle (𝜃) and the total impedance (Z) of the CNT/PDMS
sponge-based sensors at varying frequencies from 4 Hz–5 MHz
are shown in Figure 3c,d. At relatively low frequencies, resistive
behavior was dominant. The total impedance did not change
with frequency, and the phase angle remained near zero. As the
frequency increased, both the total impedance and the phase
angle changed. At high frequencies, the phase angle was no
longer zero, indicating that the sponge had both the resistance
component (i.e., the real component of Z) and the reactance
component (i.e., the imaginary component of Z). Accordingly,
the test frequency range could be delineated into resistive and
capacitive regions, which increased and decreased, respectively,
with increasing CNT concentration. In addition, the sponges
with CNT concentrations of 3, 4, and 5 wt% exhibited similar
impedance curves (frequency versus 𝜃 and Z), and they behaved
more like a resistor. The formation of conductive networks of
CNT in polymer usually follows the percolation theory,[53] and
the effects of CNT concentration are discussed in Supporting
Information. There exists a percolation threshold where the
conductivity of the composite would increase significantly,
and the value can be considered as the 3 wt% based on the
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Figure 2. Schematic showing the flexible sponge-based sensor fabrication. a) The preparation process of carbon nanotube/polydimethylsiloxane
(CNT/PDMS) nanocomposites by mixing multiwall CNTs (MWCNTs) with PDMS. b) The fabrication process of a CNT/PDMS sponge using a double-
sugar cube template and a sponge-based sensor with two soft copper tape electrodes attached to the sponge. c) Optical and scanning electron mi-
croscopy (SEM) images of the sponge to show its thin thickness and porous structure.

experimental results. The estimated critical exponent value
(0.89) of the material developed in this work lies in a reasonable
range.

According to the electrical property investigation above, the
CNT/PDMS sponge-based sensor is not composed of solely
resistive or capacitive materials. The sensors with 2 and 3 wt%
CNT contents have two typical electrical properties. Therefore,
the impedance response of the sponge-based sensor with 2
and 3 wt% contents to pressure was measured. In this study,
different static pressures were applied using different weights,
and the impedance measurement setup is shown in Figure 3a.
Impedance responses to different mechanical pressures were
measured at different measurement frequencies to investigate
their effects on sensor sensitivity. The total impedance (Z)
contained a real component (resistance, Zre = Z × cos𝜃) and an
imaginary component (reactance, Zim = Z × sin𝜃). The response
and sensitivity related to these three parameters were measured
and calculated, as shown in Figure S1 and Table S1 (Supporting
Information). For both sensors, the response curves can be delin-
eated into two linear segments in the pressure ranges of 27.9 Pa–
0.2 kPa and 0.2–2.5 kPa with all measurement frequencies. The
overall performance of the sensor with 3 wt% CNT concentration
is better than that of 2 wt% CNT because it has higher sensitivity

in both low- and high-pressure range under all measurement
frequencies. The total impedance response of the sensor with
3 wt% CNT to different static pressures is shown in Figure 3e,f.
The average sensitivity (i.e., mean value under all measurement
frequencies) was determined to be 0.79 (±0.061) kPa–1 and 0.088
(±0.0045) kPa–1 in the static pressure ranges of 27.9 Pa–0.2 kPa
and 0.2–2.5 kPa, respectively. The obtained sensitivity value of the
sensor with 3 wt% CNT has little dependance on measurement
frequency. Therefore, the nanocomposite sensor which behaved
more like a resistor (with a CNT content of 3 wt% or above)
was selected for further applications. The sensitivity should be
approximately 0.9 kPa–1 (the value of Zre sensitivity at 4 Hz, as
shown in Table S1, Supporting Information) when used in a di-
rect current (DC) circuit. Therefore, the sensor could be applied
with a relatively simple measurement circuit (e.g., voltage-divider
circuit) and easily integrated with a microcontroller unit (MCU)
board, which usually provides a direct power supply. The stability
of the sponge-based sensor 3 wt% CNT was also tested. As shown
in Figure 3g, the stability performance of the sensor was studied
with a Mark-10 Motorized Force Test Stands by applying ≈8000
times (at ≈0.5 Hz) of cycling load on the sensor. The theoretically
predicted piezoresistive response of the conductive nanomate-
rials filled polymer is discussed in Supporting Information. In

Adv. Sci. 2022, 9, 2203565 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203565 (4 of 15)
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Figure 3. Electrical properties and static pressure sensing performance of the sponge-based sensor. a) Schematic illustration of the impedance mea-
surement setup. b) Direct current resistance (RDC) varied with different carbon nanotube (CNT) concentrations of 2, 2.5, 3, 4, and 5 wt%. c,d) Frequency-
dependent (from 4 Hz to 5 MHz) phase angle (c) and total impedance (d) of the CNT/polydimethylsiloxane (PDMS) sponge-based sensor. Impedance
response (e) and the corresponding sensitivity (f) of the sensor with 3 wt% CNT to different pressures under different measurement frequencies (sen-
sitivity results are shown as the mean ± standard deviation). g) Stability performance of the sensor with 3 wt% CNT over ≈8000 cycles (at ≈0.5 Hz).

addition to the CNT concentration, other parameters (e.g.,
Young’s modulus, porosity) would also influence the piezore-
sistive sensor sensitivity (Figure S2, Supporting Information).
The sensor performance could be further improved based on the
theoretical analysis.

2.3. Acoustic Vibration Frequency Response of the Device

The performance of the sponge-based sensor to high-frequency
vibration was also studied. With the above investigations, the sen-
sor response was measured based on the piezoresistive effect,
and a simple voltage divided circuit was applied. The vibration
input of 100–800 Hz was provided by a vibration speaker, while
the vibration acceleration was measured by a laser Doppler vi-
brometer (LDV) (the detailed testing setup is shown in Figure S3,
Supporting Information). Figure 4a presents the output voltage
change when the speaker vibrates at different frequencies, and
it shows that the flexible sensor has a good response at high-
frequency vibrations. Since, the fundamental frequency of hu-
man speech lies between 80 and 255 Hz for typical adults,[54,55]

the above results demonstrated that the sponge-based sensor has
a fast enough response to detect human speech generated acous-
tic signals. The fast Fourier transform (FFT) analysis of the sen-
sor output signal shows that the flexible sensor can detect the fun-
damental vibration frequency correctly, and harmonics are gener-
ated (Figure 4b). The sensor generated narrow and intense spec-
tral peaks with the full width at half maximum (FWHM) of less
than 3 Hz at 200 and 800 Hz (as shown Figure S4, Supporting
Information), which indicates the sensor can clearly resolve mul-
tiple high frequency vibrations. The time response of the sensor
was also investigated based on a high-frequency vibration test,
and the result showed a response and recovery time of 116.8 mi-
croseconds (μs) and 146.28 μs, respectively (Figure 4c). To fur-
ther study the frequency accuracy and resolution of the sensor
detecting vibrations, Figure 4d shows the frequency components
(FFT analysis) when the vibration speaker played with a series
of piano scales, i.e., A3, B3, C4, D4, and E3. Compared with the
standard values, the flexible sensor showed good accuracy and
resolution when detecting these high-frequency vibrations. The
sensor’s output signal was then converted to an audio file us-
ing a self-developed Python program and spectrum analysis was

Adv. Sci. 2022, 9, 2203565 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203565 (5 of 15)
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Figure 4. Vibration test of the fabricated flexible sponge-based sensor using a vibration speaker. a) Signal change at different vibration frequencies of
100, 200, 400, and 800 Hz. b) The corresponding fast Fourier transform (FFT) analysis. (a.u., arbitrary units.) c) Time response (left), and the enlarged
view (right) showing the response and recovery time of the sensor. d) FFT analysis when the vibration speaker vibrated at piano sound scales of A3, B3,
C4, D4, and E4 with each sound scale lasting for 0.5 s. e) The corresponding spectrum graph.

performed based on the audio signals, as shown in Figure 4e. The
fundamental frequencies of these notes were clearly detected, as
well as the generated harmonics.

2.4. Detection of Air Directional Flow and Air Vibration with the
Sensor

The above investigations and results show that the piezoresistive
sponge-based sensor has good sensitivity to both the static
applied pressure and the high-frequency vibration under solid
contact. Then, this sensitive flexible sensor was tested to detect
the air pressure. Two kinds of air movements were studied. One
was the air directional flow, where the air molecules flowed in one
direction without moving back and forth. The other was the air vi-
bration, where the air molecules vibrated back and forth at certain
frequencies. Figure 5a,b shows the setup schematic illustrations.
The sensor was fixed freestanding, and the output voltage signal

was varied with the resistance change of the sensor. Figure 5c,d
shows the output electric signal and the corresponding generated
FFT plots of the air directional flow and air vibration. The results
show that the air directional flow caused an irregular output sig-
nal during the record time, and no definite frequency component
with most energy was in the low frequency range. In contrast,
the air vibration caused a stable and regular output signal, and
the FFT analysis suggested that the sensor captured the 315 Hz
sound signal correctly. The frequency components at multiples
of 315 Hz (e.g., 630, 945, 1260 Hz, etc.) were the generated
harmonics since it was not a perfect sine wave (the 50 Hz signal
and its harmonics were the noise caused by the power supply).
The output electric signals were then converted to audio signals
since sound actually was the air vibration. More information
can be obtained using audio formant. Figure 5e,f presents the
audio waveforms and spectrograms of air directional flow and
air vibration. The amplitude of air directional flow audio was
noise-like, while the air vibration produced the periodical audio

Adv. Sci. 2022, 9, 2203565 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203565 (6 of 15)
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Figure 5. Detection of air directional flow and air vibration with the sponge-based sensor. a,b) Illustration of the setup of the sponge-based sensor
detecting the (a) air directional flow and (b) air vibration signals. c,d) Fast Fourier transform (FFT) analysis of the output electric signal caused by the c)
air directional flow and d) air vibration of 315 Hz. e,f) Spectrograms and waveforms of the e) air directional flow and f) air vibration audios. g) Power
spectral density (PSD) plot of the air directional flow and air vibration. h) Harmonic-noise-ratio (HNR) value comparison of air directional flow and air
vibration. i) Stability characterization of the sensor detecting an air vibration signal of 200 Hz at 76 dB for 1000 s.

amplitude. The audio spectrogram was the short-time Fourier
transform of the input audio and represents the signal strength
or “loudness” of a signal over time at various frequencies present
in the waveform, which could also show that the energy levels
vary over time. The spectrogram showed that the directional
airflow mainly caused low-frequency energy and varied with
time. However, the energy of the air vibration caused signal
focused on the 315 Hz and its harmonic frequencies (i.e., 630,
945, 1260 Hz…). In addition, the energy at these frequencies
remained stable over time, which was an important feature that
differentiated it from the air directional flow signal. Another
parameter, power spectral density (PSD), which represented
the spectral energy distribution per unit time, showed that
the energy of air directional flow decreases steadily with the
increasing frequency, while the air vibration presented several
peaks (315 × n Hz, n = 1,2,3…) over frequency (Figure 5g).
The harmonic-to-noise ratio (HNR) measured the ratio between
periodic and nonperiodic components of the audio, as shown in
Figure 5h. Air directional flow had a negative HNR value since
it had almost no periodic component, while air vibration had a
positive HNR value, as it was the periodic signal. In summary,

the air directional flow and the air vibration caused signals
were different in the aspects of both the time domine and the
frequency domine. The stability of the developed device due to
high-frequency air vibration source was studied by detecting
an audio signal of 200 Hz and 76 dB for 1000 s as shown in
Figure 5i, i.e., the sensor was induced to vibrate for 200 000 times
in total. The limitation for sound detection was also investigated
and the result is shown in Figure S5 (Supporting Information).
The result indicates that the device can detect 200 Hz sound
of about 58 dB, which is close to the human normal conversa-
tion sound level (i.e., about 60 dB).[56] In addition, the device
can also detect air vibrations of at least 800 Hz, as shown in
Figure S6 (Supporting Information).

2.5. Smart Mask Based on the Flexible Sponge-Based Sensor

The flexible thin sponge-based sensor has been demonstrated to
have a high sensitivity regardless of static pressure and dynamic
pressure. It could also detect air movements, including air direc-
tional flow and air vibration. Therefore, the idea of integrating
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Figure 6. Smart mask to detect the human respiratory activities of breath, cough, and speech. a) Illustration of the integrated smart mask. b–d) Repre-
sentative waveforms and spectrograms of the audio signals of b) breath, c) cough, and d) speech. e) Individual detailed waveform of the three kinds of
respiratory activities. f) Power spectral density (PSD) plot of the three activities of breath, cough, and speech.

this sponge-based sensor into a commercial mask to measure hu-
man daily respiratory activities was proposed. As shown in Fig-
ure 6a, the sensor was fixed in front of the inside of the mask and
kept freestanding to detect human breath, cough, and speech.
Based on the production mechanism of breath,[32] cough,[36] and
speech,[37] the breath mainly involves the air directional flow pro-
cess, while cough involves both air directional flow and air vibra-
tion process, and speech mainly involves an air vibration process
along with some air directional flow. Therefore, these three res-
piratory activities should be detected by our sponge-based sensor
integrated smart mask (see Movie S1, Supporting Information).

Figure 6b–d shows the waveforms and spectrograms of breath,
cough, and speech signals detected by the developed integrated
smart mask. Figure 6e presents the single clean signals of breath,
three-phase cough, and speech (robot). The breath signal is simi-
lar to the air directional flow signal, which has an irregular ampli-
tude and mostly low-frequency energy considering a single clean
breath signal. For a continuous measurement signal (Figure 6b),
breath counting over time (breath rate) can also be obtained. The
recorded cough signals consist of two- and three-phase cough,
where the third phase of the three-phase cough has vibration fea-
tures (short-time stability of frequency), as shown in Figure 6c.
Similarly, coughs can be counted over time considering the con-

tinuous measurement. The speech signal shows obvious period-
ical vibration features with typical short-time stability and har-
monics. Figure 6f provides the PSD curves of the three respi-
ratory activities (i.e., breath, cough, and speech). The breath’s
PSD decreased steadily with the increasing frequency, while for
the speech signal, the value varied greatly and showed substan-
tial peaks when decreasing with frequency. Cough performed be-
tween the breath and speech. The signal had high energy at a very
low frequency and then decreased as the frequency increased,
with some obvious fluctuations. These results proved that the
breath was detected as the air directional flow and speech was
mainly detected as the air vibration, while the cough had the fea-
tures of both air directional flow and air vibration. In addition,
the audio of the speech was heard to be the “robot,” which indi-
cates that our sensor could sense subtle air vibrations. To make
our developed smart mask portable and applicable, an ESP32 (a
commercial MCU board) based wireless module was designed
and prepared to sample the output signal and to transmit the data
to a computer via the Wi-Fi protocol. The test results (Figure S7,
Supporting Information) showed that similar signals of breath,
cough, and speech could be obtained using this self-developed
wireless device compared with the data recorded by the oscillo-
scope.

Adv. Sci. 2022, 9, 2203565 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203565 (8 of 15)
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Figure 7. Data processing and classification results. a) Data processing flow of support vector machine (SVM) and convolutional neural networks (CNN)
classification. b) The mean harmonic-to-noise ratio (HNR) value of breath, cough, and speech for 31 human subjects. The results are shown as the mean
HNR ± standard deviation (n = 1047). ∗∗∗p < 0.001, as determined by one-way analysis of variance (ANOVA). c) The mean value of the recall from the
31 individual subjects with SVM classification. Error bars represent the differences between datasets of different people. d) Results comparison among
five CNN models for the general dataset of all 31 subjects.

2.6. Recognition of Three Respiratory Activities with the
Integrated Smart Mask

To demonstrate our integrated smart mask’s capability to moni-
tor people’s daily respiratory activities, 31 human subjects were
randomly recruited to perform breathing, coughing, and speak-
ing (say “robot”) while wearing the smart mask to collect data.
The basic information (e.g., age, gender, and native language)
on these human subjects is presented in Table S2 and Figure S8
(Supporting Information). Figure 7a shows the data processing
flow, where the recorded change of voltage signals was converted
to audio files first and the segmentation work was performed
manually based on the visualized waveform and spectrogram.
The statistics for the HNR values from the 31 subjects are shown
in Figure 7b. The results suggested that speech had the highest

and a positive HNR value, meaning that most speech signals ob-
tained were effective since they had vibration features. The mean
HNR value of breath was the lowest and negative because the
breath signal had almost no periodical vibrations. For cough, the
mean HNR value was between the speech and breath signals,
which was reasonable because the first two phases of cough in-
duce air flow, while the third phase was the voiced phase, but not
all coughs presented this phase. The statistics for the data from
31 human subjects showed consistency with the typical breath,
cough, and speech signals in the main features, which suggested
that our developed sponge-based smart mask had good stability
and robust performance. To meet different needs, custom models
for each subject were built with the SVM algorithm, which per-
formed well even with small data based on individual datasets,
while a more general model for all subjects was built with the

Adv. Sci. 2022, 9, 2203565 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203565 (9 of 15)
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CNN algorithm, which was more suitable for large data based on
the overall dataset. That way, the system could either be used for
personal health management or community monitoring. Fifty-
three features (see Table S3, Supporting Information), includ-
ing HNR and PSD were extracted for SVM classification. Each
individual subject had an average of 108 pieces of data in the
dataset consisting of breath, cough, and speech signals. Based
on the classification results, the macro-recall (arithmetic mean
of the recall value for all the classes) and the recall of each class
(breath, cough, and speech) were calculated. Figure 7c shows the
mean value of the recall of 31 human subjects, where the mean
recall value for each class is above 94% (i.e., 95.22%, 94.18%,
and 96.29% for breath, cough, and speech, respectively). In ad-
dition, all 31 subjects had a macro-recall above 90% (the maxi-
mum was as high as 100%), while the mean macro-recall value
was approximately 95.23% (±3.36%). Further studies on build-
ing a more general model with the CNN method, which was also
commonly used to analyze respiratory sounds with the input of
spectrograms or Mel-spectrograms and had a good recognition
accuracy for tasks of disease recognition,[30,31] were carried out.
The processing flow is shown in Figure 7a, and more detail can
be found in the Experimental Section. We trained five common
CNN models in our dataset, containing three classic CNN models
(i.e., AlexNet, ResNet-18, and VGG-16) and two lightweight CNN
models (i.e., SqueezeNet and MobileNet-V2). The classification
results are shown in Figure 7d and Table S4 (Supporting Infor-
mation). The highest classification macro-recall (i.e., 95.88%) was
achieved in the VGG-16 model on the dataset of all 31 human
subjects, and MobileNet-V2 also obtained 94.54% macro-recall
with much fewer model parameters which could be used in mo-
bile phones.

3. Discussion

Pressure sensors have long been used for health monitoring[57–59]

and other biological related studies.[60,61] More recently, by in-
tegrating with low-power wireless technologies, pressure sens-
ing systems have become more convenient to use while also
improved user-comfort and practicality.[62] Monitoring human
daily respiratory activities is a promising application for acoustic
pressure sensors. Therefore, this research demonstrated a smart
mask with integrating a nanomaterial-based high-frequency re-
sponse acoustic pressure sensor to monitor human respiratory
activities of breathing, coughing, and speaking. The flexible
acoustic pressure sensor was fabricated based on CNT/PDMS ul-
trathin sponges with excellent sensitivity in both static and dy-
namic pressure input, so this flexible pressure sensor had a wide
application in the monitoring of various human physiological sig-
nals, whether at a low frequency or a high frequency. Therefore,
the respiratory activities of breath, cough, and speech could all be
detected using the same ultralightweight sensor. To be applied
inside the mask, the sensor should also be harmless to the hu-
man body and work stably in high humidity environments. The
sensing material (i.e., CNT/PDMS nanocomposites) proved to be
biocompatible, and no free CNTs were observed during use.[63] A
layer of 30 nm thick parylene-c, which is also biocompatible[64]

and resistant to water vapor,[65] was coated on the surface of the
sensor to make it work well even in a humid environment and

further prevented free CNTs from falling off. Figure S9 (Support-
ing Information) shows the contact angle measurement with the
liquid/volume of water/≈5 μL on the sponge-based sensor. There-
fore, this developed flexible sensor can be integrated inside the
mask to detect respiratory activities that are accompanied by the
safe production of water vapor.

Human respiratory activities mainly involve airflow and air
vibration. To monitor respiratory activities at a certain distance
from our mouth or nose, the developed sensor was verified for its
ability to sense different air movements (i.e., air directional flow
and air vibration). For smart mask preparation, the sensor should
be kept freestanding between the mask’s inner surface and the
human face and fixed inside the mask for better detection, which
can also help effectively avoid the sound attenuation effect of the
mask in the high-frequency region (i.e., above 1 kHz). Experi-
ments on human subjects wearing this smart mask showed that
the smart mask could detect and differentiate three common res-
piratory activities of breath, cough, and speech. The breath signal
was mainly caused by directional air flow, while the cough sig-
nal included both directional air flow and air vibration (when the
third voiced phase occurred). After converting these signals to
audio sound (Movie S2, Supporting Information), the audio cor-
responding to breath was a noisy sound since only air directional
flow was induced without air vibration, which caused a mean-
ingful sound. A coughing sound can sometimes be heard in the
third, voiced, phase because it would induce air vibration. It is
suggested that not only can cough counting be recorded, but the
details of the cough signal can also be obtained and analyzed us-
ing this smart mask.

The speech was detected mainly due to the air vibration
generated, and thus, the corresponding audio could be clearly
recognized. In addition to “robot,” different words (including
both English and Chinese) were also recorded and can be rec-
ognized (see Movie S3, Supporting Information). The generated
waveforms and spectrograms of the different words are shown
in Figure S10 (Supporting Information). Although air-conducted
human voices have high-frequency harmonics of thousands of
Hertz, information up to 3400 Hz should be enough for commu-
nication since this is the upper limit of the telephone bandwidth
used today.[66] The spectrograms in Figure S10 (Supporting
Information) show that the sensor can detect information of
approximately 4 kHz. Therefore, this smart mask has great
potential to help improve speech recognition intelligence, which
is degraded by the barrier of face masks. However, there are still
some air flows that “impact” the sensor, so the speech sounds
contain a “popping sound,” similar to when a speaker is too
close to a microphone. Applying a blowout hood may help re-
duce this popping noise and improve the audio quality. Flexible
acoustic sensors have been investigated in the past, including
capacitive,[54] piezoelectric,[67,68] triboelectric,[69] and piezoresis-
tive sensors.[70–72] Compared with capacitive, piezoelectric, and
triboelectric sensors, piezoresistive acoustic sensors have the ad-
vantages of low-cost, easy fabrication and integration, and single
layer structure.[72] Capacitive sensors typically have a resonant
frequency above audible sound so they exhibit a flat frequency
response.[54] However, understanding the mechanical resonant
characteristics of the designed sensor is very important for other
types of sensors due to concerns for relatively low sensitivity for
frequency band below the resonant frequency and the drastic

Adv. Sci. 2022, 9, 2203565 © 2022 The Authors. Advanced Science published by Wiley-VCH GmbH2203565 (10 of 15)

 21983844, 2022, 31, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/advs.202203565 by U

niversity O
f G

lasgow
, W

iley O
nline L

ibrary on [08/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



www.advancedsciencenews.com www.advancedscience.com

degradation of sensor response after the resonant frequency.[68]

For example, prior work showed that, although some sig-
nal distortions were observed close to the device resonant
frequency,[72,73] the material and mechanical design of acoustic
devices could be investigated to use the high sensitivity sensor
response around the resonant frequency.[68,72] Multiresonant
sensors have also been studied to obtain high response sensitiv-
ity in a wide detection range.[67,72] Piezoresistive acoustic sensors
are usually fabricated as crack-based structures, including
microcrack,[71] nanocrack,[70] and point crack,[72] while the three-
dimensional (3D) sponge structure based acoustic sensors (as
presented in this work) were rarely studied before. Nevertheless,
sponge-based sensors were applied to detect mechanical vibra-
tion signals in the past.[74,75] Also, another past work showed that
a 3D graphene foam structure exhibited a resonant frequency
of below 100 Hz, and the resonant frequency could be tuned
with varying in the material, structural parameters, and sup-
port methods (i.e., boundary conditions).[76] For the CNT/PDMS
nanocomposite sponge structure sensor in this work, its resonant
frequency is related to multiple factors such as the device shape,
material modulus, and porosity, as discussed in the Text S2, Sup-
porting Information (consider it as a simply supported rectangu-
lar plate). Experimentally, the sensor was mounted on a rigid bulk
substrate and a vibrational frequency sweep from 1 to 400 Hz
(increase by 1 Hz per second) with an actuator was performed.
As shown in Figure S11 (Supporting Information), the first
resonant frequency of the sensor is about 53 Hz. However, since
the mounting method of the sensor can also affect its resonant
frequency,[76] the resonant characteristics of the sensor integrated
in the smart mask, where it was kept freestanding, should vary
from the value obtained from the above experiment. On the other
hand, the indentation modulus (obtained using microhardness
test) of the CNT/PDMS nanocomposite increases with increas-
ing CNT concentration (Figure S12, Supporting Information).
Therefore, the resonant frequency of the CNT/PDMS sponge
sensor can be designed by adjusting the material and the struc-
tural parameters. Theoretically, based on the Equation S12 and
Figure S12 (Supporting Information), the resonant frequency
of the CNT/PDMS sponge structure sensor would increase with
increasing CNT concentration, increasing sponge thickness, and
decreasing sponge porosity. The result is similar to the previous
work on the 3D graphene foam.[76] In addition, the parameters
discussed above could also affect the pressure sensitivity of the
sensor (Equation S5 and Figure S2, Supporting Information).
Therefore, although the fabricated sponge structure sensor can
already detect speeches currently, the sensor can be further
improved (e.g., designed with multiresonant frequency charac-
teristics) to have more superior performance in acoustic sound
detection.

The results of the developed smart mask based on rigid masks
detecting human breath, cough, and speech suggest that their
distinguishable features can be identified so that different res-
piratory activities can be recognized using our classification al-
gorithm. Since the most used mask currently is the deformable
mask based on polypropylene nonwoven fabric, the fabricated
CNT/PDMS sponge structure sensor was also tested by integrat-
ing it with a commercial deformable face mask (Movie S4, Sup-
porting Information). The results (Figure S13, Supporting Infor-
mation) show the respiratory sounds of breathing, coughing, and

speaking (i.e., “robot”) can be successfully detected even if the
mask is flexible. The harmonic features of the speech signal can
also be recognized although its response amplitudes (as well as
for breath signals) are lower than that for a sensor fixed to a rigid
mask. Hence, the sensor’s applicability in the more commonly
used deformable commercial masks could be assessed in the fu-
ture by performing long-term stability tests and also their consis-
tency in collecting respiratory sound data from multiple subjects.

4. Conclusion

In conclusion, a flexible acoustic wave sensor was fabricated
based on CNT/PDMS composite sponges with a modified im-
print technique to make it as thin as 400 μm. The sensor (3wt%
CNT content or above) performed well with the piezoresistive
mechanism according to the electrical properties and the sen-
sitivity investigation, which showed 0.79 kPa–1 and 0.088 kPa–1

in the pressure ranges of 27.9 Pa–0.2 kPa and 0.2–2.5 kPa, re-
spectively. The flexible sensor was also tested to detect the dy-
namic pressure of the fundamental frequency of 100–800 Hz,
which showed a great performance in frequency accuracy, har-
monics detection (up to 4000 Hz), and resolution for vibration
detection. In addition, this flexible sensor showed the ability to
sense air movements, including air directional flow and air vibra-
tion, which had different characteristics (represented by features
used in classification). Moreover, air directional flow caused rela-
tively irregular signals, with energy mainly focused in the low fre-
quency range, while air vibration caused a periodical signal, with
energy focused in the vibration frequencies (fundamental fre-
quency and the corresponding harmonics). These results showed
that the flexible sensor could be used to detect human respiratory
activities by integrating with a commercial polycarbonate mask.
It was demonstrated that our developed smart mask could detect
and differentiate three common respiratory activities, including
breathing, coughing, and speaking. The classification result of
the three activities suggested an average macro-recall of approxi-
mately 95.23% (with an individual dataset of 31 human subjects)
and 95.88% (with a dataset containing all 31 human subjects),
which indicates the proposed entire system can be applied in both
personal and public health monitoring and management.

5. Experimental Section
Preparation of the CNT/PDMS Nanocomposites: The preparation pro-

cess for the CNT/PDMS composite solution involved mixing multiwall
CNTs (MWCNTs; XFNANO, China) and PDMS (Sylgard184; Dow, USA)
in IPA (Anaqua Chemical Supply, Hong Kong). IPA was used as the sol-
vent because both CNT and PDMS are partially soluble in it.[63,77] The
MWCNTs had diameters of 10–20 nm and lengths of 10–30 μm (pro-
vided by the manufacturer). First, MWCNTs were dispersed in a sufficient
quantity of IPA and ultrasonicated for 20 min to obtain a dispersion of
CNTs. Then, PDMS-base elastomer was added to the dispersion and ul-
trasonicated for 10 min. Subsequently, the mixture was placed on a hot-
plate (IKA, Germany) maintained at 55 °C to completely evaporate the
IPA. Thereafter, PDMS-curing agent (the weight ratio of PDMS- base elas-
tomer and PDMS- curing agent is 10:1) was added to the solution and
was mechanically mixed. Finally, air bubbles were removed from the mix-
ture through vacuum treatment. In this manner, CNT/PDMS composites
with CNT concentrations of 2, 2.5, 3, 4, and 5 wt% were prepared by mixing
0.2/0.25/0.3/0.4/0.5 g of MWCNTs with 10 g PDMS.
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Preparation of the CNT/PDMS Sponge: CNT/PDMS sponges were fab-
ricated using sacrificial sugar cubes (Taikoo; purchased from a supermar-
ket in Hong Kong) measuring 19.6 × 18.4 × 11.7 mm (thickness). The
CNT/PDMS composite solution was dropped (with a syringe) onto the
surface of a sugar cube and spread smoothly across its surface. Then, a
second sugar cube was placed atop the first cube and cured in an oven
at 70 °C for approximately 2 h. Finally, the remaining sugar was dissolved
in deionized water to obtain a CNT/PDMS sponge sheet. This modified
imprinting technique was used to fabricate sponges with a very thin thick-
ness of approximately 400 μm. Sponge samples with different CNT weight
concentrations (2–5 wt%) were prepared from the same batch of sugar
cubes, and all samples were made the same thickness by controlling the
solution amount.

Fabrication of the CNT/PDMS Sponge-Based Pressure Sensor: Then,
flexible pressure sensors were fabricated based on the thin film sponge.
Two sheets of copper tape served as the electrodes and were bonded to
electrical wires. The sponge was attached to the electrodes using conduc-
tive silver paste, after which the paste was solidified using a hot air gun
(Saike, China) at 100 °C for approximately 1 min. A piece of parafilm served
as a substrate when needed. The entire sensor could also be packaged by
coating a layer of parylene-c thin film on the surface. The coating process
was applied under 17 millitorr, the pyrolysis temperature was 690 °C, the
vaporization temperature was 175 °C, and the deposition temperature was
room temperature. The resulting thickness was approximately 30 nm when
0.1 g parylene-c was applied.

Characterization of the CNT/PDMS Sponge-Based Sensor: The porous
structure of the CNT/PDMS sponge was characterized using scanning
electron microscopy (SEM, FEI Quanta 450). Direct current resistance was
measured using a digital multimeter (Fluke 15B+, USA), and impedance
characteristics were recorded using an impedance analyzer (HIOKI IM
3570, Japan) in the 4 Hz–5 MHz range at 1 V. A series of static pressures
from 27.9 Pa to 2.5 kPa were realized by applying different weights. The
changes in impedance under different frequencies (4 Hz, 10 kHz, 1 MHz,
2.5 MHz, and 5 MHz) were recorded using the impedance analyzer at a
sampling rate of 1 Hz. Sensitivity was calculated using the equation (i.e.,
the slope of the curve):

S =
ΔZ∕Z0

P − P0
(1)

where ΔZ represents the change in impedance (or its real/imaginary part)
in response to external pressure P, and Z0 is the initial impedance (or its
real/imaginary part) of the pressure sensor. The cycle test was performed
using the Motorized Force Test Stand (Mark-10, Series ESM) with an up-
and-down speed of ≈20 mm min−1 for ≈8000 cycles. For the vibration test,
the flexible sensor was attached to a vibration speaker (a commercial prod-
uct of JBL Plus 3), and the speaker was controlled to vibrate at different fre-
quencies by playing the corresponding audio. Meanwhile, a laser Doppler
vibrometer was applied to measure the actual vibration frequency of the
speaker. The measurement voltage-divider circuit contained a DC power
source (5 V) and a voltage-divider resistor, which was used in the cycle
test (Figure 3g), and vibration test (Figure 4). The change in the output
voltage signal of the sensor was recorded using an oscilloscope. Finally,
the sensor was fixed to apply air directional flow and air vibration from a
distance. The two pieces of electrodes of the sponge-based sensor were
fixed to two separate pieces of glass with some distance to make the sens-
ing area freestanding. A low-cost, micro power consumption microphone,
MAX4466, was used in this test, and its circuit is shown in Figure S14 (Sup-
porting Information). MAX4466 is a mature product that was integrated
with the electret microphone. The developed sponge-based sensor can be
easily integrated into this amplifying module by replacing the electret mi-
crophone and worked well. The air directional flow pressure was provided
by an air gun blowing air to the sensor with constant velocity, and the air
vibration was induced by the speaker playing a 315 Hz sound in front of
the sensor. The sound level was measured with a sound level meter in-
tegrated on the Apple Watch SE, which was calibrated with a sound level
calibrator (ANDTEK, ND9A). The indentation modulus (EIT) of the materi-
als was measured using the Micro-hardness Tester (Fischer/Fischerscope

HM200 XYp) with a load of 50 mN and holding time of 10 s. The resonant
frequency was investigated by applying an actuator (Gelsonlab Hspw-003)
giving a vibration force upright to the sensor with a rigid bulk metal sub-
strate and frequency increasing at 1 Hz per second from 1 Hz to 400 Hz.

Smart Mask Preparation and Human Respiratory Activity Detection: The
developed thin film sponge-based sensor was then fixed to the inner side
of a commercial transparent mask. The commercial polycarbonate mask
used in this project had a hard texture (with a Young’s modulus of approx-
imately 2.4 GPa for polycarbonate[78]) and could maintain a fixed shape
with three filters located on the two sides of the cheeks and the chin, as
shown in Figure 1. The deformable mask tested in Figure S13 (Supporting
Information) was a commercial face mask made of polypropylene spun-
bond non-woven fabric (Manning, Hong Kong). The sensor was fixed to
the approximate position of the mouth and nose of the mask. First, the
two pieces of sensor electrodes were attached to two pieces of PDMS
strip, which had a similar area of the electrodes and was approximately
2 mm thick with double-sided tape. Then, the sensor was fixed to the in-
side of the mask by attaching the two pieces of PDMS to the mask with
double-sided tape to make the sponge sensing area flat and freestand-
ing. A wireless data acquisition board was also dedicated based on ESP32,
which was a feature rich MCU with integrated Wi-Fi and Bluetooth connec-
tivity. It collected data with an 8 kHz sampling rate and transmitted data
to a computer via Wi-Fi. This homemade ESP32-based wireless module
had a size of 31 x 22 x 14 mm and a weight of 13 g (with a battery). The
power consumption of this device was low, where the current was 56 mA
at idle status (i.e., the device is standby and ready for data collection) and
140 mA at working status. Volunteers were asked to wear the mask natu-
rally and perform the respiratory activities of breathing, coughing (volun-
tary), and speech (i.e., speaking “robot”). The experiments were approved
by the Human Subjects Ethics Sub-Committee of City University of Hong
Kong (Reference NO. 2-2021-52-F) and written consent forms were ob-
tained from all the participants. Six pieces of data were obtained for each
human activity, while each piece of data lasted for 40 s and consisted of
at least five breath/cough/speech signals. The human subjects consisted
of males (11) and females (20), and the age range was between 22 and 31
years. Signals were acquired with the circuit based on the MAX4466 audio
preamplifier module, and they were sampled by both the oscilloscope and
the self-developed wireless board. The following data analysis process was
based on the data acquired from the two methods.

Data Processing and Classification: Signals of human respiratory activ-
ities were converted to audios by a self-developed program, followed by
noise reduction work. A segmentation process was performed manually
to select the clean signals for each activity from the noise according to the
visualized waveform and spectrogram. Fifty-three features (shown in Ta-
ble S3, Supporting Information) were extracted for the SVM[79] classifica-
tion process. Before the final classification, principal component analysis
(PCA) was used to reduce the dimensionality and compute the main com-
ponents of all the features. The SVM algorithm was applied to perform the
classification (50% data for training and 50% for testing), and the metric
recall was selected to evaluate its performance. Recall predicts the cor-
rect proportion of all samples that are actually positive, and the recall for
activity i is defined as follows:

Recalli =
NTP (i)

NTP (i) + NFN (i)
(2)

where NTP(i) is the number of the true predict case of activity i, and NFN(i)
is the false negative error number of activity i. A high recall value indicates
that most of the behavior samples are correctly classified. Due to the size
differences between the three activities, the average recall value (macro-
recall) was adapted as the main metric to represent the model’s overall
performance, which is expressed as follows:

Macro − recall = 1
N

N∑

i=1

Recalli (3)

where N is the total number of activities.
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CNNs[80] were also applied with the spectrogram picture as the in-
put. The spectrograms were generated after the segmentation process.
To obtain the input spectrograms with the same size, the segmented au-
dio signals of different lengths were resampled, and spectrograms of size
256 (pixels) × 256 (pixels) × 3 (RGB channels) were generated. Several
data augmentation techniques, including random cropping, normaliza-
tion, and random rotation, were applied to the spectrograms. Seventy per-
cent of the spectrogram images were input into the CNN models as the
training dataset, and the others were input as the testing dataset. Five
common CNN models were trained in the dataset, containing three classic
CNN models (i.e., AlexNet, ResNet-18, and VGG-16) and two lightweight
CNN models (i.e., SqueezeNet and MobileNet-V2). The cross-entropy loss
function and the Adam optimization approach were used. Appropriate
learning rates for 200 epochs were used for these models. The evaluation
metrics of recall was calculated as Equation (2), and the precision and F1-
score for activity i were calculated as Equations (4) and (5), respectively:

Precisioni =
NTP (i)

NTP (i) + NFP (i)
(4)

F1 − scorei =
2 × Precisioni × Recalli

Precisioni + Recalli
(5)

where NFP(i) is the false positive error number of activity i. The average
precision and F1-score values were calculated similar as the Equation (3).
The metrics presented in Figure 7d are the average values of the activities.
And accuracy can evaluate the overall performance which was calculated
as Equation (6):

Accuracy (total) =
NTP (total)

Ntotal
(6)

where Ntotal is the total number of the testing set. The accuracy is highly
affected by the ratio of samples between different behaviors.

Statistical Analysis: All shown data are representative for the samples.
The sample size for the sensor characterization is provided in the subsec-
tion entitled “Characterization of the CNT/PDMS Sponge-Based Sensor”.
The sample size for the human test is provided in the subsections “Smart
Mask Preparation and Human Respiratory Activity Detection” and “Data
Processing and Classification” in the Experimental Section. More detail
information was also provided in the Figure captions. The statistical data
plotting were performed using OriginLab and Matlab software. Data in Fig-
ure 3b,f were presented as mean ± standard deviation. Data in Figure 4a
were presented with a moving average to smooth the curve. For the respi-
ratory sound collected from the human subjects, each analog signal was
under-sampled and converted to a waveform audio file (bit rate equals
1411kbps). The data were normalized such that all values lie between 0
to 65 535. Then, the clean respiratory signals (i.e., breath/cough/speech)
would be extracted manually from the audio file after noise reduction. The
total number of samples was N = 3368, so the average sample size for
each subject was ≈108. Bar plots in Figure 7b,c are expressed as the mean
± standard deviation. And, a one-way analysis of variance (ANOVA) is im-
plemented to analyze the difference in the HNR values between three sig-
nal groups (Figure 7b). Figure 7d displays the best performance of the five
CNN models in classifying three signal groups. In the final classification
evaluation based on CNN, some common metrics (i.e., recall, precision,
F1 score, and accuracy) were used to analyze the classification models.
These statistical analyses of classification were performed using Python
3.8.10, and CNN training and evaluation were completed using an open-
source machine learning framework (PyTorch v1.12.0).[81]
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