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Abstract. Many type systems include infinite types. In session type
systems, infinite types are important because they specify communi-
cation protocols that are unbounded in time. Usually infinite session
types are introduced as simple finite-state expressions recX.T or by non-
parametric equational definitions X .

= T . Alternatively, some systems of
label- or value-dependent session types go beyond simple recursive types.
However, leaving dependent types aside, there is a much richer world of
infinite session types, ranging through various forms of parametric equa-
tional definitions, to arbitrary infinite types in a coinductively defined
space. We study infinite session types across a spectrum of shades of grey
on the way to the bright light of general infinite types. We identify four
points on the spectrum, characterised by different styles of equational
definitions, and show that they form a strict hierarchy by establishing
bidirectional correspondences with classes of automata: finite-state, 1-
counter, pushdown and 2-counter. This allows us to establish decidability
and undecidability results for type formation, type equivalence and dual-
ity in each class of types. We also consider previous work on context-free
session types (and extend it to higher-order) and nested session types,
and locate them on our spectrum of infinite types.

Keywords: Infinite types · Recursive types · Session types · Automata and
formal language theory

1 Introduction

Session types [19,20,23,38] are an established approach to specifying commu-
nication protocols, so that protocol implementations can be verified by static
typechecking or dynamic monitoring. The simplest protocols are finite: for ex-
ample, ?int.!bool.end describes a protocol in which an integer is received, then a
boolean is sent, and that’s all. Most systems of session types, however, include
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equi-recursive types for greater expressivity. A type that endlessly repeats the
simple send-receive protocol is X such that X .

= ?int.!bool.X, which can also
be specified by recX.?int.!bool.X. More realistic examples usually combine re-
cursion and choice, as in Y such that Y .

= &{go: ?int.!bool.Y , quit : end} which
offers a choice between go and quit operations, each with its own protocol. A
natural observation is that session types look like finite-state automata, but
some systems from the literature go beyond the finite-state format: for exam-
ple, context-free session types [39] and nested session types [9,10], as well as
label-dependent session types [40] and value-dependent session types [41].

Even without introducing dependent types, a range of definitional formats
can be considered for session types, presumably with varying degrees of expres-
sivity, but they have never been systematically studied. That is the aim of the
present paper. We consider various forms of parameterised equational defini-
tions, illustrated by six running examples. Because our formal system only has
one base type, the terminated channel type end, the running examples simply
use end (or skip for context-free session types) as a representative basic message
type that could otherwise be bool or int.

Our study of classes of infinite types should be generally applicable; we make
it concrete by concentrating on session types where (potential) infinite types
occur naturally. For the sake of uniformity, all our non-finite session types are
introduced by equations, rather than, say, rec-types. Equations may be further
parameterized, thus accounting for types that go beyond recursive types. The
examples below illustrate the different kinds of parameterized equations we use.

Example 1 (No parameters). Type Tloop is X with equation X .
= !end.X. Intu-

itively Tloop = !end.!end . . . continuously outputs values of type end.

Example 2 (One natural number parameter). Assuming z and s as the natural
number constructors and N as a variable over natural numbers, type Tcounter is
X〈z〉 with equations

X〈z〉 .= &{inc : X〈s z〉, dump: Y 〈z〉} Y 〈z〉 .= end

X〈sN〉 .= &{inc : X〈s sN〉, dump: Y 〈sN〉} Y 〈sN〉 .= !end.Y 〈N〉

A sequence of n inc operations followed by a dump triggers a reply of n end
output messages.

Example 3 (Context-free types). With type skip used either to finish a session
or to move to the next operation, type Ttree is X with equation

X
.
= &{leaf : skip, node: X; ?skip;X}

The leaf choice terminates the reception of a binary tree of skip values and
the node choice triggers the reception of a (left) tree, followed by ?skip (root),
followed by a (right) tree. Even though the development in the rest of the paper
considers higher-order types (where messages may convey arbitrary types rather
than skip alone), for simplicity our example is first-order.
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Example 4 (One list parameter). Assuming σ and τ as symbols and S as a
variable over sequences of symbols (with ε the empty sequence), type Tmeta is
X〈ε〉 with equations

X〈ε〉 .= &{addOut: X〈σ〉, addIn: X〈τ〉}
X〈σS〉 .= &{addOut: X〈σσS〉, addIn: X〈τσS〉, pop: !end.X〈S〉}
X〈τS〉 .= &{addOut: X〈στS〉, addIn: X〈ττS〉, pop: ?end.X〈S〉}

Type Tmeta records simple protocols composed of !end and ?end messages. Sym-
bol σ in a parameter to a type identifier X denotes an output message and
symbol τ an input message. The protocol behaves as a stack with two distinct
push operations (addOut and addIn). The symbol (σ or τ) at top of the stack
determines whether a pop operation triggers !end or ?end, respectively.

Example 5 (Nested types). Taking α as a variable over types, type Tnest is Xε

with equations

Xε
.
= &{addOut: Xout〈Xε〉, addIn: Xin〈Xε〉}

Xout〈α〉
.
= &{addOut: Xout〈Xout〈α〉〉, addIn: Xin〈Xout〈α〉〉, pop: !end.α}

Xin〈α〉
.
= &{addOut: Xout〈Xin〈α〉〉, addIn: Xin〈Xin〈α〉〉, pop: ?end.α}

Type identifiers such as Xε, Xout, Xin take an arbitrary but fixed number of
arguments. Type Tnest behaves as Tmeta in Example 4. The alignment should be
clear if we take, e.g. Xout〈Xin〈α〉〉 for X〈στS〉, with σ denoting output and τ
denoting input. Type identifiers Xout and Xin play the roles of stack symbols
(symbols at the top of the stack, σ or τ); type variable α denotes the lower part
of the stack (S in Example 4).

Example 6 (Two natural number parameters). Type Titer is X〈z,z〉 with

X〈z,N ′〉 .= ?end.Y 〈z,sN ′〉 Y 〈N,z〉 .= X〈N,z〉
X〈sN,N ′〉 .= !end.X〈N,sN ′〉 Y 〈N,sN ′〉 .= Y 〈sN,N ′〉

Informally, writing !endn for a sequence of n output end messages, these defini-
tions give Titer = ?end.!end1.?end.!end2.?end.!end3. . .

It is intuitively clear that Examples 2 and 4 to 6 cannot be expressed without
parameters. It is perhaps less clear that each definitional style in Examples 1, 2,
4 and 6 is strictly more expressive than the previous one. This is the main result
of the paper. We establish a hierarchy from finite session types all the way up
to non-computable types that have no representation at all. The latter certainly
exist, because for every infinite binary expansion of a real number between zero
and one there is a session type derived by mapping 0 to send and 1 to receive
— for cardinality reasons, almost all of these types are non-computable.

Our methodology is to develop the connection between session types and au-
tomata, in particular between progressively more expressive definitional styles
of types and progressively more powerful classes of automata. We also consider
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the formal language class corresponding to each class of automata, and the de-
cidability of important properties such as contractiveness, type formation, type
equivalence and type duality. Our results are summarised in the table below,
establishing a hierarchy of session types in parallel to the Chomsky hierarchy of
languages, where by a 1-counter language, we mean a language accepted by a
(deterministic) 1-counter automaton and where DCFL abbreviates deterministic
context-free languages. The final row of the table emphasises that it is impos-
sible to give an explicit example of a non-computable type or to even state the
decision problems.

Context-free and 1-counter types are incomparable. Essentially, both models
lie between levels 2 and 3 of the Chomsky hierarchy and correspond to different
restrictions of deterministic pushdown automata. Context-free types correspond
to constraining automata with a single state, whereas 1-counter types correspond
to constraining the stack to have a single symbol.

Type class Example Contractiveness Type duality / Language model
equivalence

Finite !end.end Polytime Polytime Finite languages
Recursive Tloop Polytime Polytime Regular languages
1-counter Tcounter Polytime Polytime 1-counter languages

HO context-free Ttree Polytime Decidable Open3

Pushdown Tmeta Polytime Decidable DCFL
Nested Tnest Polytime Decidable DCFL

2-counter Titer Undecidable Undecidable Decidable languages
Non-computable — — — General languages

Our main contributions can be summarized as follows.

– We propose three novel formal systems for representing session types (1-
counter, pushdown, 2-counter), show that they are strictly more expressive
than recursive session types, and that each system is strictly more expressive
than the previous one (Theorem 1).

– We show that nested session types [9] are equivalent to pushdown session
types (Theorem 1).

– We introduce higher-order context-free session types and show that they
stand between recursive and pushdown types, strictly (Theorem 1).

– We characterize each of the novel session types in our paper by a corre-
sponding class in the Chomsky hierarchy of languages. Notably, we show
that each model captures precisely the power of the corresponding class of
automata (Theorem 2). This is in contrast with the results of Das et al. [9],
who only show (in one direction) that nested session types can be simulated
by deterministic pushdown automata.

– We prove that type formation, type equivalence and type duality are de-
cidable up to pushdown session types (Theorem 3), but undecidable for 2-

3Possibly languages accepted by a single-state pushdown automata with empty
stack acceptance.
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Polarity and view

] ::= ? | ! ? ::= & | ⊕

Type formation T type

end type (T-End)
T type U type

] T .U type
(T-Msg)

T` type (∀` ∈ L)
?{` : T`}`∈L type

(T-Choice)

Type equivalence T ' T

end ' end (E-End)

T ' U V 'W
]T .V ' ] U.W (E-Msg)

Tl ' Ul (∀` ∈ L)
?{` : T`}`∈L ' ?{` : U`}`∈L

(E-Choice)

Duality S ⊥ S

? = ! ! = ? & = ⊕ ⊕ = &

end ⊥ end (D-End)
T ' U V ⊥W
]T .V ⊥ ] U.W

(D-Msg)

T` ⊥ U` (∀` ∈ L)
?{` : T`}`∈L ⊥ ?{` : U`}`∈L

(D-Choice)

Fig. 1. Finite and infinite types.

counter session types (Theorem 4). This implies that equivalence for higher-
order context-free session types is decidable. The decidability results are not
entirely unexpected, given that type equivalence for nested session types was
recently shown to be decidable [9], and that these are equivalent to pushdown
types. However, our proofs are independent of Das et al. [9].

Organization of the paper In Section 2 we introduce the various classes of ses-
sion types. In Section 3 we explain how to associate to each given type a labelled
infinite tree, as well as a set which we call the language of traces of that type.
We also present our results on the strict hierarchy of types and state how pre-
viously studied classes of types fit into this hierarchy (Theorem 1). In Section 4
we describe how to convert a type into an automaton accepting its traces. In
Section 5 we travel in the converse direction, i.e., from an automata into the cor-
responding type, and present a characterisation theorem of the different types in
our hierarchy (Theorem 2). We then present our main algorithmic results: type
formation, type equivalence and type duality are all decidable up to pushdown
types (Theorem 3), and undecidable for 2-counter types (Theorem 4). Due to
space constraints, all proofs and additional details can be found in the extended
version of our paper at arXiv [16].

2 Shades of types

The finite world Finite types are in Fig. 1. The syntax of types is introduced
via formation rules, paving the way for infinite types. Session types comprise
the terminated type end, the input type ?T .U (input a value of type T and
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Type contractivity (ind.) T contr

end contr (C-End)
] T .U contr (C-Msg)

?{` : T`}`∈L contr (C-Choice)

X
.
= T T contr

X contr
(C-Id)

New formation rules (coind.) T type

X
.
= T T contr T type

X type
(T-Id)

New equivalence rules (coind.) T ' T

X
.
= U U contr U ' T

X ' T (E-ConsL)

X
.
= U U contr T ' U

T ' X (E-ConsR)

New duality rules (coind.) T ⊥ T

X
.
= U U contr U ⊥ T

X ⊥ T (D-IdL)

X
.
= U U contr T ⊥ U

T ⊥ X (D-IdR)

Fig. 2. Recursive types. Extends Fig. 1.

continue as U), the output type !T .U (output a value of type T and continue
as U), external choice &{` : T`}`∈L (receive a label k ∈ L and continue as Tk)
and internal choice ⊕{` : T`}`∈L (select a label k ∈ L and continue as Tk). To
avoid repeating similar rules, we use the symbol ] to denote either ? or !, and the
symbol ? to denote either & or ⊕. At this point type equivalence is essentially
syntactic equality, but the rule format allows for seamless extensions to infinite
settings. Types, type equivalence and duality are all standard [15,20,44]. Note
that rule D-Msg defines duality with respect to type equivalence: !T .V and
?U.W are dual types iff the type being exchanged is the same (T ' U) and the
continuations are dual (V ⊥W ).

For finite types all judgements in Fig. 1 are interpreted inductively. For ex-
ample, we can show that !(?end.end).!end.end is a type by exhibiting a finite
derivation ending with this judgement.

The recursive world Recursive types suggest the first glimpse of infinity. The
details are in Fig. 2. Recursion is given via equations, rather than µ-types for
example, for easier extension. Towards this end, we introduce type identifiers X
and equations of the form X

.
= T . The set of type identifiers is finite. We further

assume at most one equation for each type, so that there are finitely many type
equations. Every valid type T is required to be contractive, that is T contr.
Contractiveness ensures that types reveal a type constructor after finitely many
unfolds, and excludes undesirable cycles that don’t describe any behaviour, e.g.
cycles of the form {X .

= Y , Y
.
= Z,Z

.
= X}. Contractiveness is inductive: we

look for finite derivations for T contr judgements. A coinductive interpretation of
the rules would allow to conclude X contr given an equation X .

= X. In contrast,
type formation, type equivalence and duality are now interpreted coinductively.

For example, no finite derivation would allow showing that Tlooptype. Instead
we proceed by showing that set {end, !end.X,X} is backward closed [34] for the
rules for T type in Fig. 2, given that !end.X, the right-hand side of the equation
for X, is contractive.
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Natural numbers

n ::= z | sn

New contractivity rules (ind.) T contr

X〈z〉 .= T T contr

X〈z〉 contr (C-z)

X〈sN〉 .= T T [n/N ] contr

X〈sn〉 contr (C-s)

New formation rule (coind.) T type

X〈z〉 .= T T contr T type

X〈z〉 type (T-z)

X〈sN〉 .= T T [n/N ] contr T [n/N ] type

X〈sn〉 type
(T-s)

New equivalence rules (coind.) T ' T

X〈z〉 .= U U contr U ' T
X〈z〉 ' T (E-zL)

X〈sN〉 .= U U [n/N ] contr U [n/N ] ' T
X〈sn〉 ' T

(E-sL)

Fig. 3. 1-counter types. Extends Fig. 2; removes X; adds X〈n〉. Right versions of rules
E-zL and E-sL omitted. New rules for duality obtained from those for equivalence by
replacing ' by ⊥.

The 1-counter world The next step takes us to equations parameterised on
natural numbers. The details are in Fig. 3. Natural numbers are built from
the nullary constructor z and the unary constructor s. We discuss the changes
from the recursive world in Fig. 2. Given a variable N on natural numbers,
to each type identifier X we associate at most two equations, X〈z〉 .

= T and
X〈sN〉 .= U . The rules for recursive types are naturally adapted to 1-counter
types. Here again, type formation requires a suitable notion of contractiveness
to exclude cycles of equations that never reach a type identifier, e.g. cycles of
the form {X〈sN〉 .= Y 〈s sN〉, Y 〈sN〉 .= X〈N〉}. The right-hand-side of an equa-
tion X〈sN〉 .= T is not necessarily a type for it may contain natural number
variables (N in particular). However, if n is a natural number, then T [n/N ]
(that is, T with occurrences of N replaced by n) should be a type (cf. rule
T-s). Again, to prove that Tcounter type, we show backward closure of the set
{X〈n〉, Y 〈n〉, end, !end.Y 〈n〉,&{inc : X〈sn〉, dump: Y 〈n〉} | n nat} for the type
formation rules.

Higher-order context-free session types A little detour takes us to context-free
session types, proposed by Thiemann and Vasconcelos [39] (see also Almeida et
al. [1]). Here we follow the distilled presentation of Almeida et al. [2], extending
types to the higher-order setting (that is, allowing ?T and !T for an arbitrary
type T instead of just basic type skip).

The pushdown world The next extension replaces natural numbers by finite
sequences s of symbols σ taken from a given stack alphabet. The details are in
Fig. 4. We use ε to denote the empty sequence. The extension from 1-counter
is straightforward. Parameters to type identifiers are now sequences of symbols,
rather than natural numbers; all the rest remains the same. Once again, to show
that Tmeta type, we proceed coinductively.
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Strings
s ::= ε | σs

New contractive rules (ind.) T contr

X〈ε〉 .= T T contr

X〈ε〉 contr (C-z)

X〈σS〉 .= T T [s/S] contr

X〈σs〉 contr (C-s)

New formation rules (coind.) T type

X〈ε〉 .= T T contr T type

X〈ε〉 type (T-z)

X〈σS〉 .= T T [s/S] contr T [s/S] type

X〈σs〉 type
(T-s)

New equivalence rules (coind.) T ' T

X〈ε〉 .= U U contr U ' T
X〈ε〉 ' T (E-zL)

X〈σS〉 .= U U [s/S] contr U [s/S] ' T
X〈σs〉 ' T

(E-sL)

Fig. 4. Pushdown types. Extends Fig. 2; removes X; adds X〈s〉. Right versions of rules
E-zL and E-sL omitted. For duality, proceed as in Fig. 3.

Nested session types A class of types that turns out to be equivalent to pushdown
types was recently proposed by Das et al. [9]. The main idea is to have type
identifiers that are applied not to natural numbers or to sequences of symbols
but to types themselves, and to let type identifiers take a variable (but fixed)
number of parameters.

The 2-counter world 2-counter types extend the 1-counter types by introducing
equations parameterised on two natural numbers, rather than one. The new rules
are a straightforward adaptation of those in Fig. 3 for 1-counter types and are
thus omitted. To show that Titer type, we proceed coinductively.

The infinite world The final destination takes us to arbitrary, coinductive, in-
finite types. The details are in Fig. 1, except that all judgements not explicitly
marked are taken coinductively. No equations (of any sort) are needed, just plain
infinite types. We also allow choices with an infinite number of branches.

Infinite types arise by interpreting the syntax rules coinductively, which gives
rise to potentially infinite chains of interactions. The structure of these arbitrary,
coinductively defined, infinite types does not need to follow any pattern (e.g. it
does not need to repeat itself), and arguably, the best way to think about these
objects are as labelled infinite trees (Section 3). Such objects do not have in
general a finite representation (or finite encoding), which can be shown by a
simple cardinality argument. Hence the need for finding suitable subclasses of
infinite types that can be represented and can be used in practice.

We can think of a type in two possible ways: as (one of) its representation(s),
which is great for practical purposes as we can reason about types by reasoning
about their representations; or as the underlying, possibly infinite, coinductive
object which is being represented, which is suitable for developing a theory of
types, in particular for comparing different models with one another.
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3 Types, trees and traces

It should be clear that the constructions defined in Section 2 form some sort of
type hierarchy; this section studies the hierarchy. In any case, every type lives
in the largest universe; that of arbitrary, coinductively defined, infinite types.

To each type one can associate a labelled infinite tree [14,32]. This tree can
in turn be expressed by the language of words encoding its paths. Let L be the
set of labels used in choice types. Following Pierce [32, Definition 21.2.1], a tree
is a partial function t ∈ ({d, c} ∪ L)∗ → {end, ?, !,&L,⊕L | L ⊆ L} subject to
the following constraints (σ ranges over symbols and π over strings of symbols):

– t(ε) is defined;
– if t(πσ) is defined, then t(π) is defined;
– if t(π) = ? or t(π) = !, then t(πσ) is defined for σ ∈ {d, c} and undefined for

all other σ;
– if t(π) = &L or t(π) = ⊕L, then t(πσ) is defined for σ ∈ L and undefined for

all other σ;
– if t(π) = end, then t(πσ) is undefined for all σ.

The labels d and c are abbreviations for data and continuation, corresponding
to the two components of session types for messages.

If all sets L in a tree are finite, the tree is finitely branching. The tree gen-
erated by a (finite or infinite) type is coinductively defined as follows.

treeof(] Td.Tc)(ε) = ] treeof(?{` : T`}`∈L)(ε) = ?L

treeof(] Td.Tc)(dπ) = treeof(Td)(π) treeof(?{` : T`}`∈L)(`π) = treeof(T`)(π)

treeof(] Td.Tc)(cπ) = treeof(Tc)(π) treeof(end)(ε) = end

A path in a tree t is a word obtained by combining the symbols in the
domain and the range of t. Given a symbol σ ∈ {?, !,&L,⊕L | L ⊆ L} in
the codomain of t (but different from end), and a symbol τ ∈ {d, c}∪L, let 〈σ, τ〉
denote the combination of both symbols, viewed as a letter over the alphabet
{?, !,&L,⊕L | L ⊆ L} × ({d, c} ∪ L). For simplicity in exposition, we often drop
the angular brackets and the subscript L on the label set, and write, for example,
?c instead of 〈?, c〉, ⊕l instead of 〈⊕L, l〉, etc.

Given a string π in the domain of a tree t, we can define the word patht(π)
recursively as patht(ε) = ε and patht(πτ) = patht(π) · 〈t(π), τ〉. We say that a
string π is terminal wrt to t if t(π) = end. For terminal strings, we can further
define dpatht(π) = patht(π) · end.

Finally, we can define the language of (the paths in) a tree t as the set
{patht(π) | π ∈ dom(t)} ∪ {dpatht(π) | π ∈ dom(t), π is terminal wrt t}. The
language of (the traces of) a type T , denoted by L(T ), is the language of
treeof(T ). Note that the traces of types are defined over the following alpha-
bet.

Σ = {?, !,&L,⊕L | L ⊆ L} × ({d, c} ∪ L) ∪ {end} (1)
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!

end !

end !

end ...

d c

d c

d c

L(Tloop) = {ε, !d, !d · end,
!c, !c·!d, !c·!d · end, !c·!c,
!c·!c·!d, !c·!c·!d · end,
!c·!c·!c, . . .}

Fig. 5. The tree and the language of type Tloop.

&

& end

& !

... ! end end

end !

end end

inc dump

inc dump

inc dump d c

d c

d c

L(Tcounter) = {ε, &inc, &dump, &dump · end,
&inc ·&inc, &inc ·&dump,

&inc ·&dump·!d,
&inc ·&dump·!d · end,
&inc ·&dump·!c,
&inc ·&dump·!c · end,
&inc ·&inc ·&inc,

&inc ·&inc ·&dump,

&inc ·&inc ·&dump·!d, . . .}

Fig. 6. The tree and the language of type Tcounter.

&

end &

? &

? ...end &

end ... end ...

leaf node

leaf node

leaf noded c

leaf node d c

L(Ttree) = {ε, &leaf, &leaf · end, &node,

&node ·&leaf, &node ·&node,

&node ·&leaf·?d,
&node ·&leaf·?d · end,
&node ·&leaf·?c,
&node ·&node ·&leaf,

&node ·&node ·&node, . . .}

Fig. 7. The tree and the language of type Ttree.

Figure 5 depicts (a finite fragment of) the tree corresponding to treeof(Tloop)
(Example 1) and (some of the words in) its language L(Tloop). Type Tcounter (Ex-
ample 2) describes an interaction that keeps track of a counter. Finite fragments
of the corresponding tree and language are depicted in Fig. 6. Type Ttree (Ex-
ample 3) describes the reception of a binary tree of end values. Finite fragments
of the corresponding tree and language are depicted in Fig. 7.

In the above examples, the language L(T ) is closed under prefixes. This holds
for a general type T , since elements of L(T ) correspond to paths in treeof(T ).

Proposition 1. If w ∈ L(T ) and u is a prefix of w then u ∈ L(T ).
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Another immediate observation is that treeof (resp. L) is an embedding from
the class of all types to the class of all trees (resp. all languages).

Proposition 2. Let T and U be two types. The following are equivalent: a)
T ' U ; b) treeof(T ) = treeof(U); c) L(T ) = L(U).

Proposition 2 tells us that two types are equivalent iff they have the same
traces. In general, trace equivalence is a notion weaker than bisimulation [34].
However, both notions coincide for deterministic transition systems. The syntax
of (infinite) session types is in fact deterministic (e.g. given a label ` for a choice,
there can only be one type that continues from &`), which explains our result.

Section 2 introduces eight classes of types. We now distinguish them by means
of subscripts: finite types (T typef , Fig. 1), recursive types (T typer, Fig. 2), 1-
counter types (T type1, Fig. 3), context-free types (T typec ), pushdown types
(T typep, Fig. 4), nested types (T typen ), 2-counter types (T type2) and coin-
ductive, infinite types (T type∞, Fig. 1 with rules interpreted coinductively).
To each class of types we introduce the corresponding class of languages. For
example, Tr is the set {L(T ) | T typer}. The strict hierarchy result is as follows:

Tf ( Tr ( T1 ( Tp ( T2 ( T∞

We remark that the last step in the chain of strict inclusions is obtained by
a cardinality argument, since the set T∞ is uncountable. This shows an even
stronger statement: for any finite representation system (including the systems
Tf to T2, as well as Tc and Tn), there is an infinite, uncountable set of types that
cannot be represented by that system.

We now turn our attention to nested types (T typen), which turn out to be
equivalent to pushdown types, and further establish equivalent sub-hierarchies
inside both classes, parameterised by the ‘complexity’ of the corresponding rep-
resentations. For pushdown session types, a natural measure of complexity is the
number of type identifiers required to represent a given type. This number can
be arbitrarily large, but always finite. For a given n ∈ N, we let Tn

p denote the
subset corresponding to those types that can be represented with at most n type
identifiers. When n = 0, there are no identifiers, and we can only represent finite
types. As n increases, so does the expressivity of our constructions, and we have
the infinite chain of inclusions4

Tf = T0
p ( T1

p ⊆ T2
p ⊆ · · · ⊆ Tp.

Similarly, for nested session types we can define a hierarchy by looking at the
arities of the type identifiers used. For a given n ∈ N, we let Tn

n denote the subset
corresponding to the nested session types whose type identifiers have arity at
most n. When n = 0 all type identifiers are constant, and we recover the class
of recursive types. As n increases, so does the expressivity, and we also have an
infinite chain of inclusions4

Tr = T0
n ( T1

n ⊆ T2
n ⊆ · · · ⊆ Tn.

4Although not proven, we conjecture that all inclusions are strict.
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It turns out that these hierarchies are one and the same (with the exception
of the bottom level), so that we have 4

Tf = T0
p ( Tr = T0

n ( T1
p = T1

n ⊆ T2
p = T2

n ⊆ · · · ⊆ Tp = Tn.

Higher-order context-free types (denoted by Tc) lie between levels 0 and 1
in the sub-hierarchies above, i.e., they can represent recursive types, and can
be represented by pushdown session types using at most one type identifier, or
equivalently, by nested session types with either constant or unary type identi-
fiers, so that we have

Tr ( Tc ( T1
p = T1

n.

We have a stronger observation than the inclusion Tc ( T1
p. Context-free

session types are included in pushdown session types which have only one type
identifierX, and where the equationX〈ε〉 .= end accounts for the only occurrence
of end. The latter means that the type ends iff the state X〈ε〉 is reached, that
is, iff the stack is empty. Thus, we can intuitively think of context-free session
types as pushdown types with a single identifier and an empty stack acceptance
criterion. This observation points to the fact that the qualifier ‘context-free’ in
the so called context-free session types is a misnomer [9].

The result below summarises the entire hierarchy.

Theorem 1 (Inclusions).

Tf = T0
p ( Tr = T0

n ( T1 ( Tp = Tn ( T2 ( T∞(
⊆

Tc ( T1
p = T1

n ⊆ T2
p = T2

n ⊆ · · ·

4 From types to automata

This section describes procedures to convert types in different levels of the hier-
archy (recursive systems, 1-counter, pushdown and 2-counter) into automata at
the same level. All constructions follow the same guiding principles, so we focus
on the bottom level of the hierarchy (recursive systems) and then highlight the
main differences as we advance in the hierarchy.

All automata that we consider are deterministic and total, i.e., the transition
functions are such that any input word has a well-defined, unique computation
path. We use the alphabet Σ defined in (1). Standard references in automata
theory are Hopcroft and Ullman’s book [22] and Valiant’s PhD thesis [42].

Recursive types and finite-state automata Following the usual notation, a (de-
terministic) finite-state automaton is given by a set Q of states, with a specified
initial state q0 ∈ Q, a transition function δ : Q × Σ → Q, and a set A ⊆ Q of
accepting states. Given a finite word a1a2 · · · an, its execution by the automaton
yields the sequence of states s0, s1, . . . , sn where s0 = q0 and si+1 = δ(si, ai+1).
A word is accepted by the automaton if its execution ends in an accepting state.
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The definition of finite-state automata can be augmented into other types of
automata. Essentially: in a 1-counter automata we have access to a counter (with
operations for incrementing, decrementing, and checking whether the counter is
non-zero), in addition to the current state; in a pushdown automata we have
access to a stack (with operations for pushing a symbol, popping a symbol, and
observing the top symbol of the stack); in a 2-counter automata, we have access
to two counters.

Suppose we are given a system of recursive equations {Xi
.
= Ti}i∈I over a set

X = {Xi}i∈I (which may or may not be contractive, i.e., define a type). Our first
step is to convert this system into a normal form in which every right-hand side
is either a identifier X, or a single application of one of the type constructors end,
?X.Y , !X.Y , &{` : X`}`∈L or ⊕{` : X`}`∈L. We can do this by introducing fresh,
intermediate identifiers as needed. Essentially, whenever we have an equation
X

.
= ?T1.T2 where T1, T2 are not identifiers, we add two new identifiers X ′, X ′′,

replace the above equation by X .
= ?X ′.X ′′, and add two new equations X ′ .= T1

and X ′′ .= T2. The process is similar for the other type constructors. By doing
this repeatedly, we “break down” a long equation into many small equations. The
number of new identifiers is linear in the size of the original system of equations.

Given such a system, we construct a finite-state automaton (over the alpha-
bet Σ) as follows. The automaton has a state qX for every type identifier X,
and two additional states: an ‘end’ state qend and an ‘error’ state qerror. The tran-
sitions from qerror are described by qerror

a→ qerror for every symbol a. Similarly,
the transitions at qend are described by qend

a→ qerror for every symbol a. The
transitions at state qX are given by the corresponding equation for identifier X,
in the obvious way. Some examples:

– If our system contains equation X .
= Y , we have the ε-transition qX

ε→ qY .
– If our system contains X .

= !Y .Z, we have the reading transitions qX
!d→ qY ,

qX
!c→ qZ , and qX

a→ qerror for any a 6= !d, !c.
– If our system contains X .

= ⊕{l : X,m : Y }, we have the reading transitions
qX
⊕l→ qX , qX

⊕m→ qY and qX
a→ qerror for any a 6= ⊕l,⊕m.

– If our system contains X .
= end, we have the reading transitions qX

end→ qend
and qX

a→ qerror for any a 6= end.

We define all states other than qerror to be accepting states.5 Notice that the
finite-state automaton described above is an automaton with possible ε-moves.
Although, by definition, deterministic finite-state automata do not permit ε-
moves, in our case paths of ε-moves are uniquely determined and always reach a
state without outgoing ε-transitions (they cannot become stuck in a loop, assum-
ing type contractivity). We can convert the given automaton into an equivalent
automaton without ε-moves by ‘shortcutting’ such moves. Formally, suppose a

5We need all states to be accepting, since we might need to look at finite traces to
distinguish between two types. For example, X .

= &{a: X} and Y .
= &{b: Y } define

non-equivalent types that have no finite terminating paths.
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qX qY qend!c
!d end

X
.
= !end.X

Fig. 8. An automaton for Tloop with initial state qX . All depicted states are accepting.

state X has an outgoing ε-transition to Y ; by construction, it is X’s only out-
going transition. Assuming X and Y are different states, we can change every
transition entering X and make it enter Y instead; finally, we can remove state
X (hence removing the ε-transition from X).

We show in Fig. 8 the automaton that corresponds to type Tloop (Example 1).
Every missing transition points to qerror which is not shown. In our examples, all
depicted states are accepting, so we omit the usual double circle notation.

1-counter types For 1-counter systems, the only difference in the above construc-
tion is that instead of non-parameterised identifiers our equations now involve
terms of the form X〈z〉, X〈s z〉, X〈N〉, X〈sN〉, etc. We assume for simplicity
that the identifiers appearing in these equations are restricted as follows: if the
left-hand side of an equation is of the form X〈z〉, then the identifiers appearing
in the right-hand side must be of the form X ′〈z〉 or X ′〈s z〉 (with X ′ possibly
different from X); and if the left-hand side of an equation is of the form X〈sN〉,
then the identifiers appearing in the right-hand side must be of the form X ′〈N〉,
X ′〈sN〉 or X ′〈s sN〉. Any system can be converted into this form by adding
finitely many new equations, e.g. X〈z〉 .= Y 〈s s s z〉 can be rewritten as

X〈z〉 .= X ′〈s z〉 X ′〈sN〉 .= X ′′〈s sN〉 X ′′〈sN〉 .= Y 〈s sN〉

and X〈sN〉 .= Y 〈z〉 can be rewritten as

X〈sN〉 .= X ′〈N〉 X ′〈sN〉 .= X ′〈N〉 X ′〈z〉 .= Y 〈z〉.

We can convert a 1-counter type into a (deterministic) 1-counter automaton,
so that the transition function depends on whether the counter value is zero
(corresponding to a left-hand side of the form X〈z〉) or positive (corresponding
to a left-hand side of the form X〈sN〉). Furthermore, the changes in the counter
value along the identifiers are incorporated by changes in the counter value along
the automaton. For example, take equation X〈sN〉 .= Y 〈N〉. The corresponding
transition from (qX , s, ε) to qY decrements the counter.

For illustration purposes, we show how to construct a 1-counter automaton
accepting L(Tcounter) from Example 2. First, we need to convert the equation
for Y 〈sN〉 into normal form. We add an extra identifier Z and write

X〈z〉 .= &{inc : X〈s z〉, dump: Y 〈z〉} X〈sN〉 .= &{inc : X〈s sN〉, dump: Y 〈sN〉}
Y 〈z〉 .= end Y 〈sN〉 .= !Z〈sN〉.Y 〈N〉
Z〈z〉 .= end Z〈sN〉 .= end

The corresponding automaton has states qX , qY , qZ , one for each type identifier
X,Y , Z, as well as an additional state qend. The outgoing transitions for state qX
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X〈z〉 .= &{inc : X〈s z〉, dump: Y 〈z〉} Y 〈z〉 .= end

X〈sN〉 .= &{inc : X〈s sN〉, dump: Y 〈sN〉} Y 〈sN〉 .= !end.Y 〈N〉

qX qY qZ qend

·,&inc | +

·,&dump |=

s, !c | −

s, !d |= ·, end |=

z, end |=

Fig. 9. A 1-counter automaton for type Tcounter = X〈z〉. The initial configuration is
(qX , 0). Here a transition δ(q, g, a) = (o, q′) is denoted by an arc from q to q′ with label
g, a | o, where g ∈ {z, s}, a ∈ {ε}∪Σ, and o ∈ {=,+,−}. If both g = z and g = s lead to
the same transition, then we use the symbol · to refer to both transitions. All depicted
states are accepting, and non-depicted transitions lead to a non-accepting sink state.

are the same regardless of the counter value: either read &inc, incrementing the
counter and staying in qX ; or read &dump, keeping the counter value and moving
to qY . For state qY , if the counter is zero, we can read end while moving to state
qend. On the other hand, if the counter is non-zero, we can read !d, keeping the
counter value and moving to qZ ; or read !c, decrementing the counter value and
staying in qY . Finally, for state qZ we can only read end and move to state qend.
Whatever we write in the equation for Z〈z〉 is irrelevant, as this configuration is
unreachable. All of this gives the automaton in Fig. 9.

Pushdown types Pushdown systems are similar, but now the behaviour of a
identifier is specified by |∆| + 1 equations, where ∆ is the stack alphabet; one
equation for each possible symbol at the top of the stack, and one equation for
the case that the stack is empty. Accordingly, we use a (deterministic) pushdown
automaton to simulate the stack contents by means of push and pop operations.
The transitions from a state qX and a given stack indicator in {ε} ∪∆ are once
more given by the corresponding equation with X as the type identifier on the
left-hand side. Fig. 10 shows a pushdown automaton accepting L(Tmeta).

2-counter types The translation to 2-counter automata is as for the 1-counter
case, but now the behaviour is specified by one of four different cases, depend-
ing on which of the two counters is zero or non-zero. Accordingly, we use a
(deterministic) 2-counter automaton with the appropriate transition function.

5 From automata to types

The construction in Section 4 explains how we can build an automaton from
a system of equations at some level in the hierarchy. If X〈σ〉 typep, then the

The Different Shades of Infinite Session Types 361



X〈ε〉 .= &{addOut: X〈σ〉, addIn: X〈τ〉}
X〈σS〉 .= &{addOut: X〈σσS〉, addIn: X〈τσS〉, pop: !end.X〈S〉}
X〈τS〉 .= &{addOut: X〈στS〉, addIn: X〈ττS〉, pop: ?end.X〈S〉}

q0

q1

q2

q3 q4
·,⊕addOut | +α
·,⊕addIn | +β

α,⊕pop
| −

β,⊕pop | −

·, !d |=

·, ?d |=

·, end |=

·, !c |=

·, ?c |=

Fig. 10. A pushdown automaton for type Tmeta = X〈ε〉. The initial configuration is
(q0, ε). A transition δ(q, g, a) = (o, q′) is denoted by an arc from q to q′ with label
g, a | o, where g ∈ {ε}∪∆, a ∈ {ε}∪Σ, and o ∈ Op. If all choices of g lead to the same
transition, we use · to stand for all transitions. All depicted states are accepting.

language of the type given by X〈σ〉 is the language accepted by the automaton
with initial configuration (qX , σ) (and similarly for recursive, 1-counter, and 2-
counter types). Conversely, given an automaton which accepts the language of
traces of a type, we can construct the corresponding system of equations that
specifies that type. This allow us to obtain a complete correspondence between
classes of types and different models of computation based on automata theory.
The following result is stronger than previous similar results which only show a
forward implication [9]. Recall that a language is said to be regular if it is the
set of words accepted by some finite-state automaton. We also say that a tree is
regular if it has a finite number of distinct subtrees.

Theorem 2 (Types, traces and automata).

1. T typer iff L(T ) is regular iff treeof(T ) is regular.
2. T type1 iff L(T ) is accepted by a 1-counter automaton.
3. T typep iff L(T ) is a deterministic context-free language.
4. T type2 iff L(T ) is decidable.

We can now address the decidability of the key problems of type formation,
type equivalence and type duality for our various classes of type languages.

Theorem 3 (Decidability results).

1. Problems T typer, T type1 and T typep are all decidable in polynomial time.
2. Problems T 'r U , T '1 U and T 'p U are all decidable.
3. Problems T ⊥r U , T ⊥1 U and T ⊥p U are all decidable.
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We are also able to prove that these problems are undecidable for 2-counter
types, since Theorem 2 also provides a construction from automata to systems
of equations, and the corresponding problems for automata are undecidable.

Theorem 4 (Undecidability results).
Problems T type2, T '2 U and T ⊥2 U are all undecidable.

6 Related work

The first papers on session types by Honda [19] and Takeuchi et al. [38] feature
finite types only. Recursive types were introduced later [20] using µ-notation.
Gay and Hole [15] introduce algorithms for deciding duality and subtyping of
finite-state session types, based on bisimulation. Much of the literature on ses-
sion types, surveyed by Hüttel et al. [23], uses the same approach. The natural
decision algorithms for duality and subtyping presented by Gay and Hole were
shown to be exponential in the size of the types by Lange and Yoshida [27], due
to reliance on syntactic unfolding. Our polytime complexity for recursive type
equivalence follows from the equivalence algorithm for finite-state automata by
Hopcroft and Karp [21], and thus has quadratic complexity in the description
size, improving on Gay and Hole. Lange and Yoshida use an automata-based
algorithm to also achieve quadratic complexity for checking subtyping.

We use a coinductive formulation of infinite session types. This approach has
some connections with the work of Keizer et al. [25] who present session types
as states of coalgebras. Their types are restricted to finite-state recursive types,
but they do address subtyping and non-linear types, two notions that we do not
take into consideration. Our coinductive presentation avoids explicitly building
coalgebras, and follows Gay et al. [17], solving problems with duality in the
presence of recursive types [5,17,28].

We have not addressed the problem of deciding subtyping, but the panorama
is not promising. Subtyping is known to be decidable for recursive types Tr [15]
and undecidable for context-free types Tc [31] or nested types with arity at most
one T1

n [10], hence for pushdown types with one type constructor T1
p (Theorem 1).

The undecidability proof of the subtyping problem for context-free session types
reduces from the inclusion problem for simple deterministic languages, which was
shown to be undecidable by Friedman [13]. That for nested session types reduces
from the inclusion problem for Basic Process Algebra [4], which was shown to
be undecidable by Groote and Hüttel [18]. Given that 1-counter types T1 and
pushdown types with one type constructor T1

p are incomparable (Theorem 1),
the problem of subtyping for 1-counter types remains open.

Dependent session types have been studied for binary session types [40,41],
for multi-party session types [12,29,45] and for polymorphic, nested session types
[9]. Although our parameterised type definitions have some similarities with
definitions in some dependently typed systems, we do not support the connection
between values in messages and parameters in types, and we have not yet studied
how the types that can be expressed in dependent systems fit into our hierarchy.
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Connections between multiparty session types and communicating finite-
state automata have been explored by Deniélou and Yoshida [11] but the in-
vestigation has not been extended to other classes of automata.

Solomon [37] studies the connection between inductive type equality for
nested types and language equality for DPDAs and shows that the equivalence
problem for nested types is as hard as the equivalence problem for DPDAs, an
open problem at the time. We follow a similar approach but define type equiva-
lence as a bisimulation rather than as language equivalence.

Many of the main results in this paper borrow from the theory of automata,
developed in the mid-20th century. Here our standard reference is the book
by Hopcroft and Ullman [22], where the notions of finite-state, pushdown, and
counter automata can be found. 1-counter automata were studied in detail in
Valiant’s PhD thesis [42]. To prove the equivalence between types and automata,
we need to convert automata to satisfying certain properties; similar techniques
have appeared in Kao et al. [24] and Valiant and Paterson [43]. Our proofs
of decidability of type equivalence make use of the corresponding results for
automata [8,21,33,35,36,43]; we specifically mention Sénizergues’ impressive re-
sult on equivalence of deterministic pushdown automata [36], a work which
granted him the Gödel Prize in 2002. Finally, the strict hierarchy results use
textbook pumping lemmas for regular languages (due to Rabin and Scott [33])
and context-free languages (due to Bar-Hillel et al. [3] and Kreowski [26]), as well
as a somewhat less known result for 1-counter automata (due to Boasson [7]).

7 Conclusion

We introduce different classes of session types, some new, others from the lit-
erature, under a uniform framework and place them in n hierarchy. We further
study different type-related problems—formation, equivalence and duality—and
show that these relations are all decidable up to and including pushdown types.

Much remains to be done. From the point of view of programming languages,
one should investigate whether decidability results translate into algorithms that
may be incorporated in compilers. Even if subtyping is known to be undecidable
for most systems “above” that of recursive types, the problem remains open
for 1-counter types, an interesting avenue for further investigation. Our study
of classes of infinite types may have applications beyond session types. One
promising direction is that of non regular datatypes for functional programming
(or polymorphic recursion schemes [30]), such as nested datatypes [6].

We have not addressed the decidability of the type checking problem. Type
checking is known to be decidable for finite types, recursive, context-free and
nested session types. Given that type checking for nested session types is incor-
porated in the RAST language [9], a natural first step would be to investigate
how to translate 1-counter and pushdown processes into that language.
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