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Unsupervised Causal Generative Understanding of Images

Titas Anciukevičius 1 2 Patrick Fox-Roberts 1 Edward Rosten 1 Paul Henderson 3

Abstract
We present a novel causal generative model for
unsupervised object-centric 3D scene understand-
ing that generalizes robustly to out-of-distribution
images. This model is trained to reconstruct multi-
view images via a latent representation describing
the shapes, colours and positions of the 3D ob-
jects they show. We then propose an inference
algorithm that can infer this latent representation
given a single out-of-distribution image as input.
We conduct extensive experiments applying our
approach to test datasets that have zero probabil-
ity under the training distribution. Our approach
significantly out-performs baselines that do not
capture the true causal image generation process.

1. Introduction
Most machine learning approaches make the assumption
that at test time, they are applied to data drawn from the
same distribution as seen during training (Bishop, 2006).
This means the powerful generalization guarantees of sta-
tistical learning theory apply (Vapnik, 1991). Indeed, most
learning-based methods for computer vision do not general-
ize to observations that are statistically different from those
seen in their training set – recent works have demonstrated
this for images taken from unfamiliar viewpoints (Alcorn
et al., 2019; Barbu et al., 2019), shifted by few pixels (Azu-
lay & Weiss, 2019), and showing scenes with an unseen
composition of objects (Beery et al., 2018; Ribeiro et al.,
2016; Schott et al., 2021; Geirhos et al., 2020; 2019; Dijk &
Croon, 2019). It has been suggested that this is because they
learn spurious correlations – or shortcuts (Geirhos et al.,
2020) – to achieve low training loss, but which do not cap-
ture the true causal relationships that remain universally
valid.

In this work, we consider the task of transforming a single
observed image into a detailed representation of the scene it
depicts, providing explicit information about its 3D structure
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Figure 1. Our generative model is trained to reconstruct multi-view
images drawn from its training distribution (red), via a latent object-
centric 3D scene representation. After training, it can sample
plausible scenes containing multiple objects (‘Generation’, top
center). At test time, it inputs single images drawn from different
distributions (e.g. with novel compositions of objects), but is still
able to infer segmentations, depth-maps, and novel views.

such as object locations, shapes and appearances. We focus
on the setting where at test time, we see images depicting
scenes that have zero probability in the training distribution
(Fig. 1). We also adopt an unsupervised approach to learn-
ing, avoiding the need for expensive manual annotation of
object masks, 3D positions, and similar.

Our approach is to build a generative model (Sec. 3) jointly
over image pixels and the 3D world they depict, whose
structure reflects the underlying causal model of the envi-
ronment (Pearl, 2009), that can be robustly inverted to infer
the latent factors that gave rise to an input image. We de-
sign its conditional independencies to match those present
in the environment, corresponding to independent mecha-
nisms (Schölkopf et al., 2012; Janzing & Schölkopf, 2010)
in the world. Thus when certain mechanisms or physical
processes in the environment change, much of our model
remains applicable; this has been called sparse mechanism
shift (Schölkopf et al., 2021).

In general it is impossible to recover such a causal model
purely from observational data (Pearl, 2009). We therefore
embed in our model universal knowledge that the world is
composed of 3D objects of different shapes, appearing at
different locations, imaged by a camera subject to the laws
of 3D geometry and perspective projection. Each object
is associated with disentangled latent variables describing
its position and appearance, allowing the same object to be
represented invariantly in different locations (unlike spatial
mixture models (Engelcke et al., 2020; Stelzner et al., 2021)
which cannot perform inference on scenes with objects at
unseen positions because their appearance and position rep-
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resentations are entangled (Montero et al., 2022; Locatello
et al., 2019)). We perform inference on OOD data by inter-
vening on our model (Pearl, 2009) – replacing conditional
distributions (or mechanisms) that are no longer appropriate.

Targeting OOD generalization imposes several technical
constraints on our model compared with other recent work
summarised in Sec. 2, none of which address this setting.
Specifically, we must ensure that the inference method itself
supports OOD generalization and we cannot employ amor-
tized variational inference (Kingma & Welling, 2014), as an
encoder network is in general not robust to changes of distri-
bution (Montero et al., 2022; Geirhos et al., 2020). Instead,
we develop a novel Markov chain Monte-Carlo (MCMC)
inference scheme, that finds posterior samples for a given
test image. We also cannot include a learnt neural renderer
(mapping features to pixels in image space) (Niemeyer &
Geiger, 2021; Castrejon et al., 2022; Nguyen-Phuoc et al.,
2019) in the generative model, as these are not guaranteed
to generalise OOD.

We evaluate our model (Sec. 4) with test datasets that have
zero probability under their training distribution. We show
that our model can generalize to unseen numbers of objects,
unseen compositions, and new camera viewpoints, signifi-
cantly better than existing works, which are susceptible to
spurious correlations in the training data.

To summarise, our core contribution is the first unsuper-
vised framework for inference of explicit object-centric
3D scene representations, that generalizes to out-of-
distribution scenes. Our secondary contributions are: (i) a
novel generative model of 3D scenes based on multi-object
radiance fields with explicit object positions and volumetric
rendering; and (ii) a novel MCMC inference scheme ex-
ploiting the structure of our model, that allows inferring 3D
scenes from a single out-of-distribution image.

2. Related Work
Recent works have observed that most learning-based com-
puter vision methods fail to generalise on OOD data, and
have analysed this (Alcorn et al., 2019; Azulay & Weiss,
2019; Beery et al., 2018; Ribeiro et al., 2016; Schott et al.,
2021; Geirhos et al., 2020; 2019; Nagarajan et al., 2021;
Milbich et al., 2021; Kortylewski et al., 2021; Yuille & Liu,
2021) as well as constructing various benchmarks (Lake
et al., 2017; Barbu et al., 2019; Gulrajani & Lopez-Paz,
2021; Karazija et al., 2021; Ye et al., 2021; Wiles et al.,
2022). Others have tried to improve OOD generalisation
(Arjovsky et al., 2019; Shi et al., 2021; Ahuja et al., 2020;
2021; Parascandolo et al., 2020; Krueger et al., 2021; Shah-
talebi et al., 2021; Liu et al., 2021a). Unlike us, these meth-
ods assume that multiple differently-distributed datasets are
available during training, and only address the supervised
setting.

Our work is also connected to the vision as inverse graphics
paradigm (Grenander, 1976; Barlow, 1987; Romaszko et al.,
2017). In this setting, it is assumed that we have access to
(maybe parametric) 3D models of objects, and wish to find
suitable pose and other parameters to explain an input image
(Loper & Black, 2014; Kulkarni et al., 2015; Jampani et al.,
2015; Romaszko et al., 2017; 2020; Izadinia et al., 2017).
Like our work, these typically use a test-time optimisation;
unlike ours, they assume known priors on object layout and
shapes.

Neural implicit scene representations (Tewari et al., 2020)
aim to a learn continuous representation of a 3D scene from
2D images using neural rendering, either by explicit volu-
metric rendering (Mildenhall et al., 2022; Martin-Brualla
et al., 2021; Wizadwongsa et al., 2021; Yariv et al., 2020;
Niemeyer et al., 2020) or with CNN post-processing of ren-
dered features (Sitzmann et al., 2019; 2020). These initial
works fitted individual scenes without learning characteris-
tics common across them, therefore requiring many images
as input. This was addressed by sharing models across dif-
ferent scenes (Yu et al., 2021; Trevithick & Yang, 2020; Li
et al., 2021; Eslami et al., 2018; Peng et al., 2020; Niemeyer
et al., 2021; Jang & Agapito, 2021), allowing inference of
novel views from one or few images.

All these methods model a scene as a single monolithic
entity, without decomposing it into individual objects. In
contrast, (Ost et al., 2021) divides a scene into objects, but
requires detailed manual annotations to do so; (Driess et al.,
2022) relies on ground-truth object masks. (Yu et al., 2022;
Stelzner et al., 2021) discover such a decomposition auto-
matically (though with depth supervision for (Stelzner et al.,
2021)). However their entanglement of latent position and
appearance means they are not guaranteed to generalise to
OOD combinations of position and appearance (Locatello
et al., 2019). Finally, (Guo et al., 2020) supports composi-
tion of multi-object scenes using neural scattering functions
– but these must be learnt from multiple views of single
objects, a form of weak supervision.

Other approaches have extended neural rendering to the
generative setting (Schwarz et al., 2020; Niemeyer & Geiger,
2021; Nguyen-Phuoc et al., 2019; 2020; Kosiorek et al.,
2021; Chan et al., 2021; Devries et al., 2021; Deng et al.,
2021), allowing sampling scenes a priori. However, these
do not allow us to perform inference in the OOD setting.

There are object-centric generative models that can sample
plausible images and perform inference, but only in 2D, and
therefore cannot support 3D tasks such as reconstruction
depth prediction. Some use a full-image spatial mixture
model (Engelcke et al., 2020; Nanbo et al., 2020; Kobayashi
et al., 2022; Emami et al., 2021; Engelcke et al., 2021;
Kabra et al., 2021) or alpha stacking (van Steenkiste et al.,
2020; von Kügelgen et al., 2020); others model images as
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composed of smaller patches or sprites (Eslami et al., 2016;
Jiang & Ahn, 2020; Anciukevičius et al., 2020); others use
compositional energy-based models (Du et al., 2021; Liu
et al., 2021b). A 3D extension of these latter is proposed
by (Henderson & Lampert, 2020), using a voxel represen-
tation, but this requires videos and does not support OOD
generalisation.

3. Method
Our goal is to infer an explicit object-centric representation
of a 3D scene from a single image, even when it shows a
scene lying outside the distribution observed during training.
We build a compositional generative causal model jointly
over multi-view images and the scenes they depict (Sec. 3.1).
For training (Sec. 3.2) we use only posed multi-view im-
ages (x1,v1), ..., (xN ,vN ), without any annotations such
as depth-maps, bounding-boxes or segmentation masks. At
test time, input images are drawn from another distribution
disjoint from the training distribution. Inference over the
generative model (Sec. 3.3) yields a object-centric represen-
tation, including 3D shapes, positions and appearances.

3.1. Compositional Generative Causal Model
We model a multi-view set of N images {x1 . . .xN} as
caused by a single 3D scene S being rendered from view-
points {v1 . . .vN}, by a function C(S, v). We now de-
scribe this scene representation, then the generative process
by which it is sampled.

The scene S =
(
sbg, {(sappi , sposi )}Oi=1

)
is composed of a

3D background component sbg describing the background’s
shape and color, and 3D objects indexed i = 1 . . . O with
shape and color described by sappi and explicit 3D positions
sposi . Each sappi explicitly represents the 3D appearance
of an object as a neural radiance field (NeRF) (Mildenhall
et al., 2022), placed in a canonical space (e.g. with the
object centered at the origin). The positions sposi specify
where the objects are placed in a global 3D scene space. In
contrast to prior work that parametrized 3D object positions
as coordinates, we use 1-hot vectors choosing from a set of
candidate locations at which to center the object.

Generative process for S . We first sample a high-level la-
tent scene embedding zg ∼ N (0, I), that will model correla-
tions between objects and learn the typical composition of a
scene (Jiang & Ahn, 2020; Anciukevičius et al., 2020). The
individual object appearances are specified by latent zshapei

and zcoli that respectively encode the shape and color of the
ith object; they are conditioned on zg and given by a fully-
connected network ζθ(z

g) with weights θ. The position
zposi is specified by a categorical variable, with logits given
by ξθ(z

g). We similarly introduce latents zshapebg and zcolbg to
encode the shape and color of the background. For brevity,
we will write zs = {zshapebg , zcolbg , z

shape
1...O , zcol1...O, z

pos
1...O}.

The latents zs are mapped to scene S by a function Sθ. This

sets sposi equal to zposi , and derives object NeRF represen-
tations sappi from zshapei and zcoli as described in the next
paragraph. The probability of image xn at viewpoint vn is

pθ(xn |vn)=

∫∫
fN (xn;C(Sθ(z

s),vn), σ
2)pθ(z

s |zg)pθ(zg)dzsdzg

(1)
where C(S, v) renders the scene described by S from view-
point v, and fN represents a factored Gaussian likelihood
over the H×W ×3 pixels of the image, with fixed standard
deviation σ. The probability of a composition zs of objects
and background in a scene is given by

pθ(z
s |zg) = pθ(z

shape
bg , zcolbg |zg)

O∏
i=1

pθ(z
shape
i , zcoli , zposi |zg) (2)

Rendering the scene S. The rendering process C(S,v)
outputs an image x for a camera viewpoint v, showing a
scene S. Recall S contains a 3D background component
sbg and a set of object components {sappi , sposi }Oi=1; we will
identify the background as component i = 0, with spos0 fixed
to the origin. We extend the multi-component neural radi-
ance fields of Martin-Brualla et al. (2021) to support explicit
placement of objects in the scene according to position vari-
ables sposi . Specifically, the latents zshapei and zcoli for the ith

object parametrize a learnt function f∗
θ (q

∗; zshapei , zcoli ),
that maps points q∗ in the canonical space of the object to a
color c ∈ [0, 1]3 and density σ ∈ R+. We place each object
at its 3D position sposi by convolving its density and color
functions with a one-hot location indicator:

fi(q) =

∫
q∗

sposi (q∗) · f∗
θ

(
q− q∗; zshapei , zcoli

)
dq∗ ≡

(
ci(q), σi(q)

)
(3)

where q is a position in scene space, and sposi (q) is an
indicator function with a unit impulse if point q is chosen
as the center position of the object by the 1-hot indicator
sposi . Similar to (Yu et al., 2022), we divide the scene space
into foreground and background regions, and only render
the corresponding components in each. Given the placed
object densities σi and colors ci, we calculate the color
of each pixel C(S, v)[r] in the image x by casting a ray
r(t) = x0 + td ∈ R3 from the pixel in direction d through
a camera at position x0, summing the contributions from
different objects (Martin-Brualla et al., 2021; Max, 1995).

Continuous relaxation of object placement. To allow
gradient-based training and inference, we relax the categori-
cal position variable to a Gumbel-Softmax (Jang et al., 2017;
Maddison et al., 2016). This approach ensures we always
receive non-zero gradients of the image with respect to ev-
ery possible object position, easing optimisation. This is in
contrast to models based on spatial transformers (Niemeyer
& Geiger, 2021; Xue et al., 2022), which can get stuck in
local minima if the model has a poor initial prediction, as
the gradient of pixels with respect to position is zero if the
predicted and true positions do not overlap.
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GQN ARROW
per-image per-scene FID ↓ per-image per-scene FID ↓

PSNR ↑ D.MRE ↓ ARI ↑ mSC ↑ PSNR ↑ D.MRE ↓ PSNR ↑ D.MRE ↓ ARI ↑ mSC ↑ PSNR ↑ D.MRE ↓
Test
Ours 24.1 0.031 0.81 0.88 20.8 0.058 80.3 27.1 0.100 0.71 0.82 26.8 0.107 141.4
Slot Att. 30.5 – 0.94 0.67 – – – 28.3 – 0.48 0.17 – – –
uORF* 27.0 0.027 0.74 0.59 24.2 0.049 – 35.1 0.176 0.64 0.44 33.8 0.202 –
NeRF-VAE* 32.0 0.016 – – 27.8 0.033 84.2 25.3 0.991 – – 25.3 0.991 182.7

OOD
Ours 21.8 0.034 0.68 0.89 18.3 0.069 26.7 0.139 0.57 0.81 26.2 0.137
Slot Att. 20.3 – 0.66 0.56 – – 22.8 – 0.26 0.14 – –
uORF* 14.7 0.287 0.45 0.45 14.1 0.308 22.7 0.132 0.38 0.41 22.6 0.131
NeRF-VAE* 15.9 0.271 – – 14.9 0.301 19.4 0.992 – – 19.4 0.992

Table 1. Quantitative results on all tasks, comparing performance for different methods on an in-distribution test set and OOD data.
Dashes indicate the method does not support the task. Best results are shown in bold.

Figure 2. Qualitative results using our model and the baselines
on out-of-distribution (OOD) data. Each row shows the input
image, then (col. 2–6) outputs from our model: the reconstruction,
instance segmentation, depth map, and two novel viewpoints. Our
model predicts high-quality segmentations and depth-maps, and
new viewpoints that are plausible and consistent with the input.
The final three columns show reconstructions (the easiest task) by
the baselines. Note that that they fail to generalise to OOD data.

3.2. Training
We train our generative model without any labelled supervi-
sion from a dataset of images containing K views for each
of T scenes. The model includes three learnable compo-
nents, with parameters θ: (i) f∗

θ (q; z
shape, zcol) that repre-

sents a 3D object as a function from position to color and
density conditioned on the object appearance embedding;
(ii) f bg

θ (q; zshapebg , zcolorbg ) that similarly represents the 3D
background; (iii) ζθ and ξθ, that map the global scene latent
zg to parameters of the object and background latents zs.
We train these components using autoencoding variational
Bayes (Kingma & Welling, 2014; Rezende et al., 2014).
Full details are given in the supplementary (Sec. 7).

3.3. Inference for out-of-distribution (OOD) images
At test time, we assume images are sampled from a distri-
bution disjoint from the training distribution. This means
that directly performing posterior inference under our model
(which has learnt the training distribution, and ideally as-
signs zero probability to OOD test images) is not sound.

We therefore make appropriate interventions on our model
(Pearl, 2009), taking advantage of its causal nature. For
example, when the distribution of object arrangements is
different at test time, we replace the learnt prior pθ(zs) on
object arrangements with an uninformative uniform prior.
Moreover, the variational encoder networks encsϕ and encgϕ
used during training are not suitable for use at test time, due
to domain shift in their inputs. Therefore, our framework
instead directly samples the posterior distribution of latent
variables given an observed image, using Markov chain
Monte-Carlo (MCMC) inference.

Our novel MCMC scheme alternates Langevin dynamics
(LD) (Besag, 1994; Welling & Teh, 2011) and Metropolis-
Hastings (MH) (Hastings, 1970) steps, to infer the latent
scene variables (zs, zg) from a single observed image x∗

with viewpoint v∗. The MH steps encourage the Markov
chain to make large jumps between modes of the posterior,
while the LD steps generate high-probability samples with
less exploration. Each LD step ascends the gradient of

log fN (x∗; C(Sθ(z
s), v∗), σ2)+

log pθ(z
s | zg) + log p(zg) ∝ log p(zg, zs | x∗, v∗) (4)

Each MH step first picks an object slot i uniformly at ran-
dom. It then samples new latents for that object from a
proposal distribution p̃(zshapei , zcoli ), and decides whether
to accept this transition according to the usual Metropolis-
Hastings acceptance criterion (Hastings, 1970). The pro-
posal distribution p̃ approximates 1

J

∑J
i=1 p(z

shape
i , zcoli |

zg) using a Gaussian mixture model; it thus captures the
distribution of object latent codes while disregarding the
ordering of object indices. Note that the compositionality
of our model increases sampling efficiency of the chain, as
we can consider proposals for each object independently –
in contrast to a monolithic latent embedding, which would
require accepting or rejecting global modifications to the
entire scene. We perform ten LD steps, followed by a single
MH step, and repeat this overall process until convergence.
When evaluating results, we take the posterior mode, i.e. the
sample from each chain with maximum probability.
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4. Experiments
Datasets. We conduct experiments on two synthetic image
datasets that have some spurious relationship between com-
ponents in the training set: ARROW (Jiang & Ahn, 2020;
Johnson et al., 2017), consisting of four objects – two of
which are the same, a third that is different, and an arrow
which always points at the odd object; and GQN (Eslami
et al., 2018) – which has 3-4 objects placed in a room next
to odd-textured wall. We first evaluate performance on the
test-set distribution which matches the training distribution.
Then, we evaluate generalisation to OOD data, by using
several OOD test splits for each dataset, which have zero
probability under the training distribution (e.g. relationship
between components is broken). Detailed descriptions of
dataset splits are given in the supplementary (Sec. 10).

Tasks and Metrics. We consider the following tasks for
a single input image: instance segmentation, measured by
foreground Adjusted Rand Index (ARI) and mean segmen-
tation covering (mSC) (Engelcke et al., 2020); depth predic-
tion, measured by the mean relative error of the predicted
depths (D.MRE); and pixel reconstruction, measured by
peak signal-noise ratio (PSNR). We report results with two
protocols: (i) PER-IMAGE, calculating the metrics only on
the input image; and (ii) PER-SCENE, calculating the metrics
jointly over multiple images of the scene but still having
received only one image as input. The latter setting mea-
sures how well the model predicts appearance, depth and
segmentation from novel viewpoints. Finally, we evalu-
ate image generation, measured by the Fréchet inception
distance (FID) (Heusel et al., 2017) between sampled and
ground-truth images.

Baselines. We compare our approach to three existing
works. Slot Attention (Locatello et al., 2020) is a recent
unsupervised object segmentation model, with a spatial mix-
ture representation. It is a 2D non-generative model but it
does support generalisation to differing numbers of objects
at test time. uORF (Yu et al., 2022) decomposes 2D im-
ages into 3D components represented as NeRFs. Unlike
ours, it is not generative, and does not explicitly represent
position separate from appearance. NeRF-VAE (Kosiorek
et al., 2021) is a generative method but it does not separate
individual objects in its latent space. We reimplemented (Yu
et al., 2022; Kosiorek et al., 2021) in our own framework,
and denote these as uORF* and NeRF-VAE*.

Results – in-distribution. Results on all tasks are given
in Tab. 1; the top four rows show performance on the test
split, which is drawn from the same distribution as the train-
ing data. Qualitative results are displayed in Fig. 2, and
standard deviations on all results are given in the supple-
mentary. We see that per-image, all methods successfully
reconstruct input images (high PSNR) and the 3D-aware
methods also accurately predict depths (low D.MRE). On

GQN NeRF-VAE* slightly out-performs other approaches,
while on ARROW uORF* shows the best PSNR, and our
method the best D.MRE. A similar pattern holds for novel
views (per-scene setting). For segmentation, Slot Attention
gets the best ARI score for GQN, and otherwise ours shows
better ARI and mSC scores. Qualitative results for genera-
tion (Fig. 3) show that our model has learnt the distribution
of both datasets, including likely object and background
appearances as well as their compositions. Quantitatively
on FID (Tab. 1), ours out-performs NeRF-VAE*.

Figure 3. Images sampled from our model for GQN and ARROW

Results – OOD. Quantitative OOD results are given in
the bottom half of Tab. 1. This shows the mean over all
OOD splits; a full breakdown is given in the supplemen-
tary. In general our method significantly out-performs the
baselines on out-of-distribution dataset, and performs best
on all combinations of tasks and datasets except D.MRE
on ARROW. Thus, the best methods on the in-distribution
test split are not the best on OOD data – absent a causal
structure they learn shortcuts (Geirhos et al., 2020) that do
not generalise well on the OOD splits. Qualitative results
(Fig. 2) reinforce this interpretation – our method predicts
accurate segmentations and depth-maps for OOD data, suc-
cessfully reconstructs the input image via its latent space,
and synthesises plausible new viewpoints, in spite of never
having seen such an image during training. In contrast,
the baselines methods struggle – e.g. mispredicting object
colors (1st row, uORF* and NeRF-VAE*), predicting an
over-smoothed average scene (3rd row, NeRF-VAE*), or
failing to separate walls and ceiling in an unfamiliar pose
(5th row, Slot Attention). In Sec. 6, we provide visualise and
analyse additional results providing evidence that our model
is not susceptible to spurious correlations as compared to
non-causal baselines. In the figure below, we also show that
our interpretable latent space allows users to edit the scene.
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Supplementary Material

6. Additional Results
In Tab. 2, we report quantitative results for each out-of-distribution (OOD) dataset split. We report all metrics as described
in the main paper (Sec. 4), also including standard deviations. It shows that our framework significantly outperforms the
baselines on most metrics. In cases of a worse performance, these are mostly within one standard deviation, hence not
statistically significant.

We also show qualitative results in Fig. 4 to visually inspect the performance of all models on GQN dataset.

Particularly noteworthy is the significant improvement in the challenging OOD viewpoint setting – a dataset containing
images taken from a radically different viewpoint than those seen during training. As noted in prior works (Alcorn et al.,
2019; Hinton, 2013; 2021; Kosiorek et al., 2019), such OOD images produce very different representations in a standard
neural network; this does not apply to our framework which does not use an encoder network (and hence amortised inference)
but instead performs inference directly over the causal generative model. In Tab. 2, we see that on OOD viewpoint split our
model achieves higher PSNR and segmentation scores than all other baselines. In the Fig. 4 (rows 7 and 8), we see that both
uORF* (Yu et al., 2022) and Slot-Attention (Locatello et al., 2020) fail to reconstruct the input image.

Our model also achieves better PSNR score than all baselines on the OOD composition dataset. Fig. 4 illustrates that
baselines (last two columns) again fail the relatively straightforward task of reconstructing the input image. Note that uORF*
continues to predict scenes that are similar to those in the training set, despite the inputs being significantly different. For
example, in the first two rows, uORF* incorrectly outputs objects with a colour that were present with an orange background
in the training set. This is in line with other reports in the literature (e.g. (Geirhos et al., 2020)) showing that potentially the
baseline has learnt a ‘shortcut’, to preemptively output a red object when the background pixels are orange.

Similarly, uORF* predicts incorrect positions of objects in the OOD position split (rows 5 and 6) in Fig. 4– in fact, predicting
them on the opposite side of the room (as they appear in the training set). In contrast, our model successfully localises objects
– we attribute this to our inference mechanism and causal model which represents object with appearance disentangled from
position.

In Fig. 5–7, we show generation results for our proposed method and for NeRF-VAE*. These are examples of scenes
sampled a priori, rendered from multiple viewpoints. We see that in accordance with the quantitative results in the main
text, our model is able to sample significantly more realistic scenes (and thus images) than NeRF-VAE*.
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Figure 4. Additional qualitative results from our method and baselines (uORF* and Slot Attention). See the main paper for a discussion of
tasks and metrics, and supplementary Sec. 6 for discussion of successes and failures.



GQN ARROW
per-image per-scene per-image per-scene

PSNR ↑ D.MRE ↓ ARI ↑ mSC ↑ PSNR ↑ D.MRE ↓ PSNR ↑ D.MRE ↓ ARI ↑ mSC ↑ PSNR ↑ D.MRE ↓
composition
Ours 23.3± 2.9 0.03± 0.003 0.82± 0.22 0.9± 0.07 19.6± 1.9 0.067± 0.047 26.5± 0.9 0.09± 0.018 0.73± 0.06 0.82± 0.02 26.1± 0.9 0.09± 0.007
Slot Att. 23.1± 2.2 – 0.88± 0.2 0.63± 0.11 – – 25± 2.3 – 0.27± 0.14 0.13± 0.03 – –
uORF* 13.6± 3 0.18± 0.158 0.43± 0.3 0.43± 0.15 13.3± 2 0.208± 0.105 25.3± 1.7 0.083± 0.019 0.57± 0.14 0.39± 0.12 25.4± 1.4 0.083± 0.006
NeRF-VAE* 15.1± 3.2 0.074± 0.101 – – 14.5± 1.5 0.114± 0.069 19.2± 1.6 0.993± 0 – – 19.2± 1.2 0.993± 0.0003

position
Ours 21.7± 2.5 0.033± 0.008 0.72± 0.3 0.86± 0.09 19.2± 2.2 0.083± 0.079 26.5± 0.6 0.086± 0.015 0.69± 0.05 0.8± 0.03 26.3± 0.5 0.085± 0.006
Slot Att. 23.4± 3.1 – 0.67± 0.34 0.63± 0.14 – – 21.4± 0.9 – 0.36± 0.17 0.14± 0.03 – –
uORF* 12.7± 2.7 0.281± 0.226 0.14± 0.18 0.26± 0.12 12.5± 2.2 0.34± 0.132 20.3± 1 0.076± 0.016 0.32± 0.17 0.28± 0.05 20.4± 0.8 0.076± 0.003
NeRF-VAE* 12.7± 2.7 0.267± 0.225 – – 12.6± 2.2 0.329± 0.136 19.5± 1.2 0.993± 0 – – 19.5± 0.8 0.993± 0.0003

number
Ours 23.1± 3 0.034± 0.01 0.67± 0.19 0.87± 0.08 19.4± 2.4 0.063± 0.031 27.1± 0.8 0.087± 0.017 0.46± 0.04 0.83± 0.02 26.8± 0.5 0.087± 0.006
Slot Att. 24.0± 2.4 – 0.74± 0.27 0.6± 0.11 – – 23.8± 1.5 – 0.27± 0.13 0.16± 0.03 – –
uORF* 18.4± 3.2 0.128± 0.097 0.49± 0.33 0.44± 0.15 17.3± 2.1 0.14± 0.045 22.7± 1.3 0.081± 0.018 0.29± 0.21 0.45± 0.09 22.7± 1 0.081± 0.004
NeRF-VAE* 20.5± 3.9 0.094± 0.067 – – 18.7± 2.5 0.114± 0.032 19.5± 1.5 0.993± 0 – – 19.6± 0.9 0.993± 0.0003

viewpoint
Ours 19.0± 4.4 0.035± 0.051 0.61± 0.44 0.91± 0.1 15.5± 2.5 0.072± 0.059 25.6± 3.1 0.395± 0.701 0.64± 0.12 0.77± 0.08 24.4± 1 0.389± 0.007
Slot Att. 11.7± 1.7 – 0.42± 0.44 0.45± 0.15 – – 19± 1.8 – 0.16± 0.09 0.11± 0.02 – –
uORF* 10.7± 3.6 0.581± 0.301 0.57± 0.48 0.58± 0.27 10.5± 2.6 0.593± 0.195 22.5± 3.3 0.39± 0.679 0.52± 0.19 0.4± 0.1 22.2± 1.1 0.382± 0.009
NeRF-VAE* 10.8± 3.4 0.636± 0.246 – – 10.5± 2.1 0.662± 0.058 19.3± 1.6 0.985± 0.008 – – 18.9± 0.6 0.985± 0.0001

Table 2. Quantitative results on discriminative tasks, comparing performance for different methods on OOD data splits. Dashes indicate the method does not support the task.
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Figure 5. Additional generation results from our method on GQN. Each row corresponds to a single scene, with each column showing a
different viewpoint

7. Training Details
We train our generative model from a dataset of images containing K views for each of T scenes. The model includes three
learnable components, with parameters θ: (i) f∗

θ (q; z
shape, zcol) that represents a 3D object as a function from position to

color and density conditioned on the object appearance embedding; (ii) f bg
θ (q; zshapebg , zcolorbg ) that similarly represents the

3D background; (iii) ζθ and ξθ, that map the global scene latent zg to parameters of the object and background latents zs.
We train these components using autoencoding variational Bayes (Kingma & Welling, 2014; Rezende et al., 2014). The
posteriors over Gaussian latent variables are all diagonal Gaussians (parametrized by mean and log-variance), whilst for
positions the posterior is Gumbel-Softmax (parametrized by logits). We use two encoder networks to parametrize these
variational posteriors. encsϕ({xn,vn}Mn=1) parametrizes q(zs|{xn,vn}Mn=1); for efficiency, we pass it only a subset of
M < K images. It encodes each observed image and its viewpoint (xn,vn) independently then sums the results (as in
(Eslami et al., 2018)) before outputting the posterior parameters; this ensures the encoder is invariant to the ordering of
images. encgϕ(z

s) parametrizes q(zg|zs), and takes the lower-level latent code zs as input.

For stable training, we adopt a two-stage approach. We first train the model to reconstruct x1...K , via the object-level latent
space zs, ignoring the scene-level latent zg and placing standard Gaussian priors on zs (c.f. (Jiang & Ahn, 2020)), i.e.
maximizing the following evidence lower-bound (ELBO):

Ls = Eqϕ(zs|{xn,vn}M
n=1)

[
K∑

n=1

log fN (xn; C(Sθ(z
s), vn), σ

2)

]
−DKL

[
qϕ(z

s | {xn,vn}Mn=1) ∥ N (0, 1)
]

(5)

After this has converged, we learn the scene-level latent space by maximizing

Lg = Eqϕ(zg|zs)

[
Eqϕ(zs|{xn,vn}M

n=1)
log pθ(z

s | zg)
]
−DKL [qϕ(z

g | zs) ∥ pθ(z
g)] (6)

We use Adam for optimization (Kingma & Ba, 2015), β-weighting of KL terms (Higgins et al., 2017), and approximate
each of the above expectations by a single sample. We also further approximate Ls by rendering only a random subset of
pixels per minibatch.
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Figure 6. Additional generation results from our method on ARROW. Each row corresponds to a single scene, with each column showing a
different viewpoint

Figure 7. Generation results from NeRF-VAE* on GQN. Each row corresponds to a single scene, with each column showing a different
viewpoint



Unsupervised Causal Generative Understanding of Images

8. Architecture Details
The variational posterior qϕ(zs | {xn,vn}Mn=1) used during training is parameterised by an image encoder, pose encoder
and pooled representation encoder. For the image encoder, we use a convolutional neural network:

Layer Filters Stride Norm./Act.
Conv 4× 4 16 1 Layer/CELU
Conv 3× 3 16 1 Layer/CELU
Conv 4× 4 32 2 Layer/CELU
Conv 3× 3 32 1 Layer/CELU
Conv 4× 4 64 2 Layer/CELU
Conv 3× 3 64 1 Layer/CELU
Conv 4× 4 128 2 Layer/CELU
Conv 3× 3 128 1 Layer/CELU
Conv 4× 4 128 2 Layer/CELU

For the camera pose encoder, we use a fully-connected neural network:

Layer Size Norm./Act.
MLP 50 Layer/CELU
MLP 50 Layer/CELU
MLP 50 Layer/CELU
MLP 50 Layer/CELU
MLP 50 Layer/CELU
MLP 50 –

We then pool the image and camera representations – we sum-pool M = 5 images with their corresponding viewpoints
{xn,vn}Mn=1 for GQN dataset and use M = 1 for Arrow dataset. The pooled representation is taken as input to the scene
representation encoder, which outputs shape and appearance embeddings for each component, and an embedding k for each
object’s position:

Layer Size Norm./Act.
MLP 116 Layer/CELU
MLP 116 Layer/CELU
MLP 116 Layer/CELU

The embedding k is then passed through another fully-connected neural network to output logits for a Gumbel Softmax
(relaxed categorical variable) one-hot position indicator.

For GQN and Arrow datasets, object shape and appearance embeddings are both 9 dimensional. Background appearance is
3 dimensional for GQN whilst we use 1 dimension for Arrow. Object appearance and shape embeddings are variationally
autoencoded to a 10−dimensional object Gaussian variable while background appearance and shape embeddings are
variationally autoencoded to a 1-dimensional Gaussian variable. Encoders and decoders for both are residual neural networks
with the following layers:

Layer Size Norm./Act. Residual Connection
MLP 150 Layer/CELU No
MLP 150 Layer/CELU Yes
MLP 150 Layer/CELU Yes
MLP 150 Layer/CELU Yes
MLP 150 Layer/CELU Yes
MLP 150 Layer/CELU Yes
MLP 150 Layer/CELU Yes

We similarly variationally autoencode object-level scene representation to a global scene variable. zg is a Gaussian variable
with 10 dimensions for Arrow and 20 dimensions for GQN. Encoder and decoder are fully-connected residual neural
networks with the following layers:
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For Arrow:
Layer Size Norm./Act. Residual Connection
MLP 300 Layer/CELU No
MLP 300 Layer/CELU Yes
MLP 300 Layer/CELU Yes
MLP 300 Layer/CELU Yes
MLP 300 Layer/CELU Yes
MLP 300 Layer/CELU Yes
MLP 300 Layer/CELU Yes

For GQN:
Layer Size Norm./Act. Residual Connection
MLP 400 Layer/CELU No
MLP 400 Layer/CELU Yes
MLP 400 Layer/CELU Yes
MLP 400 Layer/CELU Yes
MLP 400 Layer/CELU Yes
MLP 400 Layer/CELU Yes
MLP 400 Layer/CELU Yes
MLP 400 Layer/CELU Yes
MLP 400 Layer/CELU Yes
MLP 400 Layer/CELU Yes

The 3D shape and appearance of the object and background components are represented as Neural Radiance Fields (NeRFs)
(Mildenhall et al., 2022), conditioned on the component’s appearance and shape embeddings. We define two NeRF MLPs
– one for background component and one for object component. As shown in the following figure Fig. 8, to facilitate
disentanglement of shape and appearance, the opacity σ depends only on shape embedding, while the radiance c depends
only on appearance embedding.

Figure 8. Architecture of a neural radiance field (Mildenhall et al., 2022; Niemeyer & Geiger, 2021) conditioned on component’s shape
and appearance codes.

Aside from these conditioning vectors, we use the vanilla NeRF architecture used in (Mildenhall et al., 2022). 3D points
are passed through a standard positional embedding which outputs a 63-dimensional embedding. Then the first part of the
network takes a positional embedding of 3D point γ(x, y, z) and a shape embedding and passes it through 8 fully-connected
layers to output a feature vector h:

Layer Size Act.
MLP 256 ReLU
MLP 256 ReLU
MLP 256 ReLU
MLP 256 ReLU
MLP 256 ReLU
MLP 256 ReLU
MLP 256 ReLU
MLP 256 ReLU
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Then h is passed through a linear layer with ReLU activation to output the density σ. Then h concatenated with appearance
embedding is passed through a linear layer with sigmoid activation to output the radiance c. We initialise the network with
a bias of 3.0 before the output of density σ. During training we add Gaussian noise with standard deviation of 0.3 to the
output of σ.

9. Implementation Details
Our final models were trained on a single NVIDIA A100 GPU for approximately 4 weeks (we did not measure the total
compute time for development). We implemented our model with PyTorch (Paszke et al., 2019). We train our model with
Adam (Kingma & Ba, 2015) using a learning rate of 1e−4. During the first stage of training, we use a batch size of 8.
During training, we subsample and render 8000 pixels, and for each pixel, we sample 512 3D points along a ray (we use 256
points initially to speed up training) from a distance of 0.01 to 20.0 and 9.9 for Arrow and GQN respectively. Most other
rendering hyperparameters are identical to those of (Mildenhall et al., 2022; Yen-Chen, 2020). During a second stage of
training, we use batch size of 64. We multiply the KL-divergence term in ELBO loss by β (Higgins et al., 2017): (i) for
scene-level variable we use β = 50 for GQN and β = 10 for Arrow (ii) for object-level variable we use β = 5 for both
Arrow and GQN.

We performed hyperparameter optimization with a grid search over the learning rate
(1e−5, 3e−5, 5e−5, 7e−5, 9e−5, 1e−4, 3e−4, 5e−4, 7e−4, 9e−4, 1e−3, 3e−3, 5e−3, 7e−3, 9e−3), batch
size (1, 2, 4, 8, 16, 32, 64, 128), number of subsampled/rendered pixels used for estimating the loss
(4000, 8000, 12000, 16000, 20000), number of sampled 3D points along a ray (64, 128, 256, 512).

During training, foreground is modelled with 5 object components and one component is used for modelling the background.
During test-time, the number of object components is fixed to the maximum number of objects present in any dataset split.
During both train and test time, we provide the model with possible object candidate positions (Henderson & Lampert, 2020;
Chen et al., 2021) and fix the background component to be outside the possible foreground range in a dataset (Henderson
& Lampert, 2020; Yu et al., 2022; Stelzner et al., 2021). We have initially performed experiments without such inductive
biases, finding that model performs well only in around 1 in 10 runs; with the rest of runs model captures background with
foreground components and vice-versa.

Rendering a scene during training assumed that a random light is being emitted from the world (in contrast to assumption of
black or white world in (Mildenhall et al., 2022)) – this prevents model from exploiting the world’s emitted colour to model
the scene and encourages modelling non-trivial scene to avoid random light from entering the camera.

The Gaussian mixture model is trained by Expectation Maximisation (Dempster et al., 1977). Each component has its own
general covariance matrix. For GQN, we use 20 components for background variable and 20 components for the object
variable. For Arrow, we use 5 components for background variable and 70 components for the object variable

The image is modelled with a Normal distribution with a mean outputted by a model as described in the method Section
Sec. 3.1 and a standard deviation of 0.15. During MCMC inference, the gradient descent step has a learning rate of 1e−4.
The variatiotional autoencoders model their output with a Gaussian distribution with a fixed standard deviation of 0.01.

10. Datasets
We now describe the datasets that we used for training and evaluation.

10.1. GQN

We render images of shape (80, 80, 3) of rooms containing several objects (icosahedrons, cubes, capsules, cylinders, spheres),
based on the ‘rooms ring camera’ dataset of (Eslami et al., 2018); similar datasets were used in (Henderson & Lampert,
2020; Engelcke et al., 2020), but in all cases without OOD test splits. For evaluation with each OOD dataset split, we sample
one image from each scene and use the sampled image for per-image metrics while using all 30 for per-scene metrics. The
data generation source code will be made public.

Training split. The training split contains 10000 scenes, each with 30 RGB images. The camera viewpoints are on a
circular path around the center of the room with the elevation of 1.0 and with the camera pointed at the center of the room at
the same elevation angle. The first camera viewpoint along circular path is generated by first sampling a random initial
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yaw of the camera with respect to the origin of the scene and then shifting a camera in xy (horizontal) plane by a random
distance (sampled uniformly from U[3.1,3.4]) from the origin. Subsequent viewpoints form a circular path with respect to the
origin. Textures for the walls and colors for the objects are selected randomly from a finite set, with some combinations held
out. Three walls have the same texture as each other, with the fourth different. In particular, the training split contains scenes
with either (i) random compositions of (light, cerise) background textures with (capsule, cylinder) objects with 3 random
colours or (ii) random compositions of (cosahedron, box, sphere) objects with another 3 random colours and with (orange,
blue, green) background textures. There are 3–4 objects present; these are placed near the side of the room identified by the
odd background texture.

OOD composition split. The OOD composition split contains 100 scenes, each with 30 RGB images. The data generation
process is same as for training split, except that we swap possible background textures. Hence, the split contains scenes with
either (i) random compositions of (orange, blue, green) background textures with (capsule, cylinder) objects with 3 random
colours or (ii) random compositions of (cosahedron, box, sphere) objects with another 3 random colours with (light, cerise)
background textures.

OOD position split. The OOD position split contains 100 scenes, each with 30 RGB images. The data generation process
is same as for training split, except that objects are now placed in the opposite side of the room identified with the odd
background texture.

OOD viewpoint split. The data generation process is same as for training split, except that camera viewpoint is sampled
from a different procedure. In particular, we have two OOD viewpoint splits, each containing 100 scenes with 30 RGB
images. The first part contains camera elevation sampled from uniform distribution U[0.1,4.0] and position sampled randomly
in between objects. The camera has a random yaw and its pitch is such that the camera is focused on the point with elevation
of 1.0 at a distance of 1.0. A second part of OOD viewpoint split contains images with camera pointing from high-up to the
center of the room with a circular path around the origin. For each frame, the camera has a xy (horizontal) distance of 1.5
from the origin, elevation of 2.5 and a pitch of −0.75.

OOD number split. The OOD number split contains 300 scenes, each with 30 RGB images. The data generation process
is same as for training split, except that we now have 1, 5 or 6 objects (100 scenes per each) instead of 3-4 objects. Objects
are placed randomly in the opposite side of the room identified with the odd background texture, but in contrast to training
split, now some objects can be placed in the middle of the room to avoid cluttering the scene.

10.2. ARROW

We render RGB images of shape (96, 96, 3) using a modified version of the CLEVR dataset (Johnson et al., 2017), similar
to those in (Jiang & Ahn, 2020). Similarly to (Kosiorek et al., 2021; Nanbo et al., 2020), we modify background component
such that the background is present from all camera viewpoints.

Training split. The training dataset contains 10000 scenes, with 20 images per each scene. Each scene has four objects, of
which one is always an arrow, two of which are the same as each other, and a fourth that is different. The arrow always points
at the odd-shaped (fourth) object. The colours of objects are randomly sampled. The camera points to the origin (0, 0, 0)
from two circular path around it: one starting at position of (4.99,−4.33, 4.89), a second starting at (3.75, 3.75, 1.0).

OOD composition split. The OOD composition dataset contains 100 scenes, with 10 images per each scene. For
evaluation, we sample one image per scene and use it to evaluate per-image metric while using all 10 images for per-scene
metrics. The data generation process is same as for training split, except that now all objects contain same shape and colour,
with no arrow present.

OOD position split. The OOD position dataset contains 100 scenes, with 10 images per each scene. For evaluation, we
sample one image per scene and use it to evaluate per-image metric while using all 10 images for per-scene metrics. The
data generation process is same as for training split, except that now four objects are positioned in a an approximate line,
and the arrow no longer points to the odd object.
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OOD viewpoint split. The OOD position dataset contains 100 scenes, with 21 images per each scene. It contains one
image rendered from the top at position (0., 0., 8.0) to the origin (0, 0, 0). The other 20 images are from two circular paths
around the origin: one starting at position of (4.75, 4.75, 0.4), a second starting at (0.5, 0.5, 8.0). Both starting positions are
with added noise from uniform distribution U[−0.5,0.5] to each dimension.

OOD number split. The OOD position dataset contains 100 scenes, with 10 images per each scene. The data generation
process is same as for training split, but now the scene contains 1, 5 or 6 objects instead of 4.

11. Baselines
We used the original publicly-available implementation of (Locatello et al., 2020), with hyperparameters (including number
of slots and number of iterations) re-tuned on our datasets. For the 80× 80 GQN images, we slightly modified the decoder
architecture, increasing the initial feature map size. As for our method, at test time, we set the number of slots equal to the
largest number of objects (plus one for background) in any OOD split.

For a fair comparison with NeRF-VAE* and uORF*, we provide these methods with the same inductive biases as we used
for our method. In particular, we specify possible scene and foreground boundary and use the same number of samples
along a ray as described in Implementation Details section. Furthermore, to make these methods work on the GQN dataset,
we have found that it is useful to provide multiple images to the encoder during training. However, during test time, we
evaluate all methods on a single image. We hence first pretrain both approaches with multiple views with the same pooling
mechanism as described in our method’s implementation details. We then interrupt the training and continue training the
model with encoder taking M = 1 images as input. We also provide baselines with an equivalent architecture to ours.

12. Related Work
In Tab. 3, we enumerate various works addressing similar tasks to our proposed approach, and note whether they support
various tasks/features.
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Table 3. Comparison of capabilities of related models. Check (✓) - capability supported by the model; cross (✗) - capability not supported
by the model.
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explicitly represents
3D shapes ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓

explicitly represents
3D object positions ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✓

infers representation
given an image ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

generates new
plausible
images/scenes

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✓

learns a prior over
individual object
appearances

✓ ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓

explicit volumetric
rendering ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓
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