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Abstract. Many kidney exchange programs (KEPs) use integer linear programming (ILP)
based on a hierarchical set of objectives to determine optimal sets of transplants.We propose
innovative techniques to remove barriers in existing mathematical models, vastly reducing
solution times and allowing significant increases in potential KEP pool sizes. Our techniques
include two methods to avoid unnecessary variables, and a diving algorithm that reduces
the need to solve multiple complex ILP models while still guaranteeing optimality of a final
solution. We also show how to transition between two existing formulations (namely, the
cycle formulation and the position-indexed chain-edge formulation) when optimizing suc-
cessive objective functions. We use this technique to devise a new algorithm, which, among
other features, intelligently exploits the different advantages of the prior two models. We
demonstrate the performance of our new algorithms with extensive computational experi-
ments modeling the UK KEP, where we show that our improvements reduce running times
by three orders of magnitude compared with the cycle formulation. We also provide sub-
stantial empirical evidence that the new methodology offers equally spectacular improve-
ments when applied to the Spanish and Dutch KEP objectives, suggesting that our approach
is not just viable, but a significant performance improvement, formanyKEPsworldwide.
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1. Introduction
A recent study from Bikbov et al. (2020) has estimated
that, in 2017, around 697.5 million people worldwide
were impacted by impaired kidney function due to
chronic kidney disease (CKD), and over 1.4 million
deaths in 2019 were attributable to CKD according to
the website of the Global Burden of Disease Colla-
borative Network and Institute for Health Metrics
and Evaluation (2019). Despite best efforts by re-
searchers, no cure exists for CKD, and for a patient in
the final stage of CKD (called end-stage renal disease),
the options are limited to either dialysis or transplan-
tation. Of these, dialysis is more expensive and offers
both a worse quality of life and a worse patient life

expectancy of merely five years (see National Kidney
Foundation 2020 and Axelrod et al. 2018). Transplan-
tation is therefore the better option for a patient but
requires that a donor kidney be found. Donor kidneys
come from either a deceased or living donor, with bet-
ter outcomes for patients who receive a transplant
from a living donor (Wolfe et al. 2010, Hart et al. 2017).
However, to receive a kidney from a living donor, a
patient, also called a donor recipient, or simply recipient,
must find a willing and medically compatible donor.
A kidney exchange program (KEP) increases the rate
of living donor kidney transplantation by alleviating
the requirement that recipients find a medically com-
patible donor (Rapaport 1986, Roth et al. 2004). In
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summary, each transplant facilitated by a KEP trans-
forms a recipient’s quality of life, and it is clear that
KEPs truly are life-saving initiatives.

Recipients wishing to join a KEP will pair up with
one or more willing donors, who may or may not
be medically compatible with the recipient. At certain
intervals, a KEP will perform a matching run, taking
all donors and recipients that have entered the system,
creating a graph with the arcs representing all poten-
tial transplants, and determining a set of exchanges to
perform. The simplest exchange is two sets of paired
donors and recipients (d1, r1) and (d2, r2), where d1 is
paired with r1 and d2 is paired with r2. Such an ex-
change is called a two-way exchange, and within this,
donor d1 donates a kidney to recipient r2, and donor
d2 donates a kidney to recipient r1. Due to their nature,
exchanges such as these are called cycles. A cycle con-
taining k such pairs is said to be a cycle of size k, and
is also referred to as a k-way exchange. Some KEPs
allow the participation of nondirected donors. These
donors are willing to donate a kidney to a recipient in
the KEP despite not being paired with any recipient
themselves. Such a donation can then trigger further
donations from a donor whose recipient has received
a kidney transplant. Such a sequence of donations is
called a chain and usually ends with a donation to a
deceased-donor waiting list.

The goal of a KEP is to perform matching runs that
will provide the best outcome for the donors and recip-
ients involved. That is, in each matching run, the KEP
will need to find the “best” set of exchanges, compris-
ing cycles and chains. An obvious desirable goal for a
KEP is to maximize the number of transplants, but
often many solutions are found that each attain the
same maximum number of transplants. Preliminary
experiments showed that even an instance with only 50
recipients and 3 nondirected donors could have over
1,000 distinct solutions with the maximum number of
transplants. This number goes beyond 100,000 if we
consider an instance with 100 recipients and 5 non-
directed donors. Recent publications show that KEPs
across Europe all have slightly differing criteria for
breaking ties among solutions with the maximumnum-
ber of transplants (Biró et al. 2019, Biró et al. 2020). Due
to the high number of potential solutions found, often
this tiebreaking involves multiple criteria. These can
include the number of transplants between a donor
and recipient with identical blood groups, how long a
given recipient has either been on dialysis or waiting in
a KEP, the human leukocyte antigen (HLA) sensitiza-
tion of the recipients, or logistical objectives taking into
account the number of transplantation centers that are
involved, for example.

Some of these criteria can also be combined in a scor-
ing or weighting function, with each potential trans-
plant being given a score based on some predetermined

function. In general, tiebreaking between two sets of
cycles and chains that have the same overall score, or
lead to the same overall number of transplants, for ex-
ample, is often performed hierarchically (also known as
lexicographically) relative to a prioritized sequence of
objectives. These objectives are presented as an ordered
list of functions ( f1, f2, : : : , fn) that must all be optimized
in turn. That is to say, to solve such a problem, a solver
will find a solution x̄ that optimizes the first objective f1,
achieving some optimum f1(x̄) � o1, and then add the
constraint f1(x) � o1 before moving onto the next objec-
tive f2. This is repeated until the last objective fn is
optimized.

If only two-way exchanges are allowed in a KEP,
and all optimality criteria can be combined into a sin-
gle score or weight applied to each potential trans-
plant, then Roth et al. (2005) showed that an optimal
solution can be found in polynomial time by modeling
the problem as a weighted matching problem. How-
ever, even if only three-way exchanges are allowed in
addition to two-way exchanges, Abraham et al. (2007)
proved that it is NP-hard to even determine a set of
exchanges that maximizes the number of transplants.
To determine optimal sets of exchanges, we therefore
use integer linear programming (ILP) techniques,
which are often used in practice to solve such hard
optimization problems.

The first two ILP models for determining an optimal
set of exchanges were the edge formulation and cycle for-
mulation proposed by Roth et al. (2007). Constantino et al.
(2013) introduced compact ILP formulations that Dicker-
son et al. (2016) used to devise the Position-Indexed Cycle-
Edge Formulation (PICEF). Other techniques for solving
such problems include the branch-and-price algorithm
introduced by Abraham et al. (2007) and the recent
branch-and-price-and-cut algorithm proposed by Lam
and Mak-Hau (2020). A survey and comparison of ILP
models for maximizing the number of transplants is
given in Mak-Hau (2017). Further studies have consid-
ered models that maximize the expected number of
transplants for a given failure rate of arcs (see, e.g., Kli-
mentova et al. 2016, Alvelos et al. 2019, Chisca et al.
2019a, McElfresh et al. 2019), methods of maximizing
potential fallback solutions if arcs can fail (Wang et al.
2019), and models that consider a dynamic, or online,
KEP—the evolution of a KEP over time (see, e.g., Dick-
erson et al. 2012, Das et al. 2015, Chisca et al. 2019b, Gao
2019). Other approaches have been used for finding
exchanges, including parameterized complexity (Lin
et al. 2019) and randomized mechanisms (Caragiannis
et al. 2015, Blum et al. 2020). However, in most, if not
all, such studies, the models and techniques are com-
pared solely on the time it takes to solve for a single
objective, namely, determining a set of exchanges that
maximizes the number of transplants. This is a useful
measure for comparing different models but does not
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reflect real-world applications that consider other met-
rics as well (Biró et al. 2019, Biró et al. 2020).

One avenue for increasing the number of trans-
plants arranged by KEPs is to increase the number of
donor-recipient pairs in the pool. Indeed, a solution
obtained by merging two or more distinct pools is
guaranteed to be globally at least as good as (and very
likely better than) the union of solutions obtained on
each individual pool. However, current ILP formula-
tions for KEPs struggle to solve these larger pools,
either because the formulation cannot model certain
aspects of the KEP (e.g., we will see later on that
PICEF cannot model one of the UK objective func-
tions), or because the formulation creates models that
are too large to be tractable by ILP solvers (e.g., the
cycle formulation struggles past 300 donor-recipient
pairs, as shown in our experiments).

1.1. Existing Kidney Exchange Programs
Many existing European KEPs are based on finding
sets of exchanges that are optimal according to hier-
archical sets of objectives. This is the case for the fol-
lowing three KEPs in Europe that are further detailed
in Biró et al. (2019) and in Biró et al. (2020), and we
now describe their objectives as follows.

• The UK KEP, run by NHS Blood and Transplant
(NHSBT) and called the UK Living Kidney Sharing
Scheme (UKLKSS), which optimizes over the following
five objectives hierarchically: (i) maximize the number
of effective two-way exchanges (i.e., the number of
cycles of size 2 plus the number of cycles of size 3
containing an embedded cycle of size 2), (ii) maximize
the number of transplants, (iii) minimize the number
of three-way exchanges, (iv) maximize the number of
cross arcs (cross arcs, which we define formally in Sec-
tion 2, represent a form of “fault tolerance”), and (v)
maximize the sum of the scores (see also Manlove and
O’Malley 2015).

• The Spanish KEP, run by Organización Nacional
de Trasplantes, which optimizes over the following
five objectives hierarchically: (i) maximize the number
of transplants, (ii) maximize the number of distinct
exchanges selected, (iii) maximize the number of cross
arcs, (iv) maximize the number of highly sensitized
recipients selected (these are hard to match recipients;
the precise definition varies across different KEPs), and
(v) maximize the sum of the scores.

• The Dutch KEP, run by Nederlandse Transplanta-
tie Stichting, which optimizes over the following six
objectives hierarchically: (i) maximize the number of
transplants, (ii) maximize the number of transplants
between a donor and recipient with the same blood
group, (iii) prioritize the transplants to hard-to-match
recipients, (iv) minimize the length of the largest cycle
selected, (v) maximize the number of distinct trans-
plant centers involved in any one cycle (in order to

spread the logistical cost of an exchange over a broader
region), and (vi) maximize the longest waiting time
experienced by any selected recipient (in order to give
preference to those recipients who have been waiting
the longest).

We note that the UKLKSS currently limits chains to
have at most three donors, whereas the Dutch KEP
has an upper bound of 4, and the Spanish KEP has no
hard upper bound. In this paper, we will extend this
cap on the number of donors in a chain in the UK to
four. We do this in anticipation of likely future
changes to the UKLKSS that should increase the num-
ber of kidney transplants performed in the United
Kingdom. In such a scenario, the UKLKSS objectives
would have to be revised. Although a new set of
objectives has not yet been ratified by NHSBT, for the
purposes of this paper we will consider the following
set of objectives that we believe could be appropriate
to the setting where longer chains are permitted: (i)
maximize the number of transplants, (ii) minimize the
number of chains of length 4, (iii) minimize the num-
ber of three-way exchanges and chains of length 3,
(iv) maximize the number of cross arcs, and (v) maxi-
mize the sum of the scores. (We anticipate that, in the
presence of longer chains, a revised set of optimality
objectives will not include maximizing the number of
effective two-way exchanges (which is the first crite-
rion in the current set of objectives), as this objective
can reduce the maximum number of transplants that
can be found thereafter.)

Some KEPs, like the United Network for Organ
Sharing in the United States, only use a single objec-
tive when determining an optimal set of exchanges
but do so using a complex weighting formula to take
into consideration factors such as recipient ages, blood
types, and waiting times (see Organ Procurement and
Transplantation Network 2020).

1.2. Our Contribution
After introducing the necessary definitions for KEPs,
we review two well-known ILP models from the liter-
ature in Section 2, namely, the cycle formulation and
PICEF. We point out that the former model usually
involves too many variables in practice, whereas the
latter model cannot efficiently handle some objective
functions that are optimized in real-world KEPs.

In Section 3, we demonstrate how these issues can
be mitigated or avoided. We give two techniques that
dramatically reduce the number of variables in the
two models: (i) a cycle/chain deactivation algorithm
that uses linear programming duality theory to remove
unnecessary variables because they cannot belong to
any optimal assignment, and (ii) a dominated chain
detector that uses problem-specific information to
remove variables that can only worsen the objective
functions. We also introduce a diving algorithm that
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alleviates the requirement to solve complex intermedi-
ary ILP models. We then show that these three techni-
ques can all be utilized together. To the best of our
knowledge, this is the first time that diving in hier-
archical optimization and variable fixing based on
reduced costs are used together. We also show for the
first time that it is possible to transition from PICEF to
the cycle formulation between the optimization of two
objective functions, allowing hybridized algorithms
using both PICEF and the cycle formulation (for solv-
ing the objective functions that cannot be formulated
in PICEF).

Then in Section 4 we show that our approaches are
up to three orders of magnitude faster than the basic
cycle formulation on a large set of instances for the
UKLKSS, and we show that our tools can be adapted
to tackle other European KEPs such as those running
in Spain and in the Netherlands. This is an important
result, as (i) European KEPs are growing in size and
many countries are participating in transnational (mul-
ticountry) KEPs (see Biró et al. 2020); and (ii) most
European KEPs optimize their objective functions hier-
archically, whereas a large number of improvements
recently reported in the literature of the field have only
addressed a single-objective KEP. In Section 5, some
conclusions are drawn and possible future research
directions are outlined.

1.3. Other Kidney Exchange Algorithms in
the Literature

In this paper, we compare our new algorithms against
the cycle formulation and PICEF. Among other al-
gorithms for KEPs that have been proposed in the
literature, we remark that (i) the edge-assignment for-
mulation and the extended edge formulation proposed by
Constantino et al. (2013) were shown by the authors
to be computationally outperformed by the cycle for-
mulation for realistic instances and were not able to
solve any instance with 300 recipients or more; (ii) the
formulation based on the prize-collecting travelling
salesman problem introduced by Anderson et al. (2015)
was empirically shown to be less effective than the
extended edge formulation (Mak-Hau 2017); and (iii)
the promising branch-and-cut-and-price from Lam
and Mak-Hau (2020) did not consider nondirected
donors. Other algorithms were tested in Dickerson
et al. (2016), but, in almost all cases, PICEF turned out
to be the most effective. It is worth observing that
some of the previously mentioned methods work par-
ticularly well under specific conditions, such as when
the cycle size limits or chain length limits are very
large (e.g., the experiments in Constantino et al. 2013
were performed on instances with cycles of size up to
6, and those in Mak-Hau 2017 were performed on
instances with chains of length up to 20, when
limited), or when instances display a high proportion

of compatibility (e.g., the experiments displayed in
tables 1 and 2 from Lam and Mak-Hau 2020 showed
that, in the tested instances, every donor was compati-
ble with 25% of the recipients on average). These con-
ditions, however, are not present in the real-world
scenarios we study, where the cycle size is either limited
to 3 or 4, and where the average proportion of compati-
bility is around 10% (based on UKLKSS data; see
Delorme et al. 2022). We also mention that most of these
algorithms were tailored to the single-objective KEP and
cannot easily be extended to handle hierarchical-
objective KEPs.

2. Background
2.1. Definitions
We will use recipient, denoted by r, to refer to a person
who has chronic kidney disease and is waiting for a
transplant, and donor, denoted by d, to refer to a donor
willing to donate a kidney. This avoids the ambiguity
of using the term patient, as both donors and recipients
may, depending on which exchanges are selected,
undergo surgery and be considered as patients. A donor
in a KEP may either be paired with a recipient, forming
a recipient/donor pair where the donor is only willing to
donate if their paired recipient also receives a kidney,
or they may be a nondirected donor (sometimes called
an altruistic donor) who is willing to donate a kidney
without having an identified paired recipient.

Given a recipient r and a donor d (possibly but not
necessarily from the same recipient/donor pair), we
say that r and d are compatible if the donation of a kid-
ney from d to recipient r is deemed medically viable.
Otherwise, we say that r and d are incompatible. Incom-
patibilities may arise from blood typing, tissue typing,
or any of a number of other reasons as determined by
clinicians.

We represent compatibilities by a compatibility graph,
a directed graph G � (V,A) whose vertex set V contains
one vertex for each nondirected donor, one vertex for
each recipient, and a dummy sink vertex S, which rep-
resents a donation being made to a deceased-donor
waiting list, although it can also represent a bridge don-
ation where the donor may act as a nondirected donor
in the next matching run. By associating only recipients
to vertices, we allow for scenarios in which a recipient
is paired with multiple donors. This can occur as differ-
ent donors may be compatible with a given recipient,
and so pairing with multiple donors may improve a
recipient’s chance of being matched.

The arc set A of G contains all the arcs (u, v) where
a donor corresponding to u (either the nondirected
donor u, or a paired donor of the recipient u) is com-
patible with the recipient v. For each u (u ∈ V \ {S}), as
every donor corresponding to u can potentially trigger
a bridge donation or a donation to a deceased-donor
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waiting list, A also contains the arc (u, S). Where a
recipient r1 has two (or more) donors, both of whom
are compatible with a common recipient r2, we intro-
duce parallel arcs. In certain scenarios, each arc may
also be given a score or weight that is associated with
the corresponding transplantation.

Given this definition of a compatibility graph, for
any vertex v representing recipient r, we will use recip-
ient v to refer to r, and donor v to refer to any of the
donors paired with recipient r. Note that any ambigu-
ity in selecting the correct donor can be ascertained if
an arc leaving v is selected, or is irrelevant if no arc
leaving v is selected.

A feasible matching M is a subgraph of G in which
each nondirected donor has no incoming arc and one
outgoing arc, and each recipient has exactly one out-
going and one incoming arc. A matching can be decom-
posed into connected subgraphs called exchanges. These
exchanges come in two particular types—cycles and
chains—which we define now. A cycle is a subgraph of
M that contains recipients r1, r2, : : : , rk, for some k ≥ 2,
such that there is an arc from ri to ri+1 for i ∈ {1, 2, : : : ,
k− 1}, as well as one arc from rk to r1. Such a cycle has
length k and is denoted by [r1, r2, : : : , rk]. Upper bounds
on the lengths of cycles in KEPs are common, and, to
maintain the integrity of a KEP, all transplants relating
to a given cycle should be performed simultaneously. A
chain is a directed path in M starting at a nondirected
donor d, containing a further k recipients r1, r2, : : : , rk, for
some k ≥ 0, and terminating at S. Such a chain is said to
have length k + 1 (i.e., we count the number of arcs
when determining the length of a chain) and counts as
k + 1 transplants; it is denoted by d→ r1 → r2 →⋯
→ rk → S. Note that chains of length 1 contain a single
arc from a nondirected donor directly to S. Whereas it
would seem that such a chain (corresponding to a trans-
plantation from a nondirected donor to a recipient on a
deceased-donor waiting list) is not strictly related to a
KEP, these chains are included in the modeling to allow
a fair comparison between alternative solutions (e.g.,
between one solution comprising a chain of length 3
and another solution comprising a chain of length 1 and
a two-way exchange). This will be particularly impor-
tant for the cycle formulation that we introduce in Sec-
tion 2.2.

Unlike cycles, chains can be performed nonsimultane-
ouslywhile still ensuring that eachdonor does not donate
a kidney until after their paired recipient has received a
kidney, so limits on their lengths tend to bemore relaxed.
Limits to chain lengths are still often enforced, as the
dynamic nature of a KEP means that a recipient may be
better off waiting for a later matching run rather than
being toward the end of a very long chain.

One important feature of the UKLKSS is the concept
of a cross arc. Given an exchange consisting of a set of
vertices Ṽ and a set of arcs Ã, a cross arc is any arc that

is between two vertices of Ṽ but is not in Ã. Such an
arc adds robustness to the exchange. If part of the
exchange fails, either because a donor or recipient was
unable or unwilling to proceed with the procedure, or
an identified transplant was subsequently determined
to be incompatible, then a cross arc may allow part of
this exchange to continue. Such fallback options are
useful, as they are easy to detect, do not require any
reoptimization, and also guarantee that any recipients
who are not in the failed part of an exchange are still
matched. This is important for the well-being of both
donors and recipients, as offering and then withdraw-
ing a donation is traumatic for people in such situa-
tions. We detail in Figure 1 all the possible cross arcs
in cycles of size 3 and chains of length 3 and 4. Gray
nodes represent nondirected donors, and white nodes
are used for recipient/donor pairs.

Let us consider for example that chain A→ X→ Y
was selected in a matching, and say that recipient/
donor pair X was unable to participate in the ex-
change because the health of the donor would not
allow him or her to go through a surgical intervention.
Then, cross arc A→ Y would still allow recipient/
donor pair Y to be matched.

We introduce in Example EC.1 of the e-companion
a small-size KEP instance that is used throughout the
paper to describe the behaviors of each of our
algorithms.

2.2. Cycle Formulation
The cycle formulation for KEPs was proposed by Roth
et al. (2007). Even though the name refers explicitly to
“cycles,” the formulation can handle chains as well. In
the rest of the paper, we use the original name cycle
formulation when referring to the model, and we use
cycles/chains when we refer to a generic variable of the
model that can be either a cycle or a chain. If one of
the techniques that we propose is specific to one of the

Figure 1. Example of Cross Arcs (Dotted Lined) in Cycles of
Size 3 and Chains of Length 3 and 4
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two structures, then we clearly identify it by only
using the term chain or cycle.

In the cycle formulation, a list of every feasible
cycle/chain needs to be found beforehand. As our
approach is tailored primarily to the UK KEP, we
assume that every feasible cycle has size at most 3
(i.e., it involves at most three recipient/donor pairs),
and that every feasible chain has length at most 4 (i.e.,
it involves exactly one nondirected donor and at most
three recipient/donor pairs). Let us consider the fol-
lowing notation:

• N and R are the set of nondirected donors and
recipient/donor pairs, respectively.

• C is the set of feasible cycles/chains, CXL is the set
of feasible chains of length 4, and CL is the set of feasible
cycles/chains of length 3.

• For a cycle/chain c, we call B(c) the number of cross
arcs relative to c, S(c) the sum of the arc scores included
in c, and V(c) the set of vertices (either in N or R) that
belong to c.

Let us also introduce binary decision variables xc
that take value 1 if cycle/chain c is selected, and 0 oth-
erwise (c ∈ C), and let us consider the following objec-
tive functions:

max f1(x) �
∑
c∈C

|V(c)| xc, (1)

min f2(x) �
∑
c∈CXL

xc, (2)

min f3(x) �
∑
c∈CL

xc, (3)

max f4(x) �
∑
c∈C

B(c) xc, (4)

max f5(x) �
∑
c∈C

S(c) xc: (5)

Let us also denote by KEPfk the problem of optimizing
objective function fk (k � 1, : : : , 5), and let us define
z̄1, : : : , z̄5 to be the optimal objective values obtained
when solving KEPf1 , : : : , KEPf5 , respectively. The generic
cycle model (called FCk hereafter) to solve KEPfk is as fol-
lows:

(FCk ) z̄k �min=max fk(x) (6)

s:t:
∑

c∈C:v∈V(c)
xc ≤ 1, ∀v ∈N ∪R, (7)

fk′ (x) � z̄k′ , ∀k′ � 1, : : : ,k− 1, (8)
xc ∈ {0, 1}, ∀c ∈ C: (9)

The objective functions in (1)–(5) maximize the number
of transplants, minimize the number of chains of size 4
selected, minimize the number of cycles/chains of size
3 selected, maximize the number of cross arcs in the
selected cycles/chains, and maximize the sum of the
arc scores in the selected cycles/chains, respectively.
Constraints (7) ensure that donors and recipients
appear in at most one of the selected cycles/chains,

and Constraints (8) make sure that optimal objective
values z̄1, : : : , z̄k−1 found at previous iterations are not
degraded when optimizing objective function fk(x). We
report in Section EC.1.1 of the e-companion the outputs
obtained by the cycle formulation with an ILP solver
when applied to Example EC.1.

2.3. Position-Indexed Chain-Edge Formulation
The Position-Indexed Chain-Edge Formulation (PICEF)
for KEPs was proposed by Dickerson et al. (2016). In
the following, we present a different (but equivalent)
description of PICEF to the one proposed by Dickerson
et al. (2016). The main idea behind PICEF is to handle
cycles and chains in two separate structures. Although
there is still a complete enumeration of every feasible
cycle, each chain is now represented by a path in a
graph G′ with 3|R| + |N | + 1 nodes. We differentiate
each of the three copies of set R with an index ℓ, where
ℓ � 1, 2, 3. A path is initiated by a nondirected donor
and ends with the dummy node S. The graph G′ is com-
posed of four subgraphs:

• Subgraph 1 is a copy of the compatibility graph
that only includes the arcs coming from the nondir-
ected donors. Additional arcs link each nondirected
donor to the sink node S.

• Each of subgraphs 2 and 3 is a copy of the compati-
bility graph that only includes the arcs coming from
“activated” recipient/donor pairs. An activated recipi-
ent/donor pair in subgraph 2 (respectively, 3) is a pair
that has at least one incoming arc in subgraph 1
(respectively, 2). Additional arcs link each activated
recipient/donor pair to the sink node S.

• Subgraph 4 only contains arcs that link each acti-
vated pair to the sink node S.

We provide in Section EC.1.2 of the e-companion
the graph required to model the chain structure in
PICEF for Example EC.1.

Let us consider the following additional notation:
• C′ is the set of feasible cycles and C′L is the set of fea-

sible cycles of size 3.
• G′ � (V′,A′) is the graph structure required to

model the chains in PICEF.
• Vertex set V′ contains the |N | nondirected donors,

three copies of the recipients, and the sink node S to
model the end of the chain.

• A′ is the set of arcs. We call δ+(v) (respectively,
δ−(v)) the subset of arcs emanating from (respectively,
entering) vertex v.

•A′
m contains all the arcs emanating fromm—in thefirst

subgraph if m is an altruistic donor—in the last three sub-
graphs, if m is a recipient/donor pair. In other words, A′

m� {δ+(v1) ∪ δ+(v2) ∪ δ+(v3)}, where v1, v2, and v3 are the
first, second, and third copyof recipientm, respectively.

By introducing a binary variable yuv taking value 1
if arc (u, v) is selected and 0 otherwise, KEPf1 can be

Delorme et al.: Hierarchical Optimization in Kidney Exchange Programs
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modeled as follows with PICEF:

(FP1 ) max f1(x,y) �
∑
c∈C′

|V(c)| xc +
∑

(u,v)∈A′
yuv (10)

s:t:
∑

c∈C′:m∈V(c)
xc +

∑
(u,v)∈A′

m

yuv ≤ 1, ∀m ∈N ∪R,

(11)

∑
(v,w)∈δ+(v)

yvw − ∑
(u,v)∈δ−(v)

yuv �
1 if v ∈N ,
−|N | if v � S,
0 otherwise,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(12)
xc ∈ {0, 1}, ∀c ∈ C′, (13)
yuv ∈ {0, 1}, ∀(u,v) ∈A′: (14)

The objective function in (10) maximizes the number
of transplants, whereas Constraints (11) make sure
that nondirected donors do not initiate more than one
chain, and that recipients appear in at most one of the
selected cycles or chains. The constraints in (12) are
the flow conservation constraints. The objective func-
tions f2(x,y), f3(x,y), and f5(x,y), for KEPf2 , KEPf3 , and
KEPf5 , respectively, could also easily be handled by
PICEF:

• If we denote by A′
XL the set of arcs in the fourth

subgraph, then the second objective function in PICEF
becomes min f2(x,y) �∑

(u,v)∈A′
XL
yuv.

• If we denote by A′
L the set of arcs in the third sub-

graph entering node S, then the third objective function
in PICEF becomes min f3(x,y) �∑

c∈C′Lxc +
∑

(u,v)∈A′
L
yuv.

• If we denote by S(u, v) the score of arc (u, v), and if
that score is set to 0 for the arcs entering node S, then
the fifth objective function in PICEF becomes max f5(x,
y) �∑

c∈C′S(c) xc +∑
(u,v)∈A′S(u,v) yuv.

Modeling f4(x,y) with PICEF is more challenging, as
there is no trivial way to count the number of cross
arcs in a chain. One possibility is to generate a differ-
ent graph structure for each nondirected donor, so
that we can keep track of all the recipients included in
a given chain and, thus, determine the number of
cross arcs. However, preliminary experiments showed
that such an approach is not competitive, as it dramat-
ically increases the number of variables and con-
straints involved in PICEF and, by extension, the time
required to solve the model to optimality.

3. New Algorithms for Hierarchical
Optimization in KEPs

In this section, we describe several algorithms aimed
at speeding up algorithms for KEPs that utilize hier-
archical objective functions, with specific reference to
the UK set of objective functions f1, : : : , f5. Since f4 max-
imizes the number of cross arcs in the selected cycles
and chains, and as PICEF cannot track cross arcs
in chains without adding new constraints and varia-
bles, the cycle formulation is the most appropriate

starting point. Thus, the first three subsections present
improvements for the cycle formulation, whereas the
last subsection introduces a hybrid approach using
both the improved version of the cycle formulation
and an improved version of PICEF.

3.1. Cycle/Chain Deactivation
The main drawback of the cycle formulation is its
large number of variables: there are O(|R|3) cycles
when the cycle size is at most 3, and O(|N ||R|3) chains
when the chain length is at most 4. The resulting ILP
models become intractable (because of their size) for
the instances we aim to solve, where |R| ∈ [50,1;400]
and |N | � q|R| with q ∈ [0:01,0:20]. After introducing
the necessary theory, we describe our new cycle/
chain deactivation algorithm, a technique that uses
the information obtained after solving the continuous
relaxation of the cycle formulation to set the value of
some cycles/chains variables to 0.

3.1.1. Theoretical Foundations. We recall first a useful
property of linear programming (LP) that exploits an
optimal solution of an LP problem to deliver a bound
on the objective value of another closely related LP
problem. Consider the LP problem given below for
which an optimal solution has been found, and, there-
fore, its optimal basic-nonbasic partition is known
(see Dantzig 1963 for an introduction to linear pro-
gramming):

max cTBxB + cTNxN
s:t: BxB +NxN � b,

xB ≥ 0, xN ≥ 0:
(15)

The dual problem associated with (15) has the fol-
lowing form:

min bTy
s:t: BTy + sB � cB,

NTy + sN � cN,
sB ≤ 0, sN ≤ 0,

(16)

where sB and sN are dual slack variables. We are con-
cerned with a solution of a new LP problem in which
one of the nonbasic variables in (15), namely, xj, has
been given a new nonzero lower bound, namely, xj ≥ δ:

max cTBxB + cTNxN
s:t: BxB +NxN � b,

xB ≥ 0, xN ≥ 0, xj ≥ δ:

(17)

The following result gives a bound on the objective
value of (17), assuming that the model is feasible.

Lemma 1. Let ẑ and ẑδ be the optimal objective values of
(15) and (17), respectively, and let ŷ and ŝ be the corre-
sponding dual optimal solution of (16). The following
inequality holds:

ẑδ ≤ ẑ + ŝjδ, (18)
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where ŝj is the value of the reduced cost (dual slack variable)
associated with nonbasic variable xj at the optimal solution
of (15).

Proof. Observe that by substituting the variable x̃j �
xj − δ (and keeping all remaining nonbasic variables
unchanged, i.e., x̃i � xi for i≠ j), we may rearrange
(17) as follows:

max cTBxB + cTNx̃N + cjδ
s:t: BxB +Nx̃N � b̃ � b−Njδ,

xB ≥ 0, x̃N ≥ 0,
(19)

where Nj denotes column j of matrix N, that is, the col-
umn corresponding to the variable xj that was given a
new lower bound δ.

The dual problem associated with (19) has the fol-
lowing form:

min b̃Ty + cjδ
s:t: BTy + sB � cB,

NTy + sN � cN,
sB ≤ 0, sN ≤ 0

(20)

and it has the same (dual) feasibility constraints as (16).
From the Weak Duality Theorem, any feasible solution
(y, s) of (20) provides an upper bound for the optimal
objective value of (17) (and its equivalent reformulation
(19)). In particular, this holds for the (dual) optimal sol-
ution (ŷ, ŝ) of (16), which remains dual feasible for (20).
We thus arrive at the following inequality:

ẑδ ≤ b̃Tŷ + cjδ: (21)

Substituting b̃ � b−Njδ and using strong duality for
the pair (15) and (16), which guarantees that ẑ � bTŷ,
we may rewrite Inequality (21) as follows:

ẑδ ≤ (b−Njδ)Tŷ + cjδ

� bTŷ + (cj − ŷTNj)δ
� ẑ + ŝjδ,

which completes the proof. w

The following lemma shows howwe canuse this result
to facilitate our cycle/chain deactivation algorithm.

Lemma 2. Let ẑ be the optimal objective value of (15), let ŷ
and ŝ be the corresponding dual optimal solution of (16),
and let z^ δ be the optimal objective value of Problem (17) in
which the domain of variables xB, xN, and xj is reduced to
nonnegative integers.

1. If z̆δ exists, (i.e., if (17) has at least one integer solution),
then the following inequality holds:

z̆δ ≤ ẑ + ŝjδ: (22)

2. For an integer value T and a nonbasic variable xj such
that ẑ + ŝj < T ≤ ẑ, any integer solution for (17) with δ � 1
will have an objective value z̆δ�1 < T.

Proof. The first claim holds, as the objective value of
an ILP model is always bounded by the objective
value of its LP-relaxation (i.e., z̆δ ≤ ẑδ), and Lemma 1
proved that z̆δ ≤ ẑ + ŝjδ. Concerning the second claim,
if the integer version of (17) is infeasible, then we are
already done, as there are no integer solutions. Other-
wise, we know from the first claim that z̆δ�1 ≤ ẑ + ŝj,
and from our assumption that ẑ + ŝj < T. w

In the following, for an integer T ≤ ẑ, we group in a
set CR every variable xj whose reduced cost ŝj is
strictly lower than T − ẑ. From Lemma 2, we can then
be certain that any integer solution that includes one
unit of a variable from CR must have objective value
strictly lower than T. As a result, if we denote by z̆
the optimal objective value of Problem (15) in which
the domain of the variables is reduced to nonnegative
integers (which corresponds to z̆δ�0, the optimal objec-
tive value of Problem (17) where δ is set to 0), and if z̆
is equal to T, then we must have xj � 0 ∀j ∈ CR in any
optimal solution.

We point out that variants of variable fixing techni-
ques have been mentioned in various ILP contexts
before. For example, in section 4.4 of Garfinkel and
Nemhauser (1972) for fixing basic variables in branch-
and-bound approach, in proposition 2.1 in Nemhauser
andWolsey (1988) and in section 10.4 ofWolsey (1998),
where a similar approach was applied in the context of
Lagrangian relaxation for uncapacitated facility loca-
tion. In those cases, however, the variable fixing techni-
que was integrated within a particular combinatorial
optimizationmethod, and no rigorous theoretical justi-
fication of themethodologywas provided.

3.1.2. Application Using Lemma 2, our cycle/chain
deactivation algorithm now looks for solutions of a
given value T and deactivates (i.e., sets the associated
variables to 0) all cycles/chains whose reduced cost ŝi is
beyond a certain threshold (i.e., below or above that
threshold, depending onwhether we aremaximizing or
minimizing the objective function). In the following, we
use L(FCk ) to refer to both the continuous relaxation of FCk
and the optimal objective value of the continuous relax-
ation problem, where k � 1, : : : , 5, depending on the
objective function f1, : : : , f5 that we are optimizing.
Recall that, for k > 1, model FCk includes the constraints
fk′ (x) � z̄k′ , where k′ � 1, : : : ,k− 1. After solving L(FC1 )
with the complete set of cycles/chains, our goal is to
find an integer solution of objective value T1 � 	L(FC1 )

(which is a valid upper bound because it is impossible
to reach an integer solution of value 	L(FC1 )
 + 1).
Toward this aim, we gather in a set C1 all cycles/chains
whose reduced cost is less than or equal to T1 − L(FC1 ) −
ε (where ε is set to a very small value and is used to
avoid precision errors), and restrict the FC1 model by
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setting the variables associatedwith these cycles/chains
to 0. Indeed, according to Lemma 2, selecting one or
more cycles/chains in C1 would imply an objective
value for f1 strictly smaller than T1. We then solve FC1 . If
no solution of value T1 is found, then we know that it is
impossible to reach an integer solution with objective
value T1, so T1 − 1 becomes a valid upper bound for f1.
Thus, we decrease T1 by one unit, update C1 (i.e., by
removing from C1 any cycle/chain whose reduced cost
is now greater than the new value of T1 − L(FC1 ) − ε),
reactivate the variables associated with the cycles/
chains that are no longer in C1, and iterate. Once a solu-
tion of objective value T1 is found, it is guaranteed to
be optimal as it matches a valid upper bound. Whereas
the same approach can be used for FC5 (provided that the
scores are integers) and FC4 , a few adaptations are
required for the case of FC2 , which is a minimization
problem: we try instead to find an integer solution of
objective value T2 � �L(FC2 )�, and we gather in C2 all
cycles/chains whose reduced cost is greater than or
equal toT2 − L(FC2 ) + ε. The same applies to FC3 .

Note that such an approach can also be used to
reduce the number of variables of ILP models for
single-objective KEPs or for other combinatorial opti-
mization problems such as the bin packing problem
(see, e.g., Delorme and Iori 2020). It was also proven
to be useful in tailored branch-and-bound algorithms
(see, e.g., Balas and Christofides 1981, Carpaneto et al.
1995, Irnich et al. 2010). This technique is useful if the
two following criteria are met: (i) the difference
between the optimal objective value z̄k and the bound
derived from the continuous relaxation value L(FCk ) is
small (as an ILP model needs to be solved every time
the bound is updated), and (ii) the number of varia-
bles that can be deactivated because of their reduced
cost is significant. Empirically, we observed that these
two criteria were met when optimizing f1, : : : , f4: in the
(real-world inspired) instances we tested, z̄1 � 	L(FC1 )

in 99% of the cases and 99.2% of the variables could
be deactivated after optimizing f1. As a result, we
used the cycle/chain deactivation algorithm to opti-
mize the first four objective functions, and then
switched to a standard cycle formulation to optimize
f5. Preliminary tests confirmed that using the cycle/
chain deactivation algorithm for f5 was counterpro-
ductive, as 	L(FC5 )
 can be far away from z̄5, and only
few cycles/chains are still activated after solving FC4 .
We remark that one could design less realistic instan-
ces in which the gap between z̄1 and 	L(FC1 )
 could
also be very large (e.g., using λ exact copies of Exam-
ple EC.1 with no compatibilities between nodes of dif-
ferent copies results in a gap of λ � 	L(FC1 )
 − z̄1).

An overview of the overall cycle deactivation algo-
rithm is presented in Algorithm 1, where OPT(FCk )
denotes the optimal objective value of model FCk . We

point out that FCk is a simplified notation, as the model
now depends on the set of cycles/chains that were
deactivated at previous steps. We save the values
OPT(FCk ) in a variable labeled z̈k. We will prove in
Theorem 1 that those are in fact the optimal objective
values z̄k of FCk without any deactivation. The outputs it
obtains with an ILP solver when applied to Example EC.1
are presented in Section EC.1.3 of the e-companion.

Algorithm 1. (Cycle/Chain Deactivation Algorithm)
1: T1 :� 	L(FC1 )

2: Deactivate cycles/chains C1 with reduced cost ŝ1 ≤
T1 − L(FC1 ) − ε and let z̈1 :�OPT(FC1 )

3: if z̈1 ≠ T1 then T1 :� T1 − 1, reactivate cycles/chains
C1, and go back to step 2

4: T2 :� �L(FC2 )�
5: Deactivate cycles/chains C2 with reduced cost ŝ2 ≥
T2 − L(FC2 ) + ε and let z̈2 :�OPT(FC2 )

6: if z̈2 ≠ T2 then T2 :� T2 + 1, reactivate cycles/
chains C2, and go back to step 5

7: T3 :� �L(FC3 )�
8: Deactivate cycles/chains C3 with reduced cost ŝ3 ≥
T3 − L(FC3 ) + ε and let z̈3 :�OPT(FC3 )

9: if z̈3 ≠ T3 then T3 :� T3 + 1, reactivate cycles/chains
C3, and go back to step 8

10: T4 :� 	L(FC4 )

11: Deactivate cycles/chains C4 with reduced cost ŝ4 ≤

T4 − L(FC4 ) − ε and let z̈4 :�OPT(FC4 )
12: if z̈4 ≠ T4 then T4 :� T4 − 1, reactivate cycles/chains

C4, and go back to step 11
13: z̈5 :�OPT(FC5 )
We now establish the correctness of Algorithm 1.

Theorem 1. At the termination of Algorithm 1, variable z̈k
has value z̄k, for each k � 1, 2, : : : , 5.

Proof. First, we observe that Algorithm 1 always
yields a feasible solution. Let x̄ denote an optimal sol-
ution for the hierarchical kidney exchange problem
with objective values (z̈1, z̈2, z̈3, z̈4, z̈5). Let us assume
that there is an instance in which the solution found
by Algorithm 1 is feasible but not optimal; that is,
there exists a k such that z̈k ≠ z̄k. If there is more than
one such k for this instance, then pick the smallest one
(i.e., pick k such that z̈k ≠ z̄k and z̈k′ � z̄k′ , k′ � 1, : : : ,
k− 1). This is only possible if at least one variable that
was needed to reach a solution with objective value z̄k
was deactivated at stage k or before. Let us call that
variable xj.

Let us first assume that xj was deactivated at stage
k: according to Lemma 2, selecting one unit of any
cycle/chain included in Ck would lead to an objective
value that is strictly worse than z̈k. However, since z̈k
is itself strictly worse than z̄k, this is a contradiction.

Let us now assume that xj was deactivated at stage k′
for some k′ < k: as k is minimal, z̄k′ � z̈k′ . According to
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Lemma 2, selecting one unit of any cycle/chain included
in Ck′ would prevent fk′ from being at its optimal objec-
tive value z̄k′ . Recalling that fk′ (x) � z̄k′ is a constraint in
FCk , setting xj � 1 would render any solution of FCk infea-
sible. This is again a contradiction. w

3.2. Diving Algorithm
After preliminary tests on Algorithm 1, we observed
that steps 2 and 5 took most of the computational effort.
This is not surprising, as only few cycles/chains are
deactivated at these steps, and solving exactly an ILP
with many variables can be time-consuming.

However, the only ILP solution that is relevant for
the problem is the one solved at step 13, as it is the
one that gives the set of cycles and chains that should
be selected to optimize the five objective functions.
The other four ILP models only give binary indica-
tions about whether a solution of objective value Tk
exists, where k � 1, 2, 3, 4.

The idea of the diving algorithm is to first make the
assumption that a solution of objective value Tk exists
(where k � 1, 2) and, thus, to skip the ILP models of
steps 2 and 5 necessary to obtain z̈1 and z̈2. The diving
algorithm may backtrack and correct that assumption
in case the model of step 8 is infeasible. Preliminary
tests showed that it was not expedient to extend the
assumption to T3, as it involved significantly more
backtracks. An overview of the diving algorithm is
presented in Algorithm 2.

Algorithm 2 (Diving Algorithm)
1:Λ2 :� 0,Λ3 :� 0

. Keep track of the number of failures
2: T1 :� 	L(FC1 )
 . Assumption 1: z̈1 � T1
3: Deactivate cycles/chains C1 with reduced cost

ŝ1 ≤ T1 − L(FC1 ) − ε
4: T2 :� �L(FC2 )� . Assumption 2: z̈2 � T2
5: ifΛ2 < Λ̄2 then . If we trust Assumption 1
6: Deactivate cycles/chains C2 with reduced cost

ŝ2 ≥ T2 − L(FC2 ) + ε
7: else . If we doubt Assumption 1
8: z̈2 :�OPT(FC2 )

. Solve FC2 exactly, with no C2 cycle/chain
deactivation

9: if FC2 is infeasible then
.Assumption 1 was wrong

10: Λ2 :� 0,T1 :� T1 − 1, reactivate cycles/chains
C1, and go back to step 3

.UpdateAssumption 1
11: else . Assumption 1 was right
12: Deactivate cycles/chains C2 with reduced cost

ŝ2 ≥ z̈2 − L(FC2 ) + ε
13: end if
14: end if
15: T3 :� �L(FC3 )�

16: ifΛ3 < Λ̄3 then . If we trust Assumption 2
17: Deactivate cycles/chains C3 with reduced cost

ŝ3 ≥ T3 − L(FC3 ) + ε
18: z̈3 :�OPT(FC3 )
19: if FC3 is infeasible or z̈3 > T3 then
20: T3 :� T3 + 1, Λ3 :�Λ3 + 1, reactivate cycles/

chains C3, and go back to step 16
21: end if
22: else . If we doubt Assumption 2
23: z̈3 :�OPT(FC3 )

. Solve FC3 exactly, without C3 cycle/chain
deactivation

24: if FC3 is infeasible then
.Assumption 2 was wrong

25: Λ3 :� 0,Λ2 :�Λ2 + 1,T2 :� T2 + 1, reactivate
cycles/chains C2, and go back to step 5

26: else . Assumptions 1 and 2 were right
27: Deactivate cycles/chains C3 with reduced

cost ŝ3 ≥ z̈3 − L(FC3 ) + ε
28: end if
29: end if
30: T4 :� 	L(FC4 )
 . Step 4 is unchanged
31: Deactivate cycles/chains with reduced cost ŝ4 ≤

T4 − L(FC4 ) − ε and set z̈4 :�OPT(FC4 )
32: if z̈4 ≠ T4 then T4 :� T4 − 1 and go back to step 31
33: z̈5 :�OPT(FC5 )

Algorithm 2 starts by solving L(FC1 ), L(FC2 ), and L(FC3 ),
and deactivates the corresponding sets of cycles/chains
C1, C2, and C3 (steps 2–6, 15–17). Note that all three
relaxations will be feasible, possibly in contrast to the
respective integer problems. It then solves FC3 and tries
to find an integer solution where the first three objec-
tive function values are equal to T1,T2, and T3 (step
18). If it succeeds, thenwe know that the three assump-
tions were correct. It then solves the fourth objective
function, as in the cycle/chain deactivation algorithm
(steps 30–32) and the fifth as in the cycle formula-
tion (step 33). If it fails, then at least one of the three
assumptions that z̈j � Tj, j ∈ {1, 2, 3}, was wrong. The
algorithm starts by trying to correct the third assump-
tion. To that end, it records the failure in the variable
Λ3, increases T3 (step 20), updates C3, and tries again
(steps 17–18).

Once it has reached a given number of failures Λ̄3,
the algorithm solves FC3 without deactivating any
cycle/chain in C3 and without any consideration on
the bound T3 (step 23). If FC3 is feasible, then we know
that the first two assumptions were correct. The algo-
rithm deactivates again the appropriate cycles/chains
in C3 (step 27) and moves on to the fourth objective
function. If FC3 is infeasible, then the algorithm tries to
correct the second assumption. It records the failure in
the variable Λ2, increases T2 (step 25), updates C2 (step
6), and solves L(FC3 ) again (step 15).
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Once it has reached a given number of failures Λ̄2,
the algorithm solves FC2 without deactivating any
cycle/chain in C2 and without any consideration on the
bound T2 (step 8). If FC2 is feasible, then the algorithm
deactivates again the appropriate cycles/chains in C2
(step 12) and moves on to the third objective function.
If FC2 is infeasible, then the algorithm decreases T1 (step
10), updates C1 (step 3), and solves L(FC2 ) again (step 4).
The performance of Algorithm 2 highly depends on
the allowed number of failures Λ̄2 and Λ̄3. If the
parameters have values that are too small, then the
algorithm may have to go to steps 8 and 23 and solve
ILP models with no cycle/chain deactivation when this
was not necessary. If the parameters have values that are
too large, then the algorithm may have to loop many
times in steps 17–21 (because of Λ̄3) and in steps 6,
15–29 (because of Λ̄2) before realizing that Assumptions
1 and 2 were wrong. Even though finding the best val-
ues for Λ̄2 and Λ̄3 is itself an (instance-dependent) opti-
mization problem, we empirically determine that, in our
case, setting both parameters to 1 gave good perform-
ance outcomes. The outputs obtained by Algorithm 2
with an ILP solver when applied to Example EC.1 are
presented in Section EC.1.4 of the e-companion.

We now establish the correctness of Algorithm 2.
Theorem 2. At the termination of Algorithm 2, variable z̈k
has value z̄k, for each k � 1, 2 , . . . , 5.

Proof. First, let us observe that Algorithm 2 behaves
like Algorithm 1 when optimizing objective functions
f4 and f5. Therefore, we only need to prove the correct-
ness of Algorithm 2 for f1, f2, and f3. Let us consider
the six following cases:

• z̄1 � 	L(FC1 )
, z̄2 � �L(FC2 )�, z̄3 � �L(FC3 )�. Then Algo-
rithm 2 behaves exactly as Algorithm 1 and terminates
with an optimal solution according to Theorem 1.

• z̄1 � 	L(FC1 )
, z̄2 � �L(FC2 )�, z̄3 < �L(FC3 )� + Λ̄3. Then
Algorithm 2 optimizes objective function f3 exactly z̄3 −
�L(FC3 )� times before finding an optimal solution with
objective value z̄3. The algorithm cannot terminate
with a suboptimal solution as (i) if T3 � z̄3, then only
the cycles/chains that would prevent reaching objec-
tive value f3(x) � z̄3 or fulfilling constraints f1(x) � z̄1 or
f2(x) � z̄2 are deactivated; and (ii) if T3 < z̄3, then it is
impossible to reach a solution with objective value
f3(x) � T3, so the algorithm has to update T3 until it is
equal to z̄3.

• z̄1 � 	L(FC1 )
, z̄2 � �L(FC2 )�, z̄3 ≥ �L(FC3 )� + Λ̄3. Then
Algorithm 2 optimizes objective function f3 exactly
Λ̄3 + 1 times before finding an optimal solution with
objective value z̄3 (Λ̄3 unsuccessful attempts with deac-
tivated cycles/chains C3 and one attempt without any
deactivated cycles/chains in the set). The algorithm
cannot terminate with a suboptimal solution as (i) if
T3 < z̄3, then it is impossible to reach a solution with

objective value f3(x) � T3; and (ii) if there is no consid-
eration on the bound T3, then only the cycles/chains
that would prevent fulfilling constraints f1(x) � z̄1 or
f2(x) � z̄2 are deactivated.

• z̄1 � 	L(FC1 )
 and z̄2 < �L(FC2 )� + Λ̄2. ThenAlgorithm 2
updates T2 exactly z̄2 − �L(FC2 )� times before reaching
optimal objective value z̄2. Each of these updates requires
optimizing objective function f3 exactly Λ̄3 + 1 times to
find out that no solution with objective value T2 < z̄2
exists. The algorithm cannot terminatewith a suboptimal
solution as (i) if T2 � z̄2, then only the cycles/chains that
would prevent fulfilling constraints f1(x) � z̄1 or f2(x) �
z̄2 are deactivated; and (ii) if T2 < z̄2, then it is impossible
to reach a solution satisfying constraint f2(x) � T2, so the
algorithmhas to updateT2 until it is equal to z̄2.

• z̄1 � 	L(FC1 )
 and z̄2 ≥ �L(FC2 )� + Λ̄2. Then Algorithm 2
updates T2 exactly Λ̄2 times (each of these updates re-
quiring Λ̄3 + 1 optimizations of objective function f3)
before optimizing f2 without making any assumptions
on the bound T2 to eventually find a solution with objec-
tive value f2(x) � z̄2. The algorithm cannot terminate
with a suboptimal solution as (i) if T2 < z̄2, then it is
impossible to reach a solution satisfying f2(x) � T2; and
(ii) if there is no consideration on the bound T2, then
only the cycles/chains that would prevent fulfilling con-
straints f1(x) � z̄1 are deactivated.

• z̄1 < 	L(FC1 )
. Then Algorithm 2 updates T1 exactly
	L(FC1 )
 − z̄1 times before reaching optimal objective
value z̄1. Each of these updates requires optimizing
objective function f3 exactly Λ̄2 × (Λ̄3 + 1) times and
objective function f2 once with no consideration on T2

to find out that no solution with objective value T1 > z̄1
exists. The algorithm cannot terminate with a subopti-
mal solution as (i) if T1 � z̄1, then only the cycles/
chains that would prevent fulfilling constraint f1(x) �
z̄1 are deactivated; and (ii) if T1 > z̄1, then it is impossi-
ble to reach a solution satisfying f1(x) � T1, so the algo-
rithm has to update T1 until it is equal to z̄1. w

3.3. Dominated Chains
Let us consider a chain c. If there exists a combination
s of one chain and one cycle involving the same pairs
and nondirected donor as the ones involved in c that
improves objective function f2 (respectively, f3) while
preserving f1 (respectively, f1 and f2) with respect to c,
then we call c a dominated chain and s a dominating set.
We detail in Section EC.1.5 of the e-companion four
generic cases of dominated chains, their respective
dominating set, and the dominated chains of Example
EC.1. Variables associated with dominated chains can
be removed from the model, as any feasible solution
containing a dominated chain can be replaced by
another (better) feasible solution where the dominated
chain is replaced by its dominating set.

Delorme et al.: Hierarchical Optimization in Kidney Exchange Programs
Operations Research, Articles in Advance, pp. 1–20, © 2023 The Author(s) 11

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

20
9.

6.
42

] 
on

 0
6 

M
ar

ch
 2

02
3,

 a
t 0

2:
24

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



Note that the concept of dominated chains could
also be extended to take the cycles into account in order
to detect some sets of dominated cycles. For example,
three cycles of length 2 of the form [U,V], [W,X], and
[Y,Z] should always be selected over two cycles of
length 3 of the form [U,V,W] and [X,Y,Z]. However,
the detection of such dominated sets of cycles is not
trivial, and while removing a dominated chain fixes a
variable to 0, removing a dominated set of cycles
requires an additional constraint, which goes against
our model size reduction paradigm.

3.4. Hybrid Algorithm
So far, we have used the cycle formulation because
objective function f4 maximizes the number of cross
arcs in the selected cycles and chains, and no easy
modification of PICEF would allow us to count the
number of cross arcs in the chain structure. In the
hybrid algorithm, we propose the use of PICEF for
the first three objective functions f1, f2, and f3, and
transition to the cycle formulation for the two last
objective functions f4 (with cycle/chain deactivation)
and f5. Note that returning to PICEF when optimizing
f5 is not an option since we now have a constraint on
the number of cross arcs that needs to be in the
solution.

The cycle/chain deactivation algorithm can be
extended to PICEF and is now called the cycle/arc deac-
tivation algorithm, as chains are represented in a graph
structure in PICEF. The diving algorithm can also be
used with PICEF following Algorithm 2 (until step
29). Forbidding dominated chains in PICEF is more
challenging than it is in the cycle formulation. Indeed,
removing a dominated chain in the cycle formulation
simply sets its corresponding decision variable to 0. In
PICEF, we need to add a constraint for each domi-
nated chain to force the sum of the decision variables
associated with each of its arcs to be less than or equal
to the length of the chain minus one. Let us recall that
since each chain is uniquely defined by a path from a
nondirected donor to the sink node S, forbidding
chain A→ B1 → E2 → S does not forbid A→ B1 →
E2 → F3 → S, for example. Preliminary tests indicated
that adding such constraints dramatically increases
the time to solve PICEF, so dominated chains were
not forbidden in our PICEF implementation.

Regarding the transition between f3 and f4, we need
to do a complete graph exploration of the PICEF
chain structure and transform every feasible path in
PICEF into a chain in the cycle formulation, provided
that the resulting chain is not dominated. The outputs
obtained by the extension of Algorithm 2 to PICEF
(until line 29) with an ILP solver when applied to
Example EC.1 are detailed in Section EC.1.6 of the
e-companion.

4. Experimental Results
We report in this section the outcome of extensive
computational experiments aimed at testing the effec-
tiveness of our new algorithms for the UKLKSS. We
also show that our methods can be adapted to take
into account the objective functions of other countries
that employ hierarchical optimization (see Biró et al.
2019), as illustrated by the application of our approach
to the Spanish and Dutch KEPs.

All our algorithms were coded in C++ and can be
downloaded from https://github.com/mdelorme2/
Hierarchical_Optimisation_Kidney_Exchange_Program
mes_Codes. The experiments were run on an Intel Xeon
E5-2680W v3, with 2.50 gigahertz and 192 gigabytes of
memory, running under Scientific Linux 7.5, and Gurobi
7.5.2 was used to solve the ILP models. Parameter ε was
set to 0.001, and parameters Λ̄2 and Λ̄3 were set to 1.
Each instance was run using a single core and no time
limit was imposed, unless specified otherwise. We used
the following parameters for Gurobi:

• Method 5 2, meaning that the barrier algorithm
was used to solve both the LP models and the root
nodes of the ILP models. Preliminary tests showed that
using the barrier algorithm was faster than letting Gur-
obi choose the algorithm (Method521).

• MIPGap50 for the ILP models, meaning that the
solver terminates with an optimal solution if the gap
between the lower bound and the upper bound is equal
to 0.

• Crossover50 for the LP models, meaning that
the solver does not try to transform the interior solution
produced by the barrier algorithm into a basic solution.
Our approaches only need the LP optimal objective val-
ues and the reduced costs associated with each varia-
ble, not a basic solution. Disabling crossover saved a
significant amount of time in our tests.

4.1. Instance Generation
In order to generate instances similar to real-world
cases, we used the data generator written by Trimble
(2020). The generator is derived from the work of
Saidman et al. (2006) and was used previously in the
literature by Klimentova et al. (2016) and Blum et al.
(2020). The generator can be used to replicate any KEP
pool provided that the user has an accurate estimation
of the following key population parameters:

• donor blood types: proportion of donors in each
blood group {O, A, B, AB};

• recipient blood types: proportion of recipients in
each blood group {O, A, B, AB};

• donors per recipient: proportion of recipients who
have 1, 2, 3, or 4 donors; and

• calculated reaction frequency (or cPRA): the pro-
portion of donors who would not be tissue-type com-
patible with a given recipient.
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We used a large set of data provided by the UKLKSS
to create instances with a similar distribution to those
solved in their quarterly runs. Note that the aforemen-
tioned generator also used “Additional fields for com-
patibility with Saidman generator,” which we left
untouched since the information for these fields were
not available in our data, and we added an inner rou-
tine to attribute a score to each compatibility following
the score distribution observed in the UKLKSS data.

In addition to the above key population parameters,
the generator also requires some information about the
number of recipients and the proportion of altruistic
donors. In order to have a complete overview of the
performance of our algorithms and their scalability,
we generated instances with a large range of num-
ber of recipients (|R| ∈ {50, 100,200, 400, 600, 800, 1, 000,
1, 200, 1, 400}) and a few different proportions of non-
directed donors (q ∈ {0:01, 0:05, 0:10, 0:15, 0:20}, where
|N | � q|R|). For each pair (|R|,q), we generated 30
instances resulting in 9 × 5 × 30 � 1, 350 instances in
total. All the instances can be downloaded from the
online repository http://researchdata.gla.ac.uk/id/
eprint/1016.

4.2. Randomly Generated Instances with the
UKLKSS Objectives

We first tested each of our new approaches on a subset
of the randomly generated instances and we compared
their results with those obtained by the cycle formula-
tion, which is currently in use by the UKLKSS. The sub-
set contains 450 instances with a number of recipients
|R| ∈ {50, 100, 200, 400, 600} and a proportion of nondir-
ected donors q ∈ {0:01, 0:05, 0:10}. These values were
chosen so that each algorithm could solve all the instan-
ces to optimality in a reasonable time. We then tested
the hybrid algorithm on the remaining 900 instances to
show its scalability. When not specified otherwise, we
display the results by number of recipients (i.e., instan-
ces with different values of q are merged).

Table 1 contains the results of the five algorithms
for instances with 50 and 100 recipients, which are
comparable in size to medium-sized European KEPs
such as the Spanish KEP (around 110 recipients per
run; see Biró et al. 2019) or the Dutch KEP (around 40

recipients per run). The “Algorithm” column specifies
the algorithm used, the attribute “− DC” indicates
that dominated chains were removed from the model
(for all the objective functions for the diving algorithm
and for f4 and f5 for the hybrid algorithm), columns
“TT” give the average total time required by the algo-
rithm to solve an instance, and columns “Tk” indicate
the time required to optimize objective function fk,
where k � 1, : : : , 5. The last line of the table reports the
optimal value of each objective function f1, : : : , f5 aver-
aged over the 90 instances. As no time limit was
imposed, all the algorithms solved the instances to
optimality. Note that (i) “TT” also incorporates the
time to generate the variables of the model and, thus,
might be a few seconds away from the sum of the
“Tk” for large size instances; (ii) the time spent by the
hybrid algorithm to perform the transition between
PICEF and the cycle formulation is included in T4;
and (iii) for algorithms including a diving component,
the time displayed in T2 only incorporates the time
spent optimizing f2 once the optimal value of f1 was
found. The time spent optimizing f2 for wrong values
of f1 is incorporated in T1. The same comments apply
for the time displayed in T3.

The table shows that instances with up to 100 recipi-
ents can be solved to optimality with the cycle formu-
lation in less than one second on average. Even
though our new approaches are faster (on average
0.06 second [s] for the hybrid algorithm vs 0.81 s for
the cycle formulation for instances with 100 recipi-
ents), the time saved is not enough to motivate a
switch from the cycle formulation for such instances.
Table 2 contains the same information for instances
with 200 and 400 recipients, which is of comparable
size to a large European KEP such as the UKLKSS
(around 300 recipients per matching run).

The table shows a number of interesting facts:
• Whereas the cycle formulation can solve to opti-

mality instances with 200 recipients in 26 seconds on
average, it takes almost 15 minutes on average to solve
instances with 400 recipients.

• The cycle formulation spends a significant amount
of time optimizing each objective function, with f3 and
f5 being the longest to optimize.

Table 1. Average Time (in Seconds) Required by the Algorithms to Solve Instances with 50 and 100 Recipients

50 recipients, q � {0:01, 0:05,0:10} 100 recipients, q � {0:01,0:05, 0:10}
Algorithm TT T1 T2 T3 T4 T5 TT T1 T2 T3 T4 T5

Cycle 0.07 0.01 0.02 0.02 0.01 0.02 0.81 0.09 0.15 0.15 0.17 0.25
Cycle/chain deactivation 0.04 0.01 0.01 0.01 0.01 0.01 0.11 0.06 0.02 0.01 0.01 0.01
Diving algorithm 0.03 0.00 0.00 0.01 0.01 0.01 0.08 0.04 0.01 0.01 0.01 0.01
Diving algorithm − DC 0.03 0.00 0.00 0.01 0.01 0.01 0.06 0.02 0.01 0.01 0.01 0.01
Hybrid algorithm − DC 0.03 0.00 0.00 0.01 0.01 0.00 0.06 0.01 0.01 0.01 0.02 0.01
Optimal objective values — 18.63 0.94 2.94 3.77 1407 — 47.19 2.39 8.73 9.6 3852
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• All our new approaches spend the majority of their
time optimizing f1; the other objective functions are
optimized almost instantly.

• Removing the dominated chains has a significant
impact on the model performances: it takes 32.95 s on
average to solve an instance with 400 recipients by
the diving algorithm if we allow dominated chains,
whereas it only takes 9.86 s if we remove them. As
additional information, we also mention that on aver-
age, for instances with 400 recipients, there are 12,469
dominated chains of length 3 (out of 46,021) and
970,050 dominated chains of length 4 (out of 1,468,336).

• The hybrid algorithm is by far the fastest among all
the tested algorithms and obtains outstanding results.
It solves instances with 400 recipients three orders of
magnitude faster, on average, than the cycle formula-
tion. Its PICEF component saves a significant amount
of time while optimizing f1, f2, and f3 with respect to
the other methods. The time spent during the transition
between PICEF and the cycle formulation is noticeable
(+0.16 s on average to optimize f4 for instances with
400 recipients with respect to the diving algorithm
without dominated chains) but irrelevant when com-
pared with the time saved optimizing the first three
objective functions.

Table 3 gives detailed information about the models
for instances with 200 and 400 recipients. In particular,
it gives the number of variables, constraints, and non-
zero elements in the last ILP model (i.e., when optimiz-
ing f5) in columns “Nb. var.,” “Nb. cons.,” and “Nb.
nzs.,” respectively. It also indicates in columns “Nb. Fk”
the average number of times the bound Tk (k � 1, : : : , 4)
had to be updated, meaning that a backtracking step

was necessary. We remind the reader that there is no
backtracking in the cycle formulation.

We observe the following:
• Our new approaches have significantly fewer vari-

ables and nonzero elements when optimizing the last
objective function f5, indicating that the cycle/chain
deactivation is extremely effective.

• The number of backtracking steps is relatively
small for objective functions f1 and f2, supporting the
hypothesis that the diving algorithm can reasonably
assume that the bounds obtained after solving the lin-
ear relaxation of the first two objective functions are
accurate.

• The number of variables when optimizing the last
objective function f5 is similar when comparing the
hybrid algorithm and the diving algorithm without
dominated chains. Out of 180 instances with 200 and
400 recipients, we counted respectively 164, 8, and 8
instances in which the hybrid algorithm had the same,
larger, or smaller number of variables as the diving
algorithmwithout dominating chains.

Table 4 contains the results of the five algorithms
for instances with 600 recipients, which could be real-
istic size instances if half a dozen European countries
were merging their pools.

Not surprisingly, the table shows that the cycle for-
mulation is much slower than our other methods,
since it required more than four hours on average to
solve an instance with 600 recipients and 60 nondir-
ected donors, whereas it only took our hybrid algo-
rithm 4.9 seconds on average to solve the same
instances. It is also interesting to observe that the pro-
portion of nondirected donors q has a dramatic impact

Table 2. Average Time (in Seconds) Required by the Algorithms to Solve Instances with 200 and 400 Recipients

200 recipients (90 instances) 400 recipients (90 instances)

Algorithm TT T1 T2 T3 T4 T5 TT T1 T2 T3 T4 T5

Cycle 25.58 2.54 4.82 5.34 4.35 8.49 866.88 60.39 191.05 227.79 125.64 261.44
Cycle/chain deactivation 1.29 1.08 0.11 0.03 0.02 0.01 34.83 31.37 2.40 0.24 0.16 0.07
Diving algorithm 1.20 1.00 0.09 0.03 0.02 0.02 32.95 28.42 2.64 0.29 0.14 0.08
Diving algorithm − DC 0.44 0.31 0.04 0.03 0.02 0.01 9.86 7.79 1.05 0.25 0.12 0.07
Hybrid algorithm − DC 0.20 0.06 0.02 0.03 0.06 0.02 1.18 0.45 0.14 0.17 0.28 0.09
Optimal objective values — 122.94 5.48 26.06 25.06 10 235 — 310.49 12.82 72.46 58.88 25 686

Table 3. Detailed Information on the Algorithms for Instances with 200 and 400 Recipients

200 recipients (90 instances) 400 recipients (90 instances)

Algorithm
Nb.
var.

Nb.
cons.

Nb.
nzs.

Nb.
F1

Nb.
F2

Nb.
F3

Nb.
F4

Nb.
var.

Nb.
cons.

Nb.
nzs.

Nb.
F1

Nb.
F2

Nb.
F3

Nb.
F4

Cycle 90,861 174 623,669 — — — — 1,526,232 400 10,571,785 — — — —
Cycle/chain deactivation 319 143 1,892 0 0.01 0.08 0 958 338 5,636 0.02 0.03 0.26 0.24
Diving algorithm 319 143 1,892 0 0.01 0.10 0 958 338 5,636 0.02 0.03 0.26 0.24
Diving algorithm − DC 319 143 1,892 0 0.01 0.10 0 955 338 5,615 0.02 0.03 0.26 0.24
Hybrid algorithm − DC 318 143 1,887 0 0.01 0.10 0 939 338 5,523 0.02 0.03 0.26 0.24
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on the average time required to solve an instance for
most approaches (the average times for q � 0:10 are
between 10 and 30 times larger than the average times
for q � 0:01), with the exception of the hybrid algo-
rithm, which seems to scale well as q increases. This
can be explained by the fact that O(|R|3) new chains
(and thus, new variables) are created in the cycle for-
mulation for each new altruistic donor, whereas only
O(|R|) new arcs are created in PICEF for each new
altruistic donor (in most cases).

Table 5 displays the time spent on average by the
hybrid algorithm to solve instances with up to 1,400
recipients and with a proportion of nondirected donors
up to q � 0:20. Results from previous tables are included
for the sake of comparison.

We note that the hybrid algorithm can solve instances
with up to 1,400 recipients and up to 280 nondirected
donors in slightly more than a minute on average, indi-
cating that our algorithm scaleswell with both the num-
ber of recipients and the proportion of nondirected
donors. As expected, there is a strong correlation be-
tween the number of recipients and the time required
to solve an instance. For example, instances with 800
recipients and 80 nondirected donors are solved in 13
seconds on average, whereas instances with 1,400 recip-
ients and 140 nondirected donors are solved in 275 sec-
onds on average.

The correlation between the proportion of nondir-
ected donors and the time required to solve an instance

is not as straightforward. Instances with q � 0:01 are
always the fastest to solve, but we observe that instan-
ces with q � 0:20 do not necessarily take the longest to
solve. For example, instances with 1,400 recipients and
280 nondirected donors are solved in 78 seconds on
average, whereas instances with the same number of
recipients and half the number of nondirected donors
are solved in 275 seconds on average. A possible ex-
planation for this phenomenon is that instances with
q � 0:20 do not necessarily produce larger mathemati-
cal models compared with instances with q � 0:10
because of the cycle/arc deactivation. Table 6 gives
information about the size of the model solved when
optimizing the last objective function f5, and, indeed,
we observe that the last model has 72,167 variables on
average for instances with 1,400 recipients and 280 non-
directed donors, whereas it has 139,962 variables on
average for instances with the same number of recipi-
ents and 140 nondirected donors.

4.3. Randomly Generated Instances with the
Spanish and Dutch KEP Objectives

We tested our best approach, the hybrid algorithm, on
the Spanish KEP objectives. As we did not have any
information regarding the score distribution, we only
optimized the four first objective functions, which are
as follows: (i) maximize the number of transplants, (ii)
maximize the number of distinct exchanges selected,
(iii) maximize the number of cross arcs, and (iv)

Table 4. Average Time (in Seconds) Required by Each of the Proposed Algorithms to Solve Instances with 600 Recipients
for Each Value of q

q � 0:01 (30 instances) q � 0:05 (30 instances) q � 0:10 (30 instances)

Algorithm TT T1 T2 T3 T4 T5 TT T1 T2 T3 T4 T5 TT T1 T2 T3 T4 T5

Cycle 576 44 109 150 88 184 7,328 343 1,494 1,927 1,611 1,951 14,805 907 4,550 2,951 2,375 4,016
Cycle/chain deactivation 24.1 22.8 0.4 0.2 0.1 0.1 196.8 157.5 24.6 4.5 5.7 2.1 486.2 424.7 54.4 1.7 0.5 0.2
Diving algorithm 21.7 20.4 0.1 0.2 0.1 0.1 163.3 107.9 42.7 5.7 2.4 2.0 280.9 223.2 50.3 1.6 0.5 0.2
Diving algorithm − DC 8.4 7.4 0.1 0.2 0.1 0.1 68.7 40.2 17.3 4.5 2.6 2.3 103.3 73.7 23.7 1.4 0.3 0.2
Hybrid algorithm − DC 2.0 1.0 0.1 0.2 0.5 0.1 11.0 2.1 2.7 1.8 2.7 1.7 4.9 1.9 1.2 0.6 0.8 0.2

Table 5. Average Time (in Seconds) Required by the Hybrid Algorithm to Solve Each Set of Instances

q � 0:01 q � 0:05 q � 0:10 q � 0:15 q � 0:20

|R| TT T1 T2 T3 T4 T5 TT T1 T2 T3 T4 T5 TT T1 T2 T3 T4 T5 TT T1 T2 T3 T4 T5 TT T1 T2 T3 T4 T5

50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
400 1 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 0 2 1 0 0 0 0 2 1 0 0 0 0
600 2 1 0 0 1 0 11 2 3 2 3 2 5 2 1 1 1 0 6 2 1 1 1 1 7 2 2 1 1 0
800 7 3 1 1 2 1 15 4 2 3 3 3 13 4 2 3 2 1 16 4 3 3 3 2 13 4 3 2 2 1
1,000 18 7 3 4 3 2 32 7 4 10 6 4 29 7 5 6 7 4 23 7 5 5 4 1 26 8 6 6 4 1
1,200 26 9 2 8 4 3 49 10 7 20 6 4 53 12 9 16 11 5 42 13 9 9 7 3 46 13 11 10 8 4
1,400 77 16 4 28 12 17 163 17 13 77 24 32 275 18 14 49 69 125 138 16 14 28 28 51 78 17 16 26 13 6
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maximize the number of highly sensitized recipients
selected. We used the same instances as the ones cre-
ated for the UKLKSS objectives, and we used a binary
indicator defining a recipient as highly sensitized if
their cPRA value was at 0.85 or above.

According to Biró et al. (2019), only cycles of size 2
and 3 are allowed in the Spanish KEP. There is no theo-
retical restriction on the maximum allowed length of
chains, but given that the longest chain that has pro-
ceeded in Spain to date had length 6, we imposed this
as an upper bound on the chain length for our experi-
ments. All the techniques presented in Section 3 can be
trivially extended to the Spanish KEP with the excep-
tion of the dominated chains, for which we detail in
Figures 2 and 3 the most common generic cases of
dominated chains of length 5 and 6 and their respective
dominating sets. Note that there exist more complex
dominated chains of length 5 and 6 (e.g., chain A→
W → X→ Y→ Z with cross arcs (A, X) (Z, W), and
(W, Z) is dominated by chain A→ X→ Y and cycle
[W,Z]).

We first tested the adapted hybrid algorithm on a
subset of the randomly generated instances, and we
compared its results with those obtained by the cycle
formulation. The subset contains 270 instances with
the number of recipients |R| ∈ {50,100,200} and the

proportion of nondirected donors q ∈ {0:01,0:05, 0:10}.
These values were chosen so that each algorithm
could solve all the instances to optimality in a reason-
able time. We then tested the hybrid algorithm on the
remaining 1,080 instances to show its scalability. We
added a time limit of 3,600 seconds to this set of
experiments because some instances could not be
solved, even after 10 hours of computation time. We
observed some memory issues occurring when opti-
mizing f3 due to the high number of chains of size 5
and 6 that were generated during the transition
between PICEF and the cycle formulation (above two
billion for some instances with more than 1,200 recipi-
ents). Hence, we also imposed a limit for the model
size: if at any stage the solver was dealing with an
integer model containing more than 75 million varia-
bles, then the algorithm stopped and the instance was
considered as unsolved in 3,600 seconds. Table 7 dis-
plays the time spent on average by the cycle and the
hybrid algorithms optimizing each objective function
and the model size when optimizing f4 for instances
with 50, 100, and 200 recipients.

The table shows that, also for the Spanish KEP, the
hybrid algorithm is significantly faster than the cycle
formulation. This is even true for small instances, as it
takes more than one minute on average for the cycle

Table 6. Model Size of the Hybrid Algorithm When Optimizing f5 on Each Set of Instances

q � 0:01 q � 0:05 q � 0:10 q � 0:15 q � 0:20

|R|
Nb.
var.

Nb.
cons.

Nb.
nzs.

Nb.
var.

Nb.
cons.

Nb.
nzs.

Nb.
var.

Nb.
cons.

Nb.
nzs.

Nb.
var.

Nb.
cons.

Nb.
nzs.

Nb.
var.

Nb.
cons.

Nb.
nzs.

50 11 20 58 19 26 103 12 21 65 52 37 223 79 44 341
100 40 46 220 87 60 523 105 73 545 179 85 846 268 98 1,197
200 156 122 898 252 139 1,542 546 167 3,223 730 194 3,907 956 218 4,653
400 527 289 3,137 838 340 5,100 1,453 385 8,333 3,054 429 16,100 3,109 477 5,233
600 802 473 4,629 5,155 547 32,985 3,098 608 16,780 8,027 673 42,098 9225 734 45,017
800 2,516 678 15,095 4,861 759 28,395 13,908 835 77,037 13,955 916 69,877 17,213 990 80,736
1,000 5,281 892 30,787 14,174 971 79,483 30,670 1,064 168,546 20,200 1,152 96,636 24,496 1,248 109,174
1,200 8,148 1,081 45,779 21,596 1,182 119,370 38,887 1,294 206,681 37,641 1,394 182,593 42,065 1,501 187,638
1,400 16,595 1,283 92,957 64,875 1,401 363,897 139,962 1,535 770,552 116,531 1,638 622,379 72,167 1,760 332,253

Figure 2. Dominated Chains of Length 5 for the Spanish KEP and Their Dominating Sets

Delorme et al.: Hierarchical Optimization in Kidney Exchange Programs
16 Operations Research, Articles in Advance, pp. 1–20, © 2023 The Author(s)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

20
9.

6.
42

] 
on

 0
6 

M
ar

ch
 2

02
3,

 a
t 0

2:
24

 . 
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y,

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

 



formulation to solve an instance with 100 recipients,
whereas it only takes 0.1 second on average to solve
the same instance using the hybrid algorithm. This is
due to the very large number of variables involved in
the cycle formulation, which is even higher in the
Spanish KEP than it is in the UKLKSS because the
chain length is capped at 6 instead of 4.

For each set of instanceswith up to 1,400 recipients and
with a proportion of nondirected donors up to q � 0:20,
Table 8 displays the number of instances solved by the
hybrid algorithm in less than one hour, the average time
spent solving each instance, and the average number of
times the boundTk (k � 1, : : : , 4) had to be updated.

We observe that the hybrid algorithm does not scale
as well for the Spanish KEP as it did for the UKLKSS
since only one instance with 1,400 recipients and 280
nondirected donors could be solved in less than an
hour. It is worth observing that the instances treated
here are very challenging since there are theoretically
up to O(1018) possible chains of length 6 (280 × 14005),
which means up to O(1018) variables if the cycle for-
mulation was used, which is not solvable by any
state-of-the-art ILP solvers. It seems that, for the Span-
ish KEP, both the number of recipients and the pro-
portion of nondirected donors have a strong impact
on the time required to solve an instance. It is not sur-
prising, considering that each nondirected donor can
potentially initiate O(|R|5) chains, which may result in

an excessive number of variables when the hybrid
algorithm switches from PICEF to the cycle formula-
tion (between f2 and f3). Interestingly, we also notice
that there are more backtracking steps in the Spanish
KEP than in the UKLKSS. This is probably due to a
weaker continuous relaxation caused by longer
chains. We tried several extensions of the hybrid algo-
rithms, either without any cycle/chain deactivation
for f3 and f4, or with at most one iteration before reac-
tivating every cycle/chain and removing bounds T3
and T4, but we obtained results that were significantly
worse than those presented in the table.

We also tested our best algorithm on the Dutch KEP
objectives, which allows cycles and chains up to size 4
(Biró et al. 2019). We extended most of the techniques
introduced in Section 3, including the cycle/chain deac-
tivation algorithm and the diving algorithm, and we
introduced additional techniques specifically tailored for
the Dutch KEP, namely, dominated cycles and warm
starts. We compared the results of our tailored approach
with those obtained by PICEF (as no objective function
involves maximizing the number of cross arcs) on a sub-
set of 750 instances where the number of recipients |R| ∈
{50, 100, 200, 400, 600} and the proportion of nondirected
donors q ∈ {0:01, 0:05, 0:10, 0:15, 0:20} and found that
our algorithm was faster than PICEF by one order of
magnitude on average. More detailed outcomes are dis-
played in Section EC.2 of the e-companion.

Figure 3. Dominated Chains of Length 6 for the Spanish KEP and Their Dominating Sets

Table 7. Information on the Hybrid and Cycle Algorithms for Instances with 50, 100, and 200 Recipients

|R| Algorithm TT T1 T2 T3 T4 Nb. var. Nb. cons. Nb. nzs.

50
Cycle 0.55 0.08 0.13 0.16 0.18 5,425 32 46,399

Hybrid algorithm − DC 0.04 0.00 0.02 0.01 0.01 17 25 101

100
Cycle 81.28 8.91 20.31 22.83 29.11 299,108 75 2,642,251

Hybrid algorithm − DC 0.10 0.02 0.03 0.03 0.01 68 58 495

200
Cycle 13,305.51 998.1 3,090.59 3,510.77 5,698.48 19,735,661 181 176,175,415

Hybrid algorithm − DC 0.61 0.18 0.16 0.21 0.05 407 145 3,320

Delorme et al.: Hierarchical Optimization in Kidney Exchange Programs
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5. Conclusion
Hierarchical optimization is an important feature of
many kidney exchange programs globally. KEPs have
established the set of objective functions that they
wish to optimize, and many use the cycle formulation
to model their problem. Such models are manageable
when the number of recipients is limited, but they
quickly become impractical when programs reach
400–600 recipients. These numbers may seem high at
the current time, but some European countries with
large and successful KEPs such as the United King-
dom already have around 300 recipients in their pool
at each run. It is also known that cooperation among
European countries for transnational KEPs could
increase the number of transplants (see European Net-
work for Collaboration on Kidney Exchange Pro-
grammes 2020), so it is not impossible to envisage
merged pools of more than 1,000 recipients in the fore-
seeable future. It is important for algorithmic techni-
ques to handle such pool sizes to be developed well
ahead of the time that they may be required. Most
countries do not completely agree on the set of objec-
tive functions that should be optimized, but all agree
that the number of transplants should be maximized
at some level (Biró et al. 2019, Biró et al. 2020). As a
result, they generally prefer to use exact approaches
since an additional unit in the objective function may
be associated with an additional transplant, and thus,
an additional life saved.

We described three tools to improve the performan-
ces of both the cycle formulation and PICEF: a cycle/
chain deactivation algorithm and a dominated chain
detector to remove unnecessary variables, and a div-
ing algorithm to remove the necessity to solve com-
plex integer linear programming models. We also
showed that it was possible to transition from PICEF
to the cycle formulation between the optimization
of two objective functions. As a result, PICEF can be
used until a critical objective function (such as cross
arcs maximization) needs to be optimized.

We tuned our approaches for the UKLKSS and
showed that they could be up to 1,000 times faster

Table 8. Information on the Hybrid Algorithm for
Instances With up to 1400 Recipients for Each Value of q

q � 0:01

|R| Opt TT
Nb.
F1

Nb.
F2

Nb.
F3

Nb.
F4

50 30 0 0 0 0 0
100 30 0 0 0 0 0
200 30 0 0 0 0 0
400 30 1 0 0.1 0.1 0.1
600 30 7 0 0.1 0.9 0.9
800 30 32 0.1 0.4 1.8 2.1
1,000 30 90 0 0.2 2.3 2.6
1,200 30 112 0 0.1 0.9 1.1
1,400 24 950 0 0.2 2 2.4

q � 0:05

|R| Opt TT
Nb.
F1

Nb.
F2

Nb.
F3

Nb.
F4

50 30 0 0 0 0 0
100 30 0 0 0 0.1 0.1
200 30 1 0.1 0.2 0.2 0.2
400 30 12 0.2 0.5 1.8 1
600 27 586 0 0.2 2.2 2.5
800 26 992 0 0 1.7 1.9
1,000 19 1,711 0 0.1 1.4 1.7
1,200 16 2,322 0 0.1 0.4 0.7
1,400 7 3,022 0 0.1 0.3 0.4

q � 0:10

|R| Opt TT
Nb.
F1

Nb.
F2

Nb.
F3

Nb.
F4

50 30 0 0 0 0 0
100 30 0 0 0 0.1 0
200 30 1 0 0 0 0.1
400 30 37 0 0 0.5 0.3
600 29 339 0 0 0.7 1
800 28 596 0 0 0.6 1.1
1,000 23 1,795 0 0 0.6 0.9
1,200 7 3,189 0 0 0.2 0.5
1,400 7 3,110 0 0 0.1 0.5

q � 0:15

|R| Opt TT
Nb.
F1

Nb.
F2

Nb.
F3

Nb.
F4

50 30 0 0 0 0 0
100 30 0 0 0 0 0
200 30 1 0 0 0.1 0.1
400 30 49 0 0 0.4 0.5
600 26 697 0 0.1 0.6 0.7
800 26 1,123 0 0 0.5 0.6
1,000 16 2,525 0 0 0.3 0.8
1,200 8 2,878 0 0 0.2 0.4
1,400 5 3,368 0 0 0 0.1

q � 0:20

|R| Opt TT
Nb.
F1

Nb.
F2

Nb.
F3

Nb.
F4

50 30 0 0 0 0 0
100 30 0 0 0 0 0

Table 8. (Continued)

q � 0:20

|R| Opt TT
Nb.
F1

Nb.
F2

Nb.
F3

Nb.
F4

200 30 1 0 0 0.2 0.1
400 30 31 0 0 0.1 0.1
600 29 407 0 0 0.4 0.4
800 25 1,395 0 0 0.3 0.4
1,000 14 2,481 0 0 0.4 0.3
1,200 2 3,504 0 0 0 0.1
1,400 1 3,504 0 0 0.2 0
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than the cycle formulation. We could even solve
instances with up to 1,400 recipients and 280 nondir-
ected donors in less than two minutes on average.
Problems of such scale have never been solved before
by the algorithms used for the UKLKSS. We also dem-
onstrated that our approaches could be adapted for
KEPs from other countries such as Spain and the
Netherlands. For the Spanish KEP, our best approach
was also several orders of magnitude faster than the
cycle formulation, and we could solve an instance
with 1,400 recipients and 280 nondirected donors in
less than an hour, which is significant considering that
chains of length 6 are allowed. For the Dutch KEP, our
best approach was almost up to 10 times faster than
PICEF, and we could solve instances with up to 600
recipients and 120 nondirected donors, which is also
significant since cycles of size 4 are allowed.

Naturally, we do not claim that the algorithms pro-
posed in this work are ready-to-use tools for all the
European KEPs. Among the possible limitations of our
work, we remark that the instances we solved were
generated with UK-specific parameters, that some
objective functions in the Spanish and Dutch KEP were
not optimized because we did not have any informa-
tion regarding the data distribution, and that the tun-
ing of our algorithms was focused on the UKLKSS and
could be improved for the other countries. In addition,
we used a commercial solver, which is sometimes too
expensive (or simply unnecessary) for some KEPs.
Lastly, our proposed methods are specifically designed
for hierarchical optimization, as is prevalent in Europe;
thus, only dominated chain detection and the cycle/
chain deactivation algorithm (to a lesser extent) may be
applicable to KEPs that optimize a single objective,
which is common in USA-based KEPs.

Still, we successfully showed the effectiveness of
our tools for the UKLKSS and their adaptability to
other countries’ requirements. Some of the techniques
we propose could even be used for hierarchical opti-
mization in other areas, provided that the bounds
given by the continuous relaxations are close to the
optimal objective values. We leave as future work the
adaptation of our techniques to multicountry KEPs, a
problem in which (i) pools of several countries are
merged, (ii) a consensus on the objective function has
to be found, and (iii) a minimum number of trans-
plants per country is imposed, so that no country loses
any transplants by participating in the program.
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