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We present a new implementation of the geometric method of Cullen & Purser (1984) for 
solving the semi-geostrophic Eady slice equations, which model large scale atmospheric 
flows and frontogenesis. The geometric method is a Lagrangian discretisation, where the 
PDE is approximated by a particle system. An important property of the discretisation is 
that it is energy conserving. We restate the geometric method in the language of semi-
discrete optimal transport theory and exploit this to develop a fast implementation that 
combines the latest results from numerical optimal transport theory with a novel adaptive 
time-stepping scheme. Our results enable a controlled comparison between the Eady-
Boussinesq vertical slice equations and their semi-geostrophic approximation. We provide 
further evidence that weak solutions of the Eady-Boussinesq vertical slice equations 
converge to weak solutions of the semi-geostrophic Eady slice equations as the Rossby 
number tends to zero.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In this paper, we study a meshfree method for solving the semi-geostrophic Eady slice equations, which are stated in equa-
tions (8), (9) in Eulerian coordinates, and in equation (16) in Lagrangian coordinates. The Eady slice model is a simplified 
model of large-scale (small Rossby number) atmospheric flow, and is capable of predicting the formation of atmospheric 
fronts [9]. We develop an efficient implementation of the geometric method [10] for solving this PDE using an adaptive time-
stepping algorithm (Algorithm 2). As an application, we use it to test the validity of the semi-geostrophic approximation of 
the Euler-Boussinesq equations.

Background and motivation. It is important that numerical schemes used in atmospheric models adhere to the energy dy-
namics of the physical system that they represent. Otherwise, the variability of that system will not be accurately captured 
in the corresponding numerical solutions. In Section 5, we continue the work of [34] and [36], in which the idealised baro-
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clinic lifecycle first introduced by Eady in [14] is used as a test problem for numerical schemes for atmospheric models. This 
problem has two particular features that make it a challenging and informative test. The first is that solutions form discon-
tinuities, which are an idealised representation of atmospheric fronts. The second is that, in the absence of forcing, the total 
energy in the physical system is conserved in the large-scale limit. An overview of existing numerical schemes for solving 
the Eady slice problem is given in [34]. The numerical scheme under consideration in this work is Cullen and Purser’s 
geometric method [10] for solving the semi-geostrophic approximation of the Eady-Boussinesq vertical slice equations.

The geometric method was first introduced in [10]. It is a Lagrangian, meshfree method (particle method). It is derived 
by first writing the semi-geostrophic Eady slice equations (8), (9) in Lagrangian coordinates (equation (16)), then by approx-
imating the modified geopotential P by a piecewise affine function (see equation (22)). This reduces the PDE (16) to the 
system of ODEs given in equation (32). The right-hand side of the ODE is defined in terms of a semi-discrete optimal transport 
problem; to evaluate, it we must solve an optimal partitioning problem (Definition 3.1) numerically or, equivalently, find the 
maximum of a concave function (K, defined in equation (51)). We solve the ODE using a novel time-stepping algorithm 
(Algorithm 2), which is designed to accelerate the optimal transport solver.

One of the main differences between our implementation of the geometric method and the original implementation 
in [10] is that we restate it in the language of semi-discrete optimal transport theory [28, Chapter 4], which allows us to 
exploit recent results from this field, such as the damped Newton method of Kitagawa, Mérigot & Thibert (2019) [23]. 
In our companion paper [4], the pioneering design of the geometric method is put on a rigorous footing for the closely-
related three-dimensional semi-geostrophic equations. The original implementation of the geometric method in [10] is now 
regarded as the first numerical method for solving the semi-discrete optimal transport problem [28, Section 4.1]. The geo-
metric method, however, was developed before the term semi-discrete optimal transport was even coined. This paper sees a 
reversal of the knowledge exchange: we use the very latest results from semi-discrete optimal transport theory to improve 
the implementation of the geometric method. Our implementation builds on that of [10] using 38 years of developments 
in computational geometry and optimal transport theory, including the fast algorithm and convergence guarantee of [23]. 
The robustness and conservation properties of the geometric method are optimised by our specific implementation choices. 
Semi-discrete optimal transport has also been used to simulate the incompressible Euler equations [20,25,27], barotropic 
fluids and porous media flow [21], and in astrophysical fluid dynamics [24].

An advantage of the geometric method over finite element methods, such as those used in [34] and [36], is that it 
is structure preserving: solutions of the discretised equations (32) conserve the total energy (17), and give rise to mass-
preserving flows in the fluid domain. Correspondingly, the numerical solutions that we obtain accurately conserve the 
total energy, even when frontal discontinuities form. Similarly, numerical solutions obtained in [11] by using the geometric 
method, and discussed further in [8], exhibit non-dissipative lifecycles and show very little sensitivity to the discretisation, 
indicating high predictability. In contrast, numerical solutions of the Eulerian Eady slice equations obtained in [34,36] by 
using Eulerian numerical methods are invariably dissipative. The diagnostics extracted in [36, Section 3.3] show that they 
systematically violate energy conservation properties after front formation, resulting in a significant loss of total energy over 
multiple lifecycles.

The main application of our new algorithm is to obtain numerical evidence that the semi-geostrophic Eady slice equa-
tions (8), (9), in which geostrophic balance of the out-of-slice wind and hydrostatic balance are enforced, are the correct 
limit of the Eady-Boussinesq vertical slice equations (7) in the large-scale limit (i.e. as the Rossby number Ro tends to 0). In 
the classical setting, solutions of the Eady-Boussinesq vertical slice equations with periodic boundary conditions converge 
strongly in L2 to solutions of the corresponding semi-geostrophic equations as Ro → 0 [7, Theorem 4.5]. Correspondingly, 
the numerical solutions obtained in [34] satisfy geostrophic and hydrostatic balance, up to an error of order O(Ro2), while 
the solutions are smooth, and order O(Ro) after front formation. On the other hand, in both [34] and [36] it was remarked 
that there is a significant difference between the Eulerian solutions presented in those papers and the semi-geostrophic 
solution presented in [11], which cannot be accounted for by the dissipative nature of the former. Subsequent investiga-
tions revealed that the problems studied in the two papers are not identical. Our implementation of the geometric method 
enables a controlled comparison between the two approaches. Using the physical parameters from [34], we obtain numer-
ical solutions of the semi-geostrophic Eady slice equations (8), (9) and confirm that the differences between these and the 
Eulerian solutions obtained in [34] are consistent with the loss of Lagrangian conservation in the Eulerian solutions. This 
provides numerical evidence that the semi-geostrophic approximation is the correct small Rossby number approximation of 
the Eady-Boussinesq vertical slice equations, and suggests that a result similar to [7, Theorem 4.5] may also hold for weak 
solutions which, unlike classical solutions, can possess non-dissipative singularities that represent the evolution of weather 
fronts.

Outline of the paper. In Section 2 we introduce the semi-geostrophic Eady slice equations in Eulerian coordinates (Sec-
tion 2.1) and Lagrangian coordinates (Section 2.3), as well as an important steady shear flow. In Section 3 we discretise 
the Eady slice equations using the geometric method. This leads us to the system of ODEs (32). We give an algorithm for 
solving these ODEs in Section 4, which involves discretising the initial data (Section 4.1), evaluating the right-hand side of 
the ODE by solving a semi-discrete optimal transport problem (Section 4.2), and using an adaptive time-stepping scheme 
(Section 4.4). Section 5 includes some numerical experiments, where we study the stability of a steady shear flow. We 
illustrate front formation in Section 5.2 and study the validity of the semi-geostrophic approximation in Section 5.4. This 
numerical study is complemented by an analytical linear instability analysis in Appendix C.
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2. Governing equations

We study the semi-geostrophic approximation of the Eady-Boussinesq vertical slice model in an infinite channel of height 
H . We will consider solutions that are 2L-periodic in the first coordinate direction. We start by summarising the derivation 
of this model from the Euler-Boussinesq equations and we then draw comparisons with the Eady-Boussinesq vertical slice 
model considered in [34].

2.1. Eady slice model

Our starting point is the Euler-Boussinesq equations for an incompressible fluid:

∂u

∂t
+ u · ∇u + f ẑ × u = −∇� + g

θ0
�ẑ, (1)

∂�

∂t
+ u · ∇� = 0, (2)

∇ · u = 0. (3)

When applied to the atmosphere, u = (u, v, w) is the Eulerian fluid velocity, � is the potential temperature, � is the 
geopotential, f is the Coriolis parameter, g is the acceleration due to gravity, θ0 is a constant reference potential tempera-
ture, ∇ = (∂x, ∂y, ∂z) is the gradient operator, and ẑ = (0, 0, 1). The three coordinates of a position vector x = (x, y, z) ∈R3

represent longitude, latitude and altitude, respectively.
We decompose the potential temperature and geopotential as

�(x, t) = θ0 + θ̄ (y) + θ(x, z, t), (4)

�(x, t) = φ0(z) + φ̄(y, z) + φ(x, z, t), (5)

where the reference geopotential φ0 is given by

φ0(z) = gz,

and the background potential temperature θ̄ and background geopotential φ̄ are given by

θ̄ (y) = sy, φ̄(y, z) = gsyz

θ0
.

Here s < 0 is a constant, so θ̄ represents the decrease in potential temperature when moving away from the equator and 
towards the north pole. Observe that φ0 + φ̄ is in hydrostatic balance with θ0 + θ̄ , which means that

∂z(φ0 + φ̄) = g

θ0
(θ0 + θ̄ ).

We seek vertical slice solutions of (1)-(3), where the velocity depends only on x, z and t . We consider the fluid equations 
in the (x, z)-domain

� := [−L, L) × [−H/2, H/2], (6)

we impose 2L-periodic boundary conditions in x, and we require that w(x, z, t) = 0 for z ∈ {−H/2, H/2}. Substituting 
u = u(x, z, t), (4), and (5) into (1)-(3) yields the following form of Eady-Boussinesq vertical slice equations:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Dt u − f v = −∂xφ,

Dt v + f u = − gsz
θ0

,

Dt w = −∂zφ + gθ
θ0

,

Dtθ + sv = 0,

∂xu + ∂z w = 0,

(7)

where Dt := ∂t + u∂x + w∂z is the in-slice material derivative operator.
The semi-geostrophic approximation is obtained from (7) by neglecting the derivatives Dt u and Dt w . This results in the 

system⎧⎪⎨⎪⎩
Dt v + f u = − gsz

θ0
,

Dtθ + sv = 0,

∂xu + ∂z w = 0,

(8)
3
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where the meridional velocity v and potential temperature θ are determined by the geopotential φ:

v = 1

f
∂xφ, θ = θ0

g
∂zφ. (9)

In what follows, we refer to this system as the SG Eady slice equations.
Define the background shear velocity

u(z) = − gsz

f θ0
. (10)

The system (8), (9) has steady state

(u, v, w, θ,φ) =
(

u(z),0,0,
N2θ0

g

(
z + H

2

)
, N2

2

(
z + H

2

)2
)

, (11)

where the constant N is the Brunt-Väisälä or buoyancy frequency. The additive constant in the definition of θ is chosen so 
that the potential temperature is zero on the bottom of the domain, namely θ(−H/2) = 0. We perform a linear instability 
analysis of this steady state in Appendix C and illustrate its stability numerically in Sections 5.2 and 5.3.

In contrast to the derivations of (7) given in [34] and [36], in our work θ̄ does not depend on z. This aids the derivation 
of the SG approximation. Instead, the linear dependence on z is built into the steady state for θ . Also, for notational 
convenience, the domain � in this paper is a vertical translate of that used in [34] and [36], so u differs by an additive 
constant from the background velocity used therein.

2.2. Notation

In what follows, we make a departure from the notation used thus far and in previous works. This is so that the 
geometric method and its relation to optimal transport can be stated with clarity. We denote by x = (x1, x2) a position 
vector in �, thereby replacing (x, z) by x. Likewise, we replace the horizontal and vertical velocities (u, w) by u = (u1, u2), 
we let ∇ = (∂x1 , ∂x2 ) denote the 2-dimensional gradient, and we let Dt = (∂t + u · ∇) denote the in-slice material derivative.

2.3. SG Eady slice model

Define the modified geopotential P : � →R by

P (x, t) = 1

2
x2

1 + 1

f 2
φ(x, t).

Using (9) we obtain the relation

∇ P (x, t) =
(

1
f v(x, t) + x1

g
f 2θ0

θ(x, t)

)
. (12)

The first component of ∇ P is commonly referred to as the absolute momentum. The semi-geostrophic (SG) Eady slice equa-
tions (8) then become{

(∂t + u · ∇)∇ P = J
(
idx − (∇ P · e1)e1

)
,

∇ · u = 0,
(13)

where idx(x, t) = x, e1 := (1, 0), and

J = gs

f θ0

(
0 −1
1 0

)
.

The global-in-time existence of solutions of (13) and its 3-dimensional analogue for physically-relevant initial data remains 
an open problem. For future reference, we record that the steady state (11) corresponds to

∇ P (x) =
(

x1
N2

f 2

(
x2 + H

2

)) . (14)

We now introduce the Lagrangian form of the equations. Let F denote the in-slice flow corresponding to u so that 
F(x, t) ∈ � is the position at time t of a particle that started at position x, that is

∂tF(x, t) = u(F(x, t), t), F(x,0) = x.

Since u(·, t) is divergence free, the flow F is mass-preserving. Written in terms of the Lagrangian variable
4
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Z(x, t) := ∇ P (F(x, t), t), (15)

the transport equation (13) becomes

∂tZ = J
(
F − (Z · e1)e1

)
. (16)

In contrast to the Eulerian setting, global-in-time solutions of the equations in Lagrangian coordinates are known to exist 
for a wide and physically-relevant class of initial data [17].

2.4. Energy

We define the total geostrophic energy at time t to be

E(t) := Kv(t) +P(t), (17)

where

Kv(t) := 1

2

∫
�

v2(x, t)dx (18)

is the total kinetic energy due to v and

P(t) :=
∫
�

− gθ(x, t)x2

θ0
dx +

∫
�

N2
(

x2 + H

2

)
x2 dx (19)

is the total potential energy. (The final integral in the definition of P(t) ensures that the total potential energy of the steady 
state (11) is zero. We include it for consistency with [36].) The total geostrophic energy E is conserved by the Eulerian 
equations (13). Note that in contrast to the energy defined in [36, equations (23)-(26)], the total geostrophic energy E does 
not include the kinetic energy due to the in-slice velocity u.

3. The geometric method

The geometric method is a spatial discretisation of equation (16), which yields a system of ordinary differential equa-
tions. It is derived using an energy minimisation principle known as Cullen’s stability principle. It was first described and 
implemented in [10], and later used in the context of the SG Eady slice problem in [11]. We describe the original imple-
mentation in Section 4.5. In this section we recast the geometric method in the language of semi-discrete optimal transport 
theory, which underpins our novel implementation and will aid its description.

3.1. The stability principle and semi-discrete optimal transport

In the present context, the stability principle can be stated as follows:

Stable solutions of (16) are those which, at each time, minimise the total geostrophic energy (17) over all periodic 
mass-preserving rearrangements of fluid particles that conserve the absolute momentum and potential temperature.

This can be shown to be equivalent to assuming that P is convex.
In the geometric method, we approximate the modified geopotential P at each time by a piecewise affine function, and 

apply the stability principle. The gradient of any piecewise affine function on the fluid domain � is uniquely identified by 
a tessellation of � by cells Si , i ∈ {1, . . . , n}, and corresponding points zi ∈ R2, where zi is the gradient of the piecewise 
affine function on Si . Each periodic rearrangement of fluid particles corresponds to a different tessellation of � by cells S̃ i . 
Such a rearrangement is mass-preserving if S̃ i has the same area as Si for all i ∈ {1, . . . , n}. The absolute momentum and 
potential temperature are conserved when the corresponding image points zi are fixed.

By writing the geostrophic energy (17) in terms of the points zi and sets Si , accounting for the periodic boundary 
conditions on φ, and neglecting terms that are constant over all periodic mass-preserving rearrangements, the stability 
principle can be rephrased as a semi-discrete optimal transport problem (Definition 3.1); see Appendix A for the derivation. 
This is a type of optimal partitioning problem. We refer to its solution as an optimal partition.

In what follows, for A ⊂R2 we denote by |A| the area of A.

Definition 3.1 (Optimal partition). Given seeds z = (z1, . . . , zn) ∈ R2n with zi �= z j if i �= j and target masses m =
(m1, . . . , mn)∈Rn with mi > 0 and 

∑n
i=1 mi = |�|, a partition of � is said to be optimal if it minimises the transport 

cost
5
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T ({Si}n
i=1) :=

n∑
i=1

∫
Si

|x − zi |2per dx (20)

among all partitions {Si}n
i=1 of � that satisfy the mass constraint

|Si | = mi ∀ i ∈ {1, . . . ,n}. (21)

Here |x − y|per is the distance between x, y ∈R2 taking into account 2L-periodicity in the first component:

|x − y|per := min
k∈K

|x − y − k|,
where

K := {2Lke1 |k ∈Z} .

Recall that the characteristic function 1A :R2 →R of a set A ⊂R2 is defined by

1A(x) :=
{

1 x ∈ A,

0 otherwise.

Any modified geopotential P that is piecewise affine at time t and satisfies the stability principle has the form

∇ P (x, t) =
n∑

i=1

(zi + k∗(x, zi))1Si (x), (22)

where {Si(t)}n
i=1 is an optimal partition corresponding to the seeds zi(t) in the sense of Definition 3.1, and

k∗(x, zi) := argmin
k∈K

|x − zi − k| (23)

accounts for the periodic boundary condition on the geopotential φ (cf. [33, Theorem 1.25]). Note that k∗(x, zi) is well 
defined for almost-every x ∈ �. Moreover, without loss of generality, zi(t) ∈ [−L, L) ×R for each i ∈ {1, . . . , n}.

Optimal partitions can be described in terms of periodic Laguerre diagrams. These are partitions of the domain � into 
cells parametrised by the seeds z = (z1, . . . , zn) and a set of weights w = (w1, . . . , wn) ∈Rn .

Definition 3.2 (Periodic Laguerre diagram). Let z = (z1, . . . , zn) ∈ ([−L, L) ×R
)n

with zi �= z j if i �= j. Let w = (w1, . . . , wn) ∈
Rn . For i ∈ {1, . . . , n}, we define the set

Ci,per(z,w) :=
{

x ∈ � : |x − zi |2per − wi ≤ |x − z j|2per − w j ∀ j ∈ {1, . . . ,n}
}

. (24)

This is the ith periodic Laguerre cell generated by (z, w), and the collection of all cells {Ci,per}n
i=1 is the periodic Laguerre 

diagram generated by (z, w).

Definition 3.3 (Cell-area map). We define the cell-area map m = (m1, . . . , mn) :R2n ×Rn →Rn by

mi(z,w) := ∣∣Ci,per(z,w)
∣∣ .

It is well known that given z = (z1, . . . , zn) ∈ R2n , with zi �= z j whenever i �= j, and given m = (m1, . . . , mn) ∈ Rn with 
mi > 0, 

∑n
i=1 mi = |�|, there exists a unique weight vector w∗(z) ∈Rn with final entry 0 that satisfies the mass constraint

m(z,w∗(z)) = m

(see for example [28, Corollary 39]). The optimal partition of � is then the periodic Laguerre diagram generated by 
(z, w∗(z)). We call w∗(z) the optimal weight vector for the seeds z. Observe that, for all λ ∈R,

Ci,per(z,w + λe) = Ci,per(z,w), (25)

where e = (1, . . . , 1) ∈ Rn . Choosing the last entry of w∗(z) to be 0 ensures uniqueness of the optimal weight vector, 
without loss of generality.

To solve the semi-discrete optimal transport problem (Definition 3.1), it is therefore sufficient to compute the optimal 
weight vector. To do this, we use the well-known fact that w∗(z) ∈ Rn is the unique maximum (with final entry 0) of the 
Kantorovich functional, which is the concave function K :Rn →R defined by
6
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K(w) :=
n∑

i=1

∫
Ci,per(z,w)

|x − zi|2per dx + w · (m − m(z,w)). (26)

See for example [28, Theorem 40]. In effect, the constrained optimal partitioning problem is transformed into an uncon-
strained, finite-dimensional, concave maximisation problem, which is numerically tractable.

3.2. Spatial discretisation

In summary, we seek solutions of (16) for which the associated geopotential P is piecewise affine in space at each time 
t . By the stability principle, ∇ P must have the form (22) with

Si = Ci,per(z,w∗(z)) (27)

for some time-dependent map z = (z1, . . . , zn), where w∗ is the maximum of K and the chosen target masses m =
(m1, . . . , mn) do not change over time. The assumption that Si has the form (27) is equivalent to assuming that P is 
convex.

We now sketch the derivation of an ODE for z, further details of which can be found in Appendix B. We begin by making 
the following definition, which arises naturally in the derivation due to the periodic boundary conditions.

Definition 3.4. Let z = (z1, . . . , zn) ∈ R2n with zi �= z j if i �= j. Let w = (w1, . . . , wn) ∈ Rn . For i ∈ {1, . . . , n}, we define the 
convex polygon Ci(z, w) by

Ci(z,w) :=
{

x ∈R×
[
− H

2
,

H

2

]
: |x − zi|2 − wi ≤ |x − z j − k|2 − w j ∀ j ∈ {1, . . . ,n}, k ∈ K

}
.

Note the difference between Definitions 3.2 and 3.4: Definition 3.2 defines a periodic Laguerre tessellation of [−L, L) ×
[−H/2, H/2] generated by a finite set of seeds and weights (z, w), while Definition 3.4 defines a non-periodic Laguerre 
tessellation of R × [−H/2, H/2] generated by all periodic copies of (z, w), namely by (zi + k, wi) for all i ∈ {1, . . . , n}, 
k ∈ K . In general, the cells Ci(z, w) are not contained in �, but if Ci(z, w) ⊂ � then Ci(z, w) = Ci,per(z, w). In any case, both 
Ci(z, w) and Ci,per(z, w) have the same area for each i ∈ {1, . . . , n}.

By definition of the optimal weight vector, at each time t the mass constraint

m
(

z(t),w∗
(
z(t)

)) = m

is satisfied. For brevity, we define

Ci,per(t) = Ci,per(z(t),w∗(z(t))). (28)

Assume that there exists a mass-preserving flow F such that

Ci,per(t) = F
(
Ci,per(0), t

)
(29)

at all times t . For each i ∈ {1, . . . , n}, we define ci(z) to be the centroid of Ci(z, w∗(z)), namely

ci(z) := 1

|Ci(z,w∗(z))|
∫

Ci(z,w∗(z))

x dx, (30)

and we define

c(z) := (c1(z), . . . , cn(z)).

Formally, after substituting the ansatz (22), (27) into (16), integrating over the cell Ci,per(0), and using (29) to apply the 
change of variables x 
→ F(x, t), one finds that the vector of seed trajectories z satisfies the ODE{

żi = J
(
ci(z) − (zi · e1)e1

)
,

zi(0) = zi,
(31)

for all i ∈ {1, . . . , n}, where z = (z1, . . . , zn) denotes the initial seed positions: see Appendix B for the details of the derivation. 
The ambient space containing individual seed positions zi(t) is referred to as geostrophic space. The ODE (31) is the discrete 
analogue of the Lagrangian equation (16), where the centroid map c plays the role of the flow F. The full system can be 
written compactly as
7
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{
ż = J (c(z) − �z) ,

z(0) = z,
(32)

where J and � are the 2n × 2n matrices

J = diag( J , . . . , J ) and � = diag(e1 ⊗ e1, ...,e1 ⊗ e1).

The matrix � acts on each seed zi by projection onto the horizontal coordinate. We will use this form of the system when 
we describe the time discretisation of the system: see Algorithm 2 below.

3.3. Structure preservation and recovery of physical variables

If z satisfies the ODE (32) and w(t) = w∗(z(t)), then the total geostrophic energy (17) corresponding to a modified 
geopotential P of the form (33) is constant in time. The geometric method therefore inherits the energy conservation 
property possessed by the Eulerian SG Eady slice equation (13). Moreover, the one-parameter family of Laguerre tessellations 
t 
→ {Ci(z(t), w(t))}i∈{1,...,n} corresponds to an area-preserving flow of the fluid since the mass of each cell is conserved by 
definition of w∗ .

Given seed trajectories z = (z1, . . . , zn) satisfying the ODE (32), let w(t) = w∗(z(t)). The corresponding modified geopo-
tential P is

P (x, t) =
n∑

i=1

((
zi + k∗(x, zi)

) · x − 1

2
|zi + k∗(x, zi)|2 + 1

2
wi

)
1Ci,per(z,w)(x), (33)

and k∗(x, zi) was defined in (23). This is a piecewise affine convex function whose gradient is defined almost-everywhere 
and is given by

∇ P (x, t) =
n∑

i=1

(
zi + k∗(x, zi)

)
1Ci,per(z,w)(x). (34)

Expressions for the approximate out-of-slice velocity and potential temperature can then be recovered using (12).

4. Implementation

We now give details of our numerical implementation of the geometric method. Our software is available at the following 
GitHub repositories.

SG-Eady-Slice: MATLAB functions for initialising and solving the SG Eady slice equations with periodic boundary conditions 
in the horizontal direction using the geometric method of Cullen & Purser [10] with our adaptive time-stepping scheme.
https://github .com /CharliePEgan /SG -Eady -slice

MATLAB-Voro: MATLAB mex files for generating 2D and 3D periodic and non-periodic Laguerre tessellations using Voro++ 
[32].
https://github .com /smr29git /MATLAB -Voro

4.1. Generating discrete initial data

For fixed n ∈ N , we approximate given initial data ∇ P (x, 0) by a piecewise constant function ∇ Pn
0 of the form (34)

defined by initial seeds z = (z1, . . . , zN ) and cell areas m = (m1, . . . , mn). We now describe how we choose z and m.
In Section 5 we will take ∇ P (x, 0) to be a small perturbation of the steady state ∇ P , which was defined in (14). 

Therefore the seeds zi are taken from the image domain ∇ P (�, 0), which is a small perturbation of the rectangle

R = [−L, L) ×
[

0,
N2 H

f 2

]
.

We define zi as follows:

1. use Lloyd’s algorithm [13] to generate points y = (y1, . . . , yn) that are approximately uniformly distributed in R;
2. for each i ∈ {1, . . . , n}, map yi into � by inverting ∇ P :

xi := (∇ P
)−1

(yi) =
(

1 0

0 f 2

N2

)
yi−

(
0
H
2

)
;

3. define

zi := ∇ P (xi,0).
8
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We briefly describe Lloyd’s algorithm, which is an iterative method for quantising measures (see, for example, [13, Section 
5.2]). Let y = (y1, . . . , yn) ∈ ([−L, L) ×R

)n with yi �= y j if i �= j. For each i ∈ {1, . . . , n}, define the ith periodic Voronoi cell 
generated by y as

V i,per(y) := {
r ∈ R : |r − yi|per ≤ |r − y j|per ∀ j ∈ {1, . . . ,n}}. (35)

The collection of all cells {V i,per(y)}n
i=1 is called the periodic Voronoi tessellation of R . At each iteration of the Lloyd algo-

rithm, the value of yi is updated by moving it to the centroid of its Voronoi cell:

yi 
→ 1∣∣V i,per(y)
∣∣

∫
V i,per(y)

(
r − k∗(r,yi)

)
dr

for each i ∈ {1, . . . , n}. The centroids can be computed exactly (without numerical integration): see for example [6, online 
supplementary material, equation (4)]. In our implementation of Lloyd’s algorithm, we start with points y = (y1, . . . , yn) on 
a regular triangular lattice in R and perform 100 iterations to obtain y = (y1, . . . , yn). The target areas are defined for each 
i ∈ {1, . . . , n} as

mi = f 2

N2

∣∣V i,per(y)
∣∣ .

The method above generates points zi that are approximately optimally sampled from the distribution on ∇ P (�, 0) that 
is obtained by pushing forward the uniform distribution on � by ∇ P (·, 0). It is numerically cheaper than directly sampling 
this distribution using Lloyd’s algorithm since it avoids numerical integration.

Since the discrete dynamics (32) conserves the total geostrophic energy E , it is desirable that the initial condition starts 
on the correct energy surface, i.e. that the discrete initial data ∇ Pn

0 has the same total geostrophic energy as ∇ P (x, 0). While 
there exists discrete initial data with this property [15], the choice above does not. Nevertheless, it is easy to generate and 
it approximates the initial energy well enough if n is sufficiently large.

4.2. Generating Laguerre tessellations

In two dimensions the worst-case complexity of computing a Laguerre tessellation with n seeds is O(n log n), where n is 
the number of seeds. This can be achieved for example by the lifting method of Aurenhammer [2]. We computed Laguerre 
and Voronoi tessellations using the C++ library Voro++ [32] and our own mex file to interface with MATLAB. While this does 
not achieve the optimal scaling in n, it is sufficiently fast for the values of n that we use.

4.3. Solving the semi-discrete optimal transport problem

In any numerical scheme for solving the ODE (32), it is necessary to evaluate the right-hand side at each time step. 
Given seeds z, this involves solving the corresponding semi-discrete optimal transport problem to compute c(z). This is the 
most expensive part of the algorithm. Here we do this by finding the maximum of the Kantorovich functional K (equation 
(26)) using the damped Newton method developed in [23]; see Algorithm 1. This solves the nonlinear algebraic equation 
∇K = 0.

First, a guess w for the optimal weight vector is proposed. The Newton direction d is then determined by solving the 
linear system{

D2K(w)d = −∇K(w),

d · en = 0,
(36)

where en = (0, . . . , 0, 1) ∈ Rn . (Formulas for D2K and ∇K are given in Appendix D.) For the linear system (36) to have a 
unique solution, it is necessary and sufficient for w to satisfy the mass-positivity condition∣∣Ci,per(z,w)

∣∣ > 0, (37)

for all i ∈ {1, . . . , n}. To ensure that this condition is met by the subsequent iterate, backtracking is used to determine the 
length of the Newton step. The algorithm terminates once |∇K| is less than a given tolerance.

Convergence of the damped Newton algorithm is guaranteed if and only if the initial guess for the weights satisfies (37), 
in which case it converges globally with linear speed, and locally with quadratic speed, as the number of iterations diverges 
(see [23, Proposition 6.1]). Our adaptive time-stepping scheme (Algorithm 2) for solving the ODE (32) provides a robust way 
to generate a good initial guess for the weights at each time step given the optimal weights from the previous time step.

It remains to generate a good initial guess for the weights at time t = 0. By [25, Theorems 3 and 4], each cell Ci,per(z, w)

is non-empty if and only if w is c-concave in that sense that there exists ϕ : � →R such that
9
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wi = min
x∈�

{|x − zi|2per − ϕ(x)}. (38)

This condition ensures that the cells Ci,per(z, w) are non-empty but not necessarily that they satisfy the mass-positivity 
condition (37). If ϕ = 0, then w defined by (38) satisfies (37) if in addition the horizontal components of the seeds zi are 
distinct (or if zi ∈ � for all i, but this is not the case for our simulations in Section 5). At time t = 0, we therefore first 
randomly perturb the horizontal components of the seeds:

z̃i := zi + ζie1,

where ζi ∈ R are appropriately scaled, randomly generated numbers. Then we apply Algorithm 1 with seeds ̃zi and initial 
weights

wi = min
x∈�

|x − z̃i|2per (39)

to obtain w∗ (̃z). Since w∗ is continuous, for sufficiently small perturbations ζi , w∗(̃z) is a good initial guess for w∗(z) (which 
is computed in the initial step of Algorithm 2). Note that (39) is the square of the K -periodic distance from zi to � which 
can be simply computed as

wi =

⎧⎪⎨⎪⎩
(̃
zi · e2 − H

2

)2
if z̃i · e2 > H

2 ,

0 if z̃i ∈ �,(̃
zi · e2 + H

2

)2
if z̃i · e2 < − H

2 ,

where e2 = (0, 1).

Algorithm 1 Damped Newton algorithm of Kitagawa, Mérigot and Thibert [23].
Input: Seeds z = (z1, . . . , zn), target masses m = (m1, . . . , mn), a percentage mass tolerance η, and an initial guess for the weights w such that

ε := 1

2
min

[
min

i
mi(z,w),min

i
mi

]
> 0.

Initialisation: Set w0 = w and k = 0. Convert η to an absolute mass tolerance:

ηabs := η

100
min

i
mi .

While:
∥∥m

(
z,w(k)

)− m
∥∥∞ � ηabs:

Step 1: Solve the following linear system for the Newton direction d(k):{
D2K

(
w(k)

)
d(k) = −∇K

(
w(k)

)
,

d(k) · en = 0.
(40)

Step 2: Determine the length of the Newton step using backtracking: find the minimum  ∈N ∪ {0} such that w(k,) := w(k) + 2−d(k) satisfies⎧⎨⎩ mi
(
z,w(k,)

)� ε ∀ i ∈ {1, . . . ,n},∥∥m
(
z,w(k,)

)− m
∥∥∞ ≤ (

1 − 2−(+1)
)∥∥m

(
z,w(k)

)− m
∥∥∞ .

Step 3: Define the damped Newton update w(k+1) := w(k) + 2−d(k) and k ← k + 1.
Output: A vector w(k) such that

100

min
i

mi

∥∥∥m
(

z,w(k)
)

− m
∥∥∥∞ ≤ η.

4.4. Solving the ODE using an adaptive time-stepping method

The most computationally intensive part of solving the ODE (32) numerically is evaluating the function c. In addition, c
is continuously differentiable (on the set of distinct seed positions), but not twice continuously differentiable in general: see 
[4]. As such, we can only expect convergence of the ODE solver up to second order in the time step size. We therefore use 
an Adams-Bashforth 2-step method (AB2) with adaptive time-stepping. This requires only one function evaluation at each 
time step.

Our adaptive time-stepping scheme (Algorithm 2) speeds up the function evaluations by using the ODE (32) to generate 
a good initial guess for the weights for Algorithm 1, as we now describe. Suppose that at a given time step we have seeds z
10
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and optimal weights w. Following the notation of Algorithm 2, for a proposed time step size hl , the AB2 scheme determines 
an increment zl

inc for the seed positions. The seeds at the subsequent time step are then defined as

zl := z + zl
inc.

We generate an initial guess wl for the weights corresponding to the seeds zl by taking a first order Taylor expansion of 
w∗(zl) around z:

wl := w + Dzw∗(z) zl
inc.

If the seeds and weights (zl, wl) generate a periodic Laguerre tessellation of � with no zero-area cells, then the proposed 
step size is accepted. Otherwise, the seeds and weights (zl, wl) are discarded, the proposed step size is halved and the 
updates are recalculated. This ensures the convergence of the damped Newton algorithm when used at the subsequent time 
step.

Algorithm 2 Adaptive time-stepping scheme.
Input: Initial seeds z and masses m, a final time T , a default time-step size hdef (seconds), and a percentage mass tolerance η.
Initial step: Compute the optimal weight vector w∗(z) using Algorithm 1, and do a forward Euler step to determine seed positions at time hdef. Set

h = hdef, w = w∗(z), t = h,

vcurr = J (c(z) − �z) , z = z + hvcurr.

While: t ≤ T :
Step 1: Compute the optimal weight vector w∗(z) using Algorithm 1 with w as the initial guess for the weights. Set

w ← w∗(z),(
vprev,vcurr

) ← (vcurr, J (c(z) − �z)) .

Step 2: Determine the minimum l ∈ N ∪ {0} such that mini∈{1,...,N}(mi(zl, wl)) > 0, where the updated seeds zl and weights wl are defined for l ∈ N as 
follows:
Propose step size:

hl ← hdef

2l

Compute AB2 coefficients:

(
cl

prev, cl
curr

)
←

(
− h2

l

2h
,

1

2

(
(hl + h)2

h
− h

))
Compute increments of seeds and weights:

zl
inc ← cl

prevvprev + cl
currvcurr

wl
inc ← Dzw∗(z)zl

inc

Update seeds and guess for weights:(
zl,wl

)
←

(
z + zl

inc,w∗(z) + wl
inc

)
Step 3: Set

(z,w) ← (zl,wl), t ← t + hl, h ← hl.

Output: Seed positions at each time step.

From numerical experiments, we observed that this method is up to forty times faster than either of the following 
methods for generating the initial guess for the weights: (i) using the weights from the previous time step, and a small 
enough time step to ensure that the cells have positive area; (ii) using (39) with a suitable perturbation of the seeds, 
without using any information from the previous time step or adaptive time stepping. Moreover, the sensitivity analysis in 
Section 5.5 shows that the adaptively chosen times step sizes are suitable, i.e. not unreasonably small.

The expression for Dzw∗(z) can be obtained by implicit differentiation of the mass constraint. Indeed, by definition of 
the optimal weight map w∗ ,

m(z,w∗(z)) = m. (41)

By differentiating (41) with respect to z, we see that the derivative Dzw∗(z) satisfies the equation
11
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Dwm(z,w∗(z))Dzw∗(z) = −Dzm(z,w∗(z)). (42)

The matrix Dwm(z, w∗(z)) is symmetric and singular with kernel spanned by e := (1, . . . , 1) ∈ Rn . Each column of 
Dzm(z, w∗(z)) is orthogonal to e. Hence, the linear system (42) has a solution Dzw∗(z). We choose the solution

Dzw∗(z) =
( −A−1B

0

)
, (43)

where 0 ∈R2n is the zero vector and the matrices A ∈R(n−1)×(n−1) and B ∈R(n−1)×2n are defined by

Ai, j := ∂mi

∂ w j
(z,w∗(z)), (44)

for i, j ∈ {1, . . . , n − 1} and

Bk,2l−1 := ∂mk

∂zl,1
, Bk,2l := ∂mk

∂zl,2
, (45)

for k ∈ {1, . . . , n − 1} and l ∈ {1, . . . , n}. Expressions for the derivatives of m with respect to z and w in the non-periodic 
setting are given for example in [12] and [6, Lemma 2.4]. In Appendix D, we state the analogous expressions in the periodic 
setting.

4.5. Comparison with the original implementation

In the original presentation of the geometric method [10], a convex piecewise affine modified geopotential P is con-
structed directly at each time t . The projection of its graph onto the (x1, x2)-plane gives a tessellation {Ci}n

i=1 of �. While 
the term ‘Laguerre diagram’ is not used in [10], this tessellation is equivalent to the optimal partition described above in 
terms of Laguerre cells (up to the inclusion of periodic boundary conditions). The existence and uniqueness of such a map 
P was also proved formally.

As described in [9, Section 5.1.2], for some unknown scalars p j, j ∈ {1, . . . , n}, each cell Ci consists of all x ∈ � such that

x · zi + pi � x · z j + p j (46)

for all j ∈ {1, . . . , n}. The unknowns p j play the role of the weights used in Definition 3.2. (In the non-periodic case, the 
weights wi are related to the pi by pi = 1

2 wi − 1
2 |zi |2, and the modified geopotential P is given by P (x) = maxi(x · zi + pi).) 

The task is to find (p1, . . . , pn) such that Ci has given area mi for each i ∈ {1, . . . , n}. This is achieved by applying the 
nonlinear conjugate gradient method to the objective function

n∑
i=1

(|Ci | − mi
)2

.

At the first iteration, pi are defined such that all cells have positive area (see [9, Equation 5.10]). This initial guess is 
comparable to the initial guess for the weights used at the first time step in our algorithm. At each iteration, the cells Ci
are constructed using the divide-and-conquer algorithm of Preparata and Hong [31].

5. Results

In this section we use the geometric method to simulate a shear instability and the formation of an atmospheric front. 
In what follows, the root mean square of the meridional velocity v (RMSv) at time t is given by

RMSv =
√√√√ 1

|�|
∫
�

|v(x, t)|2 dx, (47)

where |�| is the area of �.

5.1. Parameters and initial conditions

In all simulations we used the following physical parameters, taken from [34]:

L = 106 m, f = 10−4 s−1, g = 10 ms−2, θ0 = 300 K,

N = 0.005 s−1 s = −3 × 10−6 m−1K, a = −7.5 ms−1.

We considered four initial conditions ∇ P (x, 0) of the form
12
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Table 1
Initial conditions and corresponding parameter values used in this paper and in 
previous works.

Source G H Bu

Williams (1967) [35] Gu (see (53)) 10224.85 m 0.5112

Appendix C.4 Gs (see (55)) 16374.56 m 0.8187

Visram et al. (2014) [34] GV (see (56)) 104 m 0.5

Cullen (2007) [8, Equation 4.18] GC (see (57)) 104 m 0.5

∇ P (x,0) = ∇ P (x) + G(x),

where G is a small perturbation of the steady shear flow (14). The perturbations G are related to perturbations θ̃ of the 
potential temperature and ṽ of the meridional velocity by

G(x) =
( 1

f ṽ(x)

g
f 2θ0

θ̃ (x)

)
. (48)

In each case, a corresponding domain height H was chosen, either in line with the linear instability analysis, or to enable 
comparison with the literature: see Table 1.

The perturbations Gu and Gs, listed in Table 1 and defined below, are normal modes of equation (13) linearised around 
the steady state (14). Full details of the linearisation are contained in Appendix C. Define the Burger number by

Bu = N H

f L
.

As shown in Section C.3, exponentially growing normal modes exist only when the Burger number is less than a critical 
value Bucrit, otherwise all normal modes are oscillatory. The domain height H in Table 1 corresponding to Gu is chosen 
so that Bu < Bucrit, the maximum growth rate is achieved by the lowest frequency normal mode Gu, and all other normal 
modes are either decaying or oscillatory. Conversely, the domain height in Table 1 corresponding to Gs is chosen so that 
Bu > Bucrit, and the lowest frequency normal mode Gs is oscillatory and has a wave speed of one domain length (i.e. 2L) 
every 16 days.

Define the constants

A1 := κ cothκ − 1, (49)

A2 := σ(κ) (50)

where

κ := πBu

2
, (51)

and σ :R →R is given by

σ
(
κ̃
) :=

√∣∣(κ̃ − tanh κ̃
) (

coth κ̃ − κ̃
)∣∣. (52)

The unstable normal mode Gu is

Gu(x) =
( 1

f vu(x)

g
f 2θ0

θu(x)

)
, (53)

where

θu(x) = aNθ0

g

[
A1 sinh πBux2

H cos πx1
L − A2 cosh πBux2

H sin πx1
L

]
, (54)

and

vu(x) = −a
[

A2 sinh πBux2
H cos kπx1

L + A1 cosh πBux2
H sin kπx1

L

]
.

The stable normal mode Gs is

Gs(x) =
( 1

f vs(x)

g
f 2θ0

θs(x)

)
, (55)
13
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Fig. 1. Plots of the RMSv curve for the numerical solution of (16) with initial data from Table 1, Row 1, and simulation parameters η = 0.01, hdef = 30 and 
n = 2678. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

where

θs(x) = aNθ0

g
cos πx1

L

[
A1 sinh πBux2

H + A2 cosh πBux2
H

]
,

and

vs(x) = −a sin πx1
L

[
A1 cosh πBux2

H + A2 sinh πBux2
H

]
.

The perturbation used in [34] and [36] is

GV(x) = Gu(x1, x2/π). (56)

Finally,

GC(x) = g B

θ0 f 2
sin

(
π
( x1

L + x2
H + 1

2

))( H
L
1

)
, (57)

where

B = 0.25 K.

These, and the corresponding parameter values in Table 1, are taken directly from the stated sources. Note that neither 
GV nor GC are normal modes of (13) linearised around the steady state (14). They do, however, have the same horizontal 
wavelength as θu .

Finally, in each simulation we specify three discretisation parameters: n, the number of cells in the spatial discretisation 
of �; hdef, the default time step size (see Algorithm 2); η, the percentage mass tolerance (see Algorithm 1).

5.2. Unstable normal mode

The results reported in this subsection were obtained using the initial data given in Table 1, Row 1, and the simulation 
parameters η = 0.01, hdef = 30 and n = 2678, unless otherwise stated. The dimensional growth rate of the unstable mode 
(53), and the corresponding RMSv , under the dynamics of the linearised equations (78)-(82) is

ω = − gs

Nθ0
σ(κ) = 0.53536 day−1.

This is derived in the appendix: see equation (102).
14
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Fig. 2. Numerical solution of (16) with initial data from Table 1, Row 1, and simulation parameters η = 0.001, hdef = 30 and n = 2678. The Laguerre 
tessellations of the fluid domain are shown in rows 1 and 3, and the corresponding seeds z in geostrophic space are shown in rows 2 and 4. Both are 
coloured by the meridional velocity at the cell centroids. The first time t = 4.7031 is halfway between t = 0 and the time of the first peak of RMSv . 
Subsequent times are chosen to coincide with peaks and troughs of the RMSv . Observe the frontal discontinuity at time t = 7.5573.

The time-evolution of the RMSv calculated from the simulation data is presented in Fig. 1a. Using equations (12) and 
(34), the RMSv at time t corresponding to a solution z = (z1, . . . , zn) of (32) is given by

RMSv =
√√√√√ f 2

|�|
n∑

i=1

∫
Ci,per(t)

∣∣∣(x − zi(t) − k∗
(
x, zi(t)

)) · e1

∣∣∣2 dx, (58)

where k∗(x, zi(t)) is defined by (23), and Ci,per(t) is defined by (28).
After a short decline, the RMSv grows at the predicted rate ω: see Fig. 1b. From around time t = 5 days, this growth 

slows until a peak RMSv value is reached at time t = 7.5 days. After a period of decline, the RMSv reaches a trough and 
proceeds to oscillate between the peak and trough values with a frequency of around 7 days. The initial decline in the RMSv
is due to numerical errors incurred by the spatial discretisation: see Section 5.5.

The initial peak in the RMSv curve at time t = 7.5573 days coincides with the formation of a frontal discontinuity, as 
seen in Fig. 2. Subsequent peaks/troughs of the RMSv occur when the frontal discontinuity is strongest/weakest, respectively. 
15
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Fig. 3. Energy dynamics of our numerical solutions of (16).

Note that the meridional velocity v displayed in Fig. 2 is computed from the numerical solution z using (12) and (34). It 
is a piecewise affine function with respect to the Laguerre cells Ci,per, which are shown in Fig. 2, Rows 1 and 3. They are 
coloured according to the meridional velocity at their centroids.

Up to first onset of frontogenesis, the distribution of seeds in geostrophic space appears to roughly approximate a two-
dimensional subset of R2: see Fig. 2, t = 4.7031 days. At the onset of frontogenesis, however, it is clear that a small subset of 
the seeds is distributed along a one-dimensional curve: see Fig. 2, t = 7.5573 days. In other words, the frontal discontinuity 
in physical space appears to correspond to a singular part of the potential vorticity2 measure α, which is defined at time t to 
be the push-forward measure αt = ∇ P (·, t)#L2 ¬

�. For the case where α is non-singular (has a two-dimensional support), 
it is defined by

αt(∇ P (x, t)) = det
(

D2 P (x, t)−1
)

.

The time evolution of the total geostrophic energy (17), the total kinetic energy (18) and the total potential energy (19)
is shown in Fig. 3a. Our results are coherent with the energy conservation property of the geometric method discussed in 
Section 3.3. To quantify to what extent the total geostrophic energy is conserved by a numerical solution, we define the 
energy conservation error at time t as

εn(t) = En − En(t)

En
, (59)

where En(t) is the total geostrophic energy at time t calculated from the numerical solution, En is the temporal mean of 
this quantity, and n is the number of seeds used in the simulation. For the values of n listed in Table 2, |εn(t)| < 2 × 10−5

for all t . Fig. 3b demonstrates that |εn(t)| is at a local maximum at times t when the RMSv is at a peak or trough. By 
definition, peaks and troughs of the kinetic energy align with those of the RMSv . Since the total energy is conserved, the 
total potential energy has the same behaviour as the total kinetic energy but with opposite sign, and energy is transferred 
from kinetic to potential, and vice-versa, over multiple lifecycles.

Numerical solutions of the Eady-Boussinesq vertical slice equations (7) obtained in previous works using Eulerian [36]
or semi-Lagrangian [34] methods exhibit significantly larger energy conservation errors. These losses in the total energy 
occur each time a frontal discontinuity forms. The energetic losses incurred in the results of [36] are attributed to the 

2 The semi-geostrophic Eady Slice equation, and related semi-geostrophic systems, have been studied extensively in their potential vorticity formulation 
in the mathematical analysis literature: see, for example, [1,3,16,18,26]. The relation of this viewpoint to the discrete formulation of the dynamics used in 
the geometric method is the subject of [4].
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Fig. 4. Plots of the potential temperature perturbation in the stable parameter regime with initial data from Table 1, Row 2, and simulation parameters η =
0.001, hdef = 30 and n = 990. We see that the initial potential temperature perturbation propagates left with roughly constant amplitude. The numerically 
observed wave speed is in good agreement with the theoretical prediction of the linear instability analysis (Section C.4), which predicts that the wave takes 
16 days to cross the domain. In particular, the yellow patch in the bottom right corner at t = 0 crosses half the domain by day 8.

approximation of the advection of the meridional velocity v in the numerical method. The geometric method has two 
advantages in this regard. First, it is a Lagrangian method so there is no need to approximate an advection term. Second, 
at each time step the Laguerre tessellation of the fluid domain is defined by the values of θ and v , and so it is adapted 
to the location of the front, regardless of the chosen resolution. This is reflected by the fact that the order of the energy 
conservation error was observed to be similar when using different numbers of seeds n.

The qualitative behaviour of our numerical solutions in physical space coincide with those from previous works [8,11,34,
36]. To the best of our knowledge, the behaviour of the corresponding seeds in geostrophic space has not been previously 
illustrated.

5.3. Stable normal mode

The results reported in this subsection were obtained using the initial condition and physical parameters from row 2 of 
Table 1, and the discretisation parameters η = 0.001, hdef = 30 and n = 990.

Under the dynamics of the linearised equations (78)-(82), disturbances of the steady shear flow (14) corresponding to 
the stable perturbation (55) propagate west with constant wave speed

c1 = |s|gL

Nθ0π
σ(κ),

where κ and σ are defined by (51) and (52): see Appendix C.4. With our choice of physical parameters this equates to 
one domain length (i.e. 2L) every 16 days. This supports our numerical results, as can be seen in Fig. 4, where we plot the 
perturbation of the steady potential temperature. Indeed, Fig. 4 shows that the large scale disturbance initially located at the 
right-most boundary of � (see the yellow patch in the bottom right corner of Fig. 4, t = 0) moves left and is centred around 
the line x1 = L/2 at day 4 and the line x1 = 0 at day 8. Of course, discretisation errors are incurred. One way in which these 
manifest is as small scale disturbances. As shown in equation (105), the maximum wave speed of such (large-wavenumber) 
disturbances under the dynamics of the linearised equations (78)-(82) is

c∞ = |s|g H

2 f θ0
,

or approximately 0.3537 domain lengths (i.e. 2L) per day. While we do not include a corresponding figure, this can also be 
observed in our numerical results.

5.4. Numerical evidence for the convergence of the Eady-Boussinesq vertical slice equations to the semi-geostrophic Eady slice 
equations

We now compare our numerical solutions of the SG Eady slice equations (16) to the numerical solutions of the Eady-
Boussinesq vertical slice equations (7) obtained in [29] and [34].

As outlined in [34, Section 2.3], the SG Eady slice equations (8)-(9) can be understood formally as a small Rossby number 
approximation of (7). This is made concrete by a rescaling argument using a scaling parameter β such that the limit Ro → 0
corresponds to the limit β → 0. In [34], numerical solutions of (7) are obtained for a sequence of decreasing values of 
β using a semi-Lagrangian method. The resulting RMSv curves are then compared to that from [8, Figure 4.6], which 
was obtained by solving the SG Eady slice equations (16) numerically using the geometric method. A similar programme 
is followed in [36] using a compatible finite element method to solve (7) numerically. It is observed that the maximum 
amplitude of the RMSv obtained in [8] is much greater than that obtained in both subsequent studies, even for small β
and high-resolution simulations. This would not support the hypothesis that the SG Eady slice equations are the limit of 
the Eady-Boussinesq vertical slice equations as Ro → 0. However, the reason for the discrepancy between the RMSv curves 
17
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Fig. 5. Comparison of the RMSv curve for the numerical solution of the SG Eady slice equations (16) (solid black curve) and the Eady-Boussineq vertical 
slice equations (7) (blue curves, taken from [34, Figure 5]). Equation (16) was solved with initial data from Table 1, Row 1, and simulation parameters 
η = 0.01, hdef = 30 and n = 2678. The limit β → 0 corresponds to the large scale limit Ro → 0. As β → 0, the blue curves tend towards the solid black 
curve, at least for small times. This supports the hypothesis that the SG Eady slice equations are the small Rossby number limit of the Eady-Boussinesq 
vertical slice equations.

is that the physical parameters used in [8] are not the same as those used in the two subsequent papers, despite being 
reported as such.

To correct the comparisons made in [34] and [36], we implement the geometric method using the physical parameters 
listed in those papers. Note that the initial condition used in both [34] and [36] is that of Table 1, Row 3, not the most 
unstable mode discussed in Section 5.2. When using this initial condition, it is therefore some time before the fastest 
growing unstable normal mode dominates the numerical solution and the expected growth rate of the RMSv is achieved. 
To account for this, in [34] and [36] the numerical solutions are translated backwards in time so that the maximum value 
of v at t = 0 days matches that of [29]. We use the normal mode initial condition from Table 1, Row 1, and do not translate 
in time. The discretisation parameters we use are η = 0.01, hdef = 30 and n = 2678. The resulting RMSv curve is plotted 
against those from [34] in Fig. 5.3 We see that as β → 0, the RMSv curves of [34] tend towards the RMSv curve of our 
numerical solution of the SG Eady slice equations (16) (solid black curve in Fig. 5), at least for small times. This supports 
the hypothesis that (8)-(9) are the small Rossby number limit of (7). In particular, except at very early times where the SG 
solution is affected by discretisation errors, the initial growth rate of the RMSv curves from [34] approaches that of the 
SG numerical solution as β → 0. This supports the initialisation procedure employed in [34] and [36]. For a fair and more 
detailed comparison, however, it would be desirable to perform further experiments using the semi-Lagrangian method of 
[34] and the compatible finite-element method of [36] with the normal mode initial condition so that every simulation uses 
the same initial condition and there is no need to time-translate the solutions.

5.5. Sensitivity analysis

In this section we investigate the sensitivity of our numerical solution to the simulation parameters. These are η, the 
percentage area tolerance supplied to the semi-discrete optimal transport solver; hdef, the default time step size in seconds; 
n, the number of seeds. The initial condition and physical parameters used to generate the results in this section are those 
from Table 1, Row 1.

Accuracy tests. To evaluate the accuracy of our numerical solutions of (16), we ran three sets of simulations, varying each 
parameter in turn. For the first set of simulations in which η was varied, we used hdef = 30, and n = 1470; in the second 
set of simulations in which hdef was varied, we used η = 0.001, and n = 1470; in the third set of simulations in which n
was varied, we used η = 0.01 and hdef = 30. The remaining parameter values are listed in the first column of Table 2. For 
each set of simulations, the numerical solutions were compared to that obtained using the discretisation parameter giving 
the finest discretisation, which is listed in the final row of the corresponding section of Table 2.

Next we state how we compare solutions with different discretisation parameters. Associated to each solution z of the 
ODE (32) with corresponding target masses m = (m1, . . . , mn) is a time-dependent family of discrete distributions

3 Note that a similar figure appears in [9]. There, however, the RMSv curve comes from the numerical solution of the SG Eady slice equations (16)
obtained using our implementation with the initial condition from Table 1, Row 4, and discretisation parameters η = 0.01, hdef = 15 and n = 1575. Since 
the initial condition is not the most unstable normal mode, for comparison, the RMSv curve is translated backwards in time as in [34] and [36].
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Table 2
Relative errors of the numerical solution of (16) with initial data from Table 1, Row 1 for different values of the discreti-
sation parameters η (optimal transport tolerance), hdef (default time step) and n (number of seeds). The second column 
gives the relative errors at different time steps with respect to the Sinkhorn loss (defined in [22, Theorem 1]) with reg-
ularisation parameter ε = 0.001. The third column gives the relative error with respect to the weighted Euclidean norm 
(defined in (60)). The errors are normalised by the factor in (61). In Row 2, hdef = 30 and n = 1470; in Row 3 η = 0.001
and n = 1470; in Row 4 η = 0.01 and hdef = 30. Numerical solutions corresponding to each row were compared to the 
numerical solution obtained using the finest discretisation parameter in that row. There are no values in the bottom right 
section of the table since the weighted Euclidean distance can only be computed between two numerical solutions with 
the same value of n. The relative errors are small and, in most cases, decrease as η and hdef decrease and as n increases. 
They are plotted in Fig. 6.

Square root of Sinkhorn loss Weighted Euclidean distance

t = 2 d t = 4 d t = 6 d t = 8 d t = 2 d t = 4 d t = 6 d t = 8 d

η 1 4.93e−4 7.41e−4 2.34e−3 5.49e−3 9.54e−4 2.96e−3 2.52e−2 5.67e−2
0.1 4.16e−6 2.05e−4 1.44e−3 2.99e−3 1.87e−5 1.10e−3 1.30e−2 2.96e−2
0.01 9.83e−7 9.45e−5 1.15e−3 2.72e−3 7.85e−6 6.81e−4 1.08e−2 2.75e−2
0.001 - - - - - - - -

hdef (s) 60 8.59e−6 7.91e−3 1.52e−3 2.27e−3 1.91e−5 1.69e−2 1.04e−2 2.68e−2
30 1.52e−6 7.48e−5 2.74e−3 2.49e−3 6.64e−6 1.00e−3 1.28e−2 3.00e−2
15 1.64e−6 4.46e−5 1.08e−3 3.15e−3 6.50e−6 6.22e−4 8.15e−3 2.43e−2
7.5 - - - - - - - -

n 528 8.74e−3 6.55e−3 6.95e−3 1.08e−2 - - - -
944 4.12e−3 3.71e−3 4.78e−3 8.00e−3 - - - -
1470 2.20e−3 2.59e−3 2.97e−3 3.33e−3 - - - -
2124 1.41e−3 2.07e−3 3.29e−3 3.97e−3 - - - -
2678 - - - - - - - -

Fig. 6. Plots of the relative errors from Table 2.

n∑
i=1

miδzi(t),

known as the potential vorticity. A natural way to quantify the discrepancy between two discrete distributions

n∑
i=1

miδzi and
n′∑

j=1

m′
jδz′

j

is by using the Wasserstein 2-distance (see, for example, [33, Chapter 5]). The Sinkhorn loss introduced in [22, Theorem 1]
provides an approximation of the Wasserstein 2-distance that can be computed easily and quickly by solving a regularised 
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Fig. 7. Sensitivity of the RMSv to the number of seeds n. The initial data was taken from Table 1, Row 1, and the discretisation parameters were η = 0.01
and hdef = 30.

optimal transport problem. Indeed, its square-root converges to the Wasserstein 2-distance as the strength of the regulari-
sation goes to zero [19]. If n = n′ and mi = m′

i for all i ∈ {1, . . . , n}, one can also consider the weighted Euclidean distance 
between z and z′ given by√√√√ n∑

i=1

mi
∣∣zi − z′

i

∣∣2, (60)

which provides an upper bound on the Wasserstein 2-distance and is much simpler to compute. For each set of simulations, 
we computed both the square root of the Sinkhorn loss with regularisation parameter ε = 0.001 and the weighted Euclidean 
distance at several times t and normalised them by the factor(

|�|max
i

‖zi(t)‖2∞
)− 1

2

, (61)
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Fig. 8. 4-hour average number of time step halvings per time step (see Step 2 in Algorithm 2) using a default time step size of hdef = 30 with η = 0.01, 
n = 2678 and initial data from Table 1, Row 1. The t coordinate of each orange or blue vertical line is a time when the corresponding RMSv curve is at a 
peak or trough, respectively. The number of time step refinements is maximum at peaks of the RMSv curve, which correspond to peaks in the strength of 
the frontal discontinuity. Therefore the adaptive time stepping scheme successfully identifies the frontal discontinuities.

where z is the numerical solution of (32) obtained using the simulation parameter giving the finest discretisation, and 
‖zi(t)‖∞ is the maximum absolute value of the components of zi(t). These values are presented in Table 2 and Fig. 6 and, 
because of the choice of normalisation, can be interpreted as relative errors.

The relative error decreases with η, and tends to increase over time, as expected (see Fig. 6, top left and bottom left). 
When quantified using the weighted Euclidean distance, the relative error also decreases with the default time step size 
hdef, but when quantified using the Sinkhorn loss, this is not true at later times (see Fig. 6, top middle and bottom middle). 
The relative error decreases with n at t = 2 days and t = 4 days, but appears to increase slightly for large values of n at 
t = 6 days and t = 8 days (see Fig. 6, top right). Nevertheless, in all cases, the relative errors are small. The unexpected 
trends may occur because the reference solutions are numerical rather than exact, or because the time step sizes chosen by 
the adaptive method depend on the simulation parameters.

Behaviour of RMSv. Fig. 7a demonstrates that for sufficiently large n the RMSv is well approximated over multiple life-cycles 
by our numerical results. We deduce from Figs. 7b and 7c that the initial decline in the RMSv is due to errors incurred 
by the spatial discretisation of the initial condition (see Section 4.1), which decrease at a rate faster than n− 1

2 , and do not 
significantly affect the behaviour of the RMSv after t = 2 days.

Adaptive time step size. Fig. 8 demonstrates that the number of times that the time step size is halved per iteration by 
the adaptive time stepping algorithm correlates with the magnitude of the RMSv , and hence the strength of the frontal 
discontinuity. This is to be expected because the vertical component of żi(t) is proportional to the meridional velocity 
v(ci(z(t)), t) so, roughly speaking, as the RMSv increases, so does the magnitude of żi(t). As such, the first-order Taylor 
expansion of w∗ becomes less accurate as the RMSv increases, so a smaller time step is needed in order for it to generate 
a good initial guess for the weights for Algorithm 1.

6. Conclusion

In this paper, we recast the geometric method for solving the SG Eady slice equations in the language of semi-discrete 
optimal transport theory (Section 3), and develop a new implementation using the latest results from semi-discrete optimal 
transport theory and a novel adaptive time-stepping algorithm that is tailored to the ODE (32) (Algorithm 2). The numerical 
solutions that we obtain via our implementation support the conjecture that weak solutions of the Eady-Boussinesq vertical 
slice equations (7) converge to weak solutions of the semi-geostrophic Eady slice equations (8), (9) as Ro → 0 (Section 5.4). 
Rigorous numerical tests in Section 5.5 demonstrate the sensitivity of the algorithm with respect to the discretisation pa-
rameters. To clarify the use of different initial conditions in the literature on the Eady slice problem [8,34–36], we include 
a linear instability analysis of the steady shear flow (11), validating and extending the work of Eady [14] (see Appendix C). 
We perform simulations in different physical parameter regimes, which verify the linear instability analysis (Sections 5.2
and 5.3).

The linear instability analysis provides benchmark initial conditions in both stable and unstable parameter regimes. Along 
with our implementation of the geometric method, this could be used in future work to carry out a more rigorous numerical 
study of the convergence of weak solutions of the Eady-Boussinesq vertical slice equations to weak solutions of the SG Eady 
slice equations as Ro → 0, and to explore the behaviour of solutions in different physical parameter regimes.
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Appendix A. Derivation of the semi-discrete transport problem

In this section we derive the semi-discrete optimal transport problem (Definition 3.1) from the stability principle. 
Consider a geopotential φ : R × [−H/2, H/2] → R that is 2L-periodic in the x1 direction. The modified geopotential 
P :R × [−H/2, H/2] →R defined by

P (x) = 1

2
x2

1 + 1

f
φ(x)

satisfies

∇ P (x + k) = ∇ P (x) + k

for all k ∈ K and all x ∈ R × [−H/2, H/2] where P is differentiable. If, in addition, P is piecewise affine, then there exist 
zi ∈ [−L, L) ×R, i ∈ {1, . . . , n}, and a collection of sets Si ⊂R × [−H/2, H/2], i ∈ {1, . . . , n}, satisfying

⋃
k∈K

n⋃
i=1

(Si + k) = R× [−H/2, H/2], ∣∣Si ∩ (S j + k)
∣∣= 0 for all i �= j, k ∈ K , (62)

such that

∇ P (x) =
∑
k∈K

n∑
i=1

(zi + k)1Si+k(x).

The corresponding total geostrophic energy is

E = f 2

2

∑
k∈K

n∑
i=1

∫
(Si+k)∩�

|x − zi − k|2 dx (63)

− f 2

2

∑
k∈K

n∑
i=1

∫
(Si+k)∩�

(zi · e2)
2 dx − f 2

2

∫
�

x2
2 dx +

∫
�

N2
(

x2 + H

2

)
x2 dx. (64)

The stability principle says that at each point in time this energy is minimised over all periodic rearrangements of particles 
that preserve potential temperature and absolute momentum. Each such rearrangement corresponds to a collection of sets 
Si ⊂R × [−H/2, H/2], i ∈ {1, . . . , n}, satisfying (62) with specified masses
22
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|Si | = mi > 0 for all i ∈ {1, . . . ,n}. (65)

Necessarily,

n∑
i=1

mi = |�|.

The terms (64) are constant over all such collections. This leads to the following minimisation problem:

min
{Si}n

i=1

⎧⎪⎨⎪⎩
∑
k∈K

n∑
i=1

∫
(Si+k)∩�

|x − zi − k|2 dx : (62) and (65) hold

⎫⎪⎬⎪⎭ . (66)

We show that the semi-discrete optimal transport problem (Definition 3.1) is equivalent to (66).
Consider {Si}n

i=1 satisfying (62) and (65). For each i ∈ {1, . . . , n}, define

Ci :=
⋃
k∈K

(Si + k) ∩ �. (67)

Note that |Ci | = mi for all i ∈ {1, . . . , n}, and {Ci}n
i=1 is a tessellation of �. Then

∑
k∈K

n∑
i=1

∫
(Si+k)∩�

|x − zi − k|2 dx ≥
∑
k∈K

n∑
i=1

∫
(Si+k)∩�

min
l∈K

|x − zi − l|2 dx

=
n∑

i=1

∫
Ci

|x − zi |2per dx.

By taking the minimum over {Si}n
i=1, we see that the minimum (66) is greater than or equal to the minimum attained in 

the semi-discrete optimal transport problem (Definition 3.1).
On the other hand, consider a tessellation {Ci}n

i=1 of � satisfying the mass constraint |Ci | = mi for all i ∈ {1, . . . , n}. For 
each i ∈ {i, . . . , n} define

Si :=
{

x ∈
⋃
k∈K

(Ci + k) : argmin
l∈K

|x − zi − l| = 0

}
. (68)

Elementary calculations show that {Si}n
i=1 satisfies (62) and (65), and that

Ci =
⋃
k∈K

(Si + k) ∩ �,

x ∈ Si + k =⇒ |x − zi|per = |x − zi − k|.
Hence

n∑
i=1

∫
Ci

|x − zi|2per dx =
∑
k∈K

n∑
i=1

∫
(Si+k)∩�

|x − zi|2per dx =
∑
k∈K

n∑
i=1

∫
(Si+k)∩�

|x − zi − k|2 dx.

By taking the minimum over {Ci}n
i=1, we see that the minimum (66) is less than or equal to the minimum attained in 

the semi-discrete transport problem (Definition 3.1). By combining this with the opposite inequality above, we see that the 
minimum values are equal, and that the stability principle is equivalent to the semi-discrete optimal transport problem, as 
claimed. Minimisers are related via (67) and (68).

Appendix B. Derivation of the ODE

In this appendix we give a formal derivation of the ODE (31) from the Lagrangian equation (16) by assuming that P is 
piecewise affine and satisfies the stability principle. For a rigorous derivation, see [4]. By equations (15), (22), (27), (28), we 
have

Z(x, t) =
n∑

i=1

(zi(t) + k∗(F(x, t), zi(t)))1Ci,per(t)(F(x, t)).
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Note that k∗(F(x, t), zi(t)) and 1Ci,per(t)(F(x, t)) are piecewise constant in time. Therefore

∂tZ(x, t) =
n∑

i=1

żi(t)1Ci,per(t)(F(x, t)),

provided that the derivative exists. By (29) and the mass-preserving property of the flow F,∫
Ci,per(0)

∂tZ(x, t)dx =
∫

Ci,per(t)

n∑
i=1

żi(t)1Ci,per(t)(y)dy =
∫

Ci,per(t)

żi(t)dy = ∣∣Ci,per(t)
∣∣ żi(t). (69)

On the other hand, integrating the right-hand side of (16) over Ci,per(0) gives∫
Ci,per(0)

J
(
F(x, t) − (Z(x, t) · e1)e1

)
dx

=
∫

Ci,per(t)

Jy dy −
∫

Ci,per(t)

[(
zi(t) + k∗(y, zi(t))

) · e1
]

Je1 dy

= ∣∣Ci,per(t)
∣∣ Jci − ∣∣Ci,per(t)

∣∣ (zi(t) · e1) Je1, (70)

where ci was defined in (30), and where we used the fact that∫
Ci,per(t)

(y − (k∗(y, zi(t)) · e1)e1)dy =
∫

Ci(t)

y dy.

Here Ci(t) := Ci(z(t), w∗(z(t))) is a non-periodic Laguerre cell (see Definition 3.4). By combining (16), (69) and (70), we 
derive (31) as desired.

Appendix C. Linear instability analysis

In this section we study the linear instability of the following steady solution (planar Couette flow) of equations (8) and 
(9):

(u, v, w, θ,φ) =
(

u(z),0,0,
N2θ0

g

(
z + H

2

)
, N2

2

(
z + H

2

)2
)

. (71)

This was first done by Eady [14], and the unstable perturbations found by Eady were used as initial conditions for the 
simulations of Williams [35]. We reproduce Eady’s results here to make the paper self-contained, to clarify the connection 
between the initial conditions used here and by [34–36], and to derive the stable modes, which are not given in [14].

Note that (71) is not the only steady solution of (8), (9). In fact so is

(u, v, w, θ,φ) =
(

u(z),0,0,
θ0
g φ′(z),φ(z)

)
(72)

for any φ(z).

C.1. Linear perturbation equations

Consider the following perturbations of the steady shear flow:

u(x, z, t) = u(z) + εu1(x, z, t), (73)

v(x, z, t) = εv1(x, z, t), (74)

w(x, z, t) = εw1(x, z, t), (75)

θ(x, z, t) = N2θ0

g

(
z + H

2

)
+ εθ1(x, z, t), (76)

φ(x, z, t) = N2

2

(
z + H

2

)2

+ εφ1(x, z, t). (77)

To linearise equations (8) and (9) about the steady solution (71), we substitute (73)-(77) into (8) and (9), differentiate the 
resulting equations with respect to ε, and then set ε = 0. This results in the following linear PDE for the perturbations 
(u1, v1, w1, θ1, φ1):
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∂t v1 + u ∂x v1 + f u1 = 0, (78)

∂tθ
1 + u ∂xθ

1 + N2θ0

g
w1 + sv1 = 0, (79)

∂xu1 + ∂z w1 = 0, (80)

v1 = 1

f
∂xφ

1, (81)

θ1 = θ0

g
∂zφ

1. (82)

This PDE is defined for (x, z) ∈ (−∞, ∞) × [−H/2, H/2]. We look for solutions that are 2L-periodic in the x-direction and 
satisfy the rigid-lid boundary condition

w1(x,−H/2, t) = w1(x, H/2, t) = 0. (83)

C.2. Eigenvalue problem

By seeking solutions of (78)-(83) with exponential time dependence exp(ωt), ω ∈C, we obtain a generalised eigenvalue 
problem for the perturbation growth rate ω. Since the eigenvalue problem has x-periodic boundary conditions, we can solve 
it using Fourier series. Consequently, we seek solutions of (78)-(82) of the form

(u1, v1, w1, θ1, φ1)(x, z, t) = (û(z), v̂(z), ŵ(z), θ̂ (z), φ̂(z))E(x, t), (84)

with

E(x, t) = exp

(
ωt − ikπx

L

)
,

where k ∈Z is the mode number (and kπ/L is the wave number). Substituting (84) into (78)-(83) gives the ODE(
ω − ikπ

L
u

)
v̂ + f û = 0, (85)(

ω − ikπ

L
u

)
θ̂ + N2θ0

g
ŵ + sv̂ = 0, (86)

− ikπ

L
û + ŵ ′ = 0, (87)

v̂ = − 1

f

ikπ

L
φ̂, (88)

θ̂ = θ0

g
φ̂′, (89)

with boundary conditions

ŵ(−H/2) = ŵ(H/2) = 0. (90)

For k = 0, ω = 0 is an eigenvalue of (85)-(90) with eigenfunctions û = v̂ = ŵ = 0, φ̂ arbitrary, and θ̂ determined by (89). 
This eigenvalue corresponds to the family of steady planar Couette flows (72).

From now on we assume that k �= 0. We now eliminate û, v̂ , φ̂ and θ̂ . This can be done by noting that

û = L

ikπ
ŵ ′, v̂ = f L

ikπ
(

ikπ
L u − ω

) ŵ ′, (91)

θ̂ = 1(
ikπ

L u − ω
)
⎡⎣N2θ0

g
ŵ + sf L

ikπ
(

ikπ
L u − ω

) ŵ ′
⎤⎦ . (92)

Taking the z-derivative of (88), multiplying (89) by ikπ g/(θ0 f L), and adding the resulting equations gives

f 2 ŵ ′′ + 2ikπ f 2uz

L
(
ω − ikπ

L u
) ŵ ′ −

(
kπ N

L

)2

ŵ = 0. (93)
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Define the change of variables

W (Z) := ŵ

(
L

ikπuz

(
i f uz

N
Z + ω

))
.

It follows from (93) that W satisfies the ODE

W ′′(Z) − 2

Z
W ′(Z) − W (Z) = 0. (94)

The general solution of this ODE is given by

W (Z) =A (sinh Z − Z cosh Z) + B (cosh Z − Z sinh Z) . (95)

This can be used to write the general solution of (93). First we use the boundary conditions (90) to find the eigenvalues ω.
Introduce the dimensionless growth rate

ω′ = iNω

ūz f
= − iNθ0ω

gs
,

and let

κ = kπBu

2
= kπ

2

N H

f L
.

Then ŵ(z) = W ( Z̃(z)), where

Z̃(z) = N

if uz

(
ikπuz

L
z − ω

)
= 2κ

H
z + ω′. (96)

The boundary conditions (90) mean that

W (ω′ ± κ) = 0.

Therefore, from (95), we read off that

M

(
A
B

)
= 0,

where M is the 2-by-2 matrix with components

M11 = sinh(ω′ + κ) − (ω′ + κ) cosh(ω′ + κ),

M12 = cosh(ω′ + κ) − (ω′ + κ) sinh(ω′ + κ),

M21 = sinh(ω′ − κ) − (ω′ − κ) cosh(ω′ − κ),

M22 = cosh(ω′ − κ) − (ω′ − κ) sinh(ω′ − κ).

Non-trivial solutions are then those for which the vector (A, B) belongs to the kernel of M . Imposing the condition that 
det(M) = 0 yields(

1 + κ2 − ω′2) sinh 2κ = 2κ cosh 2κ. (97)

Since κ ∈R, any ω′ that satisfies the dispersion relation (97) is either real or purely imaginary. Correspondingly the growth 
rate ω is either purely imaginary or real.

C.3. Unstable modes

In this section we seek solutions with exponential growth, ω > 0. Set ω′ = iσ with

σ = − Nθ0ω

gs
. (98)

Note that σ > 0 since s < 0. Then (97) gives

σ 2 = 2κ coth 2κ − 1 − κ2 = (κ − tanhκ)(cothκ − κ). (99)

Recall that κ = κk = kπBu/2, where k ∈Z, k �= 0. Therefore (99) uniquely defines σ > 0 for all k ∈Z such that
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Fig. 9. The growth rate σ 2 from (99). Only modes k ∈Z with |k|πBu/2 < κcrit = 1.19968 are unstable.

2κk coth 2κk − 1 − κ2
k ≥ 0. (100)

(Taking the negative square root σ < 0 in (99) gives an exponentially decaying mode.) For example, if Bu = 0.5, then the 
only solutions of (100) are k = ±1. If Bu = 0.25, then (100) has solutions k = ±1, ±2, ±3: see Fig. 9.

It is worth observing that there are no exponentially growing modes when

Bu > Bucrit = 2κcrit

π
= 0.763739,

where κcrit = 1.19968 (to 6 s.f.) is the smallest positive root of (99). We study this parameter regime in the following 
section.

It can be shown that 2κ coth 2κ − 1 − κ2 is maximised when κ = ±κ∗ with κ∗ = 0.803058 (to 6 s.f.). This is achievable 
by an integer mode number k if the Burger number satisfies

Bu = 2κ∗

kπ
(101)

for some k ∈ Z. Take k = 1 and the values of N , L, f , s, θ0, g given in Section 5.1. We choose H so that (101) is satisfied. 
This gives

H = 10224.85 m.

Then the fastest growing mode has growth rate

ω = − gs

Nθ0
σ(κ∗) = 6.1963 × 10−6 s−1 = 0.53536 days−1. (102)

The fastest growing mode can be rewritten as

ω = uz

Bu

H

L
σ(κ∗).

In particular, we can read off that it is proportional to uz and the aspect ratio H/L of the box, and inversely proportional to 
Bu.

Next we compute the eigenfunctions for the unstable modes. By (96) we can write

ŵ(z) = W (z̃(z) + iσ), z̃ = 2κ

H
z.

Then using (95) we obtain

ŵ(z) = Ã
(
sinh z̃(z) − (

z̃(z) + iσ
)

cosh z̃(z)
)+ B̃

(
cosh z̃(z) − (

z̃(z) + iσ
)

sinh z̃(z)
)
,

where Ã = A cosσ + iB sinσ and B̃ = B cosσ + i A sinσ . Applying the boundary conditions (90) gives(
S − (κ + iσ) C C − (κ + iσ) S

−S + (κ − iσ) C C − (κ − iσ) S

)(
Ã
B̃

)
=

(
0
0

)
,
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where S = sinhκ and C = coshκ . A solution is

Ã = g

N
σ , B̃ = g

N
i (κ cothκ − 1) .

(The factor g/N ensures that ŵ has the correct units.) Substituting the expression for ŵ into (91), (88), (92) gives

û(z) = iN

f
(z̃ + iσ)

(
Ã sinh z̃ + B̃ cosh z̃

)
,

v̂(z) = − N2θ0

gs

(
Ã sinh z̃ + B̃ cosh z̃

)
,

φ̂(z) = − i f LN2θ0

kπ gs

(
Ã sinh z̃ + B̃ cosh z̃

)
,

θ̂ (z) = − iN3θ2
0

g2s

(
Ã cosh z̃ + B̃ sinh z̃

)
.

Therefore the unstable perturbations are

u1(x, z, t) = �
[

û(z)exp

(
ωt − ikπx

L

)]
, etc

which yields

u1 = eωt g

f

[(
−A2

2 sinh z̃ − A1 z̃ cosh z̃
)

cos kπx
L + (

A2 z̃ sinh z̃ − A1 A2 cosh z̃
)

sin kπx
L

]
,

v1 = eωt Nθ0

s

[
−A2 sinh z̃ cos kπx

L − A1 cosh z̃ sin kπx
L

]
,

w1 = eωt g

N

[
−A2 cosh z̃

(
z̃ cos kπx

L + A2 sin kπx
L

)
+ κ cothκ sinh z̃ cos kπx

L

+ A1
(
cosh z̃ − z̃ sinh z̃

)
sin kπx

L

]
,

θ1 = eωt N2θ2
0

gs

[
−A2 cosh z̃ sin kπx

L + A1 sinh z̃ cos kπx
L

]
,

φ1 = eωt f LNθ0

kπ s

[
−A2 sinh z̃ sin kπx

L + A1 cosh z̃ cos kπx
L

]
,

where

A1 = κ cothκ − 1, A2 = σ .

These expressions agree with those in [35].
In Section 5.2 we use the following initial condition for the gradient of the modified geopotential:

∇ P ((x, z),0) =
(

1
f v0 + x
g

f 2θ0
θ0(z)

)
+ λ

(
1
f v1(x, z,0)
g

f 2θ0
θ1(x, z,0)

)
, (103)

where v0 = 0 and θ0(z) = N2θ0
g

(
z + H

2

)
are the steady meridional velocity and potential temperature, k = 1, and

λ = sa

Nθ0
. (104)

In particular, vu(x, z) = λv1(x, z, 0) and θu(x, z) = λθ1(x, z, 0).

C.4. Stable modes

In this section we study the parameter regime Bu > Bucrit, where the eigenvalues ω are purely imaginary for all k ∈ Z. 
This means that the steady Couette solution (71) is linearly stable with respect to normal mode perturbations.

It turns out, however, that the normal modes do not form a complete basis, in the following sense. For each mode 
number k, there are only two solutions ±σ(κk) of (99), and therefore only two eigenvalues ±ωk . Consequently the boundary 
value problem (93), (90) only has two eigenvalues, and not a countable set of eigenvalues as one might expect. This means 
that it is not possible to represent every initial condition of the linear perturbation equations (78)-(82) as a sum of normal 
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modes (eigenfunctions). Therefore stability with respect to normal mode perturbations does not guarantee stability with 
respect to all perturbations. The origin of this problem is the denominator ω − ikπ

L u in equation (93), which can vanish.
For a closely related but simpler baroclinic instability problem, Pedlosky [30] showed that any initial perturbation can 

be represented by supplementing the discrete spectrum of normal modes with a continuous spectrum. By doing this he 
showed that the linear stability of the steady solution is in fact determined by the incomplete set of normal modes. Our 
simulations suggest that the same is true for our problem. We plan to explore this in a future paper.

To compute the normal modes in the parameter regime Bu > Bucrit, we write σ = iγ , γ ∈ R. Since Bu > Bucrit, then 
|κ | > κcrit for all k ∈ Z, k �= 0, and hence the right-hand side of (99) is negative. Therefore we read off from equation (99)
that

γ 2 = |(κ − tanhκ)(cothκ − κ)|.
Then, by (98),

ω = ω̃i, ω̃ = − gsγ

Nθ0
∈ R.

It follows that

v1(x, z, t) = �
[

v̂(z)e
i
(
ω̃t− kπx

L

)]
, θ1(x, z, t) = �

[
θ̂ (z)e

i
(
ω̃t− kπx

L

)]
,

which yields

v1 = Nθ0

s
(γ sinh z̃ + A1 cosh z̃) sin

(
ω̃t − kπx

L

)
,

θ1 = N2θ2
0

gs
(γ cosh z̃ + A1 sinh z̃) cos

(
ω̃t − kπx

L

)
.

Substituting these expressions into (103) and taking k = 1 gives the initial condition that we use in Section 5.3. In particular, 
vs(x, z) = λv1(x, z, 0) and θs(x, z) = λθ1(x, z, 0), where λ was defined in (104). Observe that this perturbation is a travelling 
wave with wave speed

ck = ω̃
kπ
L

= − gsγ L

kπ Nθ0
.

The limiting value of the wave speed for small wavelength perturbations is

c∞ = lim
k→∞

ck = − gsL

π Nθ0
lim

k→∞

(∣∣∣∣κ − tanhκ

k

∣∣∣∣ ∣∣∣∣cothκ − κ

k

∣∣∣∣) 1
2 = − gsL

π Nθ0

πBu

2
= − gsH

2 f θ0
. (105)

Appendix D. Derivatives of K

Recall that K was defined in equation (26). The gradient and Hessian of K are given by

∇K = m − m,

D2K = −Dwm = −
(

∂mi

∂ w j

)n

i, j=1
,

where m is the cell-area map from Definition 3.3. For a proof, see for example [23,28]. The system (40) defining the kth
Newton direction d(k) can therefore be written as{

−Dwm
(
z,w(k)

)
d(k) = m

(
z,w(k)

)− m,

d(k) · en = 0.

For i �= j,

∂mi

∂ w j
= −1

2

∑
k∈K

length(e(i, j,k))

|zi + k − z j| ,

where e(i, j, k) is the edge between the non-periodic Laguerre cells with seeds zi + k and z j , which is defined by
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e(i, j,k) =
{

x ∈R× [− H
2 , H

2

] : ∀ m ∈ {1, . . . ,n}, l ∈ K ,

|x − (zi + k)|2 − wi ≤ |x − (zm + l)|2 − wm, |x − z j|2 − w j ≤ |x − (zm + l)|2 − wm

}
.

Note that this set may be empty, in which case ∂mi/∂ w j = 0. The diagonal entries of Dwm are

∂mi

∂ wi
= −

n∑
j=1
j �=i

∂mi

∂ w j
.

The expressions for the derivatives of m are proved for example in [23,28] for non-periodic Laguerre tessellations and in [5]
for periodic Laguerre tessellations.
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