A novel hierarchical extreme machine-learning-based approach for linear attenuation coefficient forecasting

Varone, G., Ieracitano, C., Çiftçioğlu, A. Ö., Hussain, T., Gogate, M., Dashtipour, K., Al-Tamimi, B. N., Almoanmari, H., Akkurt, I. and Hussain, A. (2023) A novel hierarchical extreme machine-learning-based approach for linear attenuation coefficient forecasting. Entropy, 25(2), 253. (doi: 10.3390/e25020253)

[img] Text
277436.pdf - Published Version
Available under License Creative Commons Attribution.

1MB

Abstract

The development of reinforced polymer composite materials has had a significant influence on the challenging problem of shielding against high-energy photons, particularly X-rays and γ -rays in industrial and healthcare facilities. Heavy materials’ shielding characteristics hold a lot of potential for bolstering concrete chunks. The mass attenuation coefficient is the main physical factor that is utilized to measure the narrow beam γ -ray attenuation of various combinations of magnetite and mineral powders with concrete. Data-driven machine learning approaches can be investigated to assess the gamma-ray shielding behavior of composites as an alternative to theoretical calculations, which are often time- and resource-intensive during workbench testing. We developed a dataset using magnetite and seventeen mineral powder combinations at different densities and water/cement ratios, exposed to photon energy ranging from 1 to 1006 kiloelectronvolt (KeV). The National Institute of Standards and Technology (NIST) photon cross-section database and software methodology (XCOM) was used to compute the concrete’s γ -ray shielding characteristics (LAC). The XCOM-calculated LACs and seventeen mineral powders were exploited using a range of machine learning (ML) regressors. The goal was to investigate whether the available dataset and XCOM-simulated LAC can be replicated using ML techniques in a data-driven approach. The minimum absolute error (MAE), root mean square error (RMSE), and R2score were employed to assess the performance of our proposed ML models, specifically a support vector machine (SVM), 1d-convolutional neural network (CNN), multi-Layer perceptrons (MLP), linear regressor, decision tree, hierarchical extreme machine learning (HELM), extreme learning machine (ELM), and random forest networks. Comparative results showed that our proposed HELM architecture outperformed state-of-the-art SVM, decision tree, polynomial regressor, random forest, MLP, CNN, and conventional ELM models. Stepwise regression and correlation analysis were further used to evaluate the forecasting capability of ML techniques compared to the benchmark XCOM approach. According to the statistical analysis, the HELM model showed strong consistency between XCOM and predicted LAC values. Additionally, the HELM model performed better in terms of accuracy than the other models used in this study, yielding the highest R2score and the lowest MAE and RMSE.

Item Type:Articles
Additional Information:A. Hussain acknowledges the support of the UK Engineering and Physical Sciences Research Council (EPSRC) Grants Ref. EP/M026981/1, EP/T021063/1, EP/T024917/1. C. Ieracitano is supported by the Programma Operativo Nazionale (PON) “Ricerca e Innovazione” 2014-2020 CCI2014IT16M2OP005 (CUP C35F21001220009 code: I05).
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Dashtipour, Dr Kia
Authors: Varone, G., Ieracitano, C., Çiftçioğlu, A. Ö., Hussain, T., Gogate, M., Dashtipour, K., Al-Tamimi, B. N., Almoanmari, H., Akkurt, I., and Hussain, A.
College/School:College of Science and Engineering > School of Engineering > Electronics and Nanoscale Engineering
Journal Name:Entropy
Publisher:MDPI
ISSN:1099-4300
ISSN (Online):1099-4300
Published Online:30 January 2023
Copyright Holders:Copyright © 2023 The Authors
First Published:First published in Entropy 25(2): 253
Publisher Policy:Reproduced under a Creative Commons License

University Staff: Request a correction | Enlighten Editors: Update this record