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A B S T R A C T

The use of data has been essential throughout the unfolding COVID-19 pandemic. We have needed it to
populate our models, inform our understanding, and shape our responses to the disease. However, data has not
always been easy to find and access, it has varied in quality and coverage, been difficult to reuse or repurpose.
This paper reviews these and other challenges and recommends steps to develop a data ecosystem better able
to deal with future pandemics by better supporting preparedness, prevention, detection and response.
Introduction

It is a commonplace that we live in a world increasingly dependent
on and defined by access to data. In the context of infectious disease
control every facet of the understanding we are seeking to achieve
is underpinned by data. Other papers in this volume (Swallow et al.,
2022; Marion et al., 2022; Hadley et al., 2021; Glennon et al., 2021;
Roberts et al., 2021; Kretzschmar et al., 2022), demonstrate that such
data varies considerably in quality and coverage. In many critical areas
the data may not exist or is in a form that makes it difficult to use.
In this paper we explore these issues and relate the data challenges to
particular aspects of the COVID-19 experience, as well as looking at the
prospects and recommendations for a more effective data ecosystem
to deal with the challenges of this and other infectious diseases now
and in the future. Benefits include not only pandemic response, but
also enhancing preparedness ahead of future pandemics, and critically,
prevention of potential pandemics through early detection and control.

Work in estimation and modelling within the infectious diseases
community identifies key data required for current models. Models

∗ Corresponding author at: Department of Computer Science, University of Oxford, UK.
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require data to generate estimates but can sometimes also help iden-
tify where and what type of additional data might be required. In
particular, issues around the resolution and granularity of data arise.
Sometimes these requirements are specific to the questions being raised
and the models being used. The data we have available may have
been collected for a variety of reasons, some may never have been
intended for use in pandemic modelling, for example, early detection
of outbreaks or zoonotic spillover. The data will be of variable quality
and coverage. The modellers themselves may choose to further abstract,
simplify or leave out available data. No set of data can be expected to
meet every contingency. We can, however, attempt to learn from recent
experience to deal with the data challenges that confront the infectious
diseases community.

One useful perspective is to try to describe and ultimately antic-
ipate the types of questions posed to our models. From the abstract
to the very applied, these questions will be one important driver of
the data we generate, collect and curate. Questions posed during the
COVID-19 pandemic have included the real-time estimate of the latest
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reproduction number R and whether different variants have different
transmissibility or severity values, general advice on whether it is worth
closing airports, schools or universities to reduce transmission and
how the effect of these non-pharmacological interventions might vary
from location to location or through time. These issues and the data
challenges they present are discussed in more detail in Section 1, with
a view to anticipating similar challenges in future infectious disease
outbreaks at whatever scale. Furthermore, if such data challenges are
addressed this would significantly improve preparedness for future
pandemics through improvements in the data ecosystem. In addition,
by supporting better surveillance and modelling of disease outbreaks
this would also increase resilience to pathogenic threats, enabling faster
detection and better control of outbreaks increasing the chance of
preventing pandemics.

Data, models and results are themselves data objects to be managed.
Some data is collected from the physical world and our various digital
interactions. Other data is generated in silico by our models and used
in subsequent analysis. How these different data should be represented,
managed and maintained is discussed in Section 2 which argues for
the importance of FAIR principles in meeting future pandemic data
challenges.

How these principles might be realised in data management plat-
forms and lifecycles is discussed in Sections 3 and 4. There are par-
ticular areas that have worked well, such as the use of open-source
repositories and registries, and the development of safe access to large
amounts of sensitive linked patient data. The broader ambition to
develop consistent data lifecycles and pipelines with which to analyse
infectious diseases data is still work in progress.

In Section 5 we take a data skills perspective and consider how we
ensure that we have the human capital to tackle the data challenges of
the next pandemic.

Finally, many of the challenges around pandemic data relate to
stewarding data, both in terms of institutional and policy responses.
Sections 6 and 7 outline the challenges and potential responses to these
issues.

Data plays a crucial role in combating infectious diseases. This is not
a new insight (Heesterbeek et al., 2015), but the importance of such a
role will only increase in the future and it is essential that we attempt
to construct effective, efficient and equitable data ecosystems. Fig. 1
attempts to illustrates the major components and dependencies of such
data ecosystems, and which we examine in more detail in Sections 1–7.

1. Data and models

Data is crucial to modelling that informs pandemic preparedness,
prevention, detection and response. Data is needed to parameterise
and validate models that condition projections and scenario analysis
of future epidemic trajectories. These trajectories are used to inform
public health policy decisions.

1.1. Data availability

The emergence of collated data sources assembled by the research
community was seen early in the COVID-19 pandemic. Initially data
was sparse, early sources included data scraped from news outlets,
press briefings updating daily case counts, social media, crowd-sourced
and open data (Wikipedia, 2021; Imai et al., 2020; Read et al., 2020;
Sun et al., 2020; Wu et al., 2020). As the epidemic developed into
a pandemic, data collation became more systematic, resulting in ex-
tending existing repositories or developing new ones, e.g. the Center
for Systems Science and Engineering (CSSE) at Johns Hopkins Uni-
versity (Dong et al., 2020) and Our World in Data (Our World Data,
2021). Systematic reviews of data from case studies also started ap-
pearing (Oxford COVID-19 Evidence Service, 2021), with the volume
of freely accessible data increasing, including development of public
data dashboards by individual governments (Ivanković et al., 2021).
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An important source of data were volunteer-based initiatives to
curate high quality data, freely available and including associated
methods and code, e.g. the Google GitHub repository of COVID-19
open data (GitHub GoogleCloudPlatform, 2021). Despite the practical
issues with inconsistencies and lack of centralised oversight in crowd-
sourced efforts, these repositories offer a glimpse of what is possible
by recruiting community participation on large platforms. The large
platforms have also been able to provide data directly generated from
interaction with their users. Facebook providing data on movement,
symptoms, vaccination status, and people staying in place (Facebook,
2021), Google providing a wide range of mobility data (Google, 2021),
while Apple provided further mobility insights around the mode of
travel (Cot et al., 2021). In Europe participatory projects such as
influenzanet (Guerrisi et al., 2016), developed before the pandemic,
demonstrate the potential for volunteer systems in the surveillance of
disease. During COVID, influenzanet was also used to survey people’s
perceptions of risk (Raude et al., 2020).

Modellers also had access to data via the involvement of national
agencies, though it should be noted that due to privacy concerns, not
all data collected by such agencies were widely shared. In England
and Wales, this role was played by the Office for National Statistics
(ONS) (Office for National Statistics, 2021a)and the COVID-19 infec-
tion survey (Office for National Statistics, 2021b) and in Scotland by
Public Health Scotland Public Health Scotland (2021), which provide
important data on general levels of the virus within the UK population.
In addition to the statutory bodies, a number of research council funded
initiatives at leading university labs undertook a range of studies
that continue to furnish insights into population level transmission
dynamics (e.g. in the UK REACT (Imperial College London, 2021)) and
the impact of Non-Pharmaceutical Interventions (NPIs), adherence to
Test, Trace and Isolate guidance and other measures as the epidemic
developed (University College London, 2021; Smith et al., 2021). Other
innovative data sources have included the use of wastewater COVID-
19 RNA sampling, sampled from sewage catchments at a variety of
spatial scales, and thus involving a wide range of public and private
bodies (Wade et al., 2021).

The UK has seen the use of organisations such IPSOS Mori (Riley
et al., 2020) and YouGov (YouGov, 2021) with online survey methods
and data analytics that have augmented the health and research sectors’
ability to capture near real-time data on a range of pandemic issues.
In Germany the COSMO project surveyed differences in risk percep-
tion, knowledge and protective behaviour regarding COVID-19 (Rattay
et al., 2021), the Netherlands produced analyses on changing be-
haviours of work and travel, building on already established census-like
questions (de Haas et al., 2020).

Another type of data has increasingly been incorporated into epi-
demiological research: happenstance data — ‘‘not originally collected
with a particular research or policy question in mind but. . . created
through the normal course of events in our digital lives, and our inter-
actions with digital systems and services’’, The DELVE Initiative (2020).
These data can help us understand everything from economic activity
to population movements. However, their use is limited by a variety
of challenges around availability, anonymisation, interoperability and
consistency, as well as the fact that they often only offer a proxy
for contact patterns relevant to infection spread. One such example,
mobility data, has been used to understand clustering within society
and deriving modelling assumptions when evaluating contact tracing.
It has also proved important in determining the efficacy of NPIs such
as various forms of lockdown (Zhou et al., 2020). Another key mobility
data source was flight data — e.g. data on the huge migration out of
Wuhan for the Chinese New Year in advance of their lockdown proved
to be important (Song et al., 2020).

Recommendation: the continuation of open data publication and dash-
boards for infectious diseases as a part of civilian health infrastructures
modelled on those created during the COVID-19 pandemic and in a form
that is usable in aggregate fashion by all or in more detail under licence
to approved researchers. To include happenstance data that has proven
valuable, such as aggregate mobility data, and survey data. Continued

support for established registries and repositories of infectious disease data.
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Fig. 1. Key components and dependencies in data ecosystems for combating infectious diseases. The FAIR data principles (Section 2) should underpin any data ecosystem.
Data-model-policy lifecycles (Section 4) are at the heart of a data ecosystem, while data platforms (Section 3), data skills (Section 5), and data institutions (Section 6) represent
the physical, personal, and organisational entities of data ecosystems. Data policies (Section 7), which are formulated by data institutions, should embody the FAIR data principles
and govern data ecosystems.
1.2. Data and model parameterisation

One aspect of mathematical modelling that is data reliant is the
fitting process. In the simplest case of pure exponential growth or SEIR
population-level models this means matching the temporal trajectory of
the number of infectious people to data on reported infections and/or
matching the mortality over time in the model to the data. Whilst
matching such aggregated data to model estimates will give us an
informed picture, there is a large advantage in using stratified data
to validate the model (Balabdaoui and Mohr, 2020). For example,
assessment of the effectiveness of vaccination strategies based on age
priority a priori requires the data to be age-stratified. In this case
it is important to be able to match hospitalisations and deaths in
cohorts prioritised for immunisation. If this is not achieved, the overall
agreement of the model with the data may be as good, but the impact
of vaccination may be poorly predicted.

The reality of modelling for policy decision making is that policy
stakeholders typically commission research groups to assess specific
policy questions. Under ‘‘normal’’ research timescales (defined here as
outside of a global pandemic) this is usually achieved via a tender
application. As part of the collaboration, data that would not usually
be accessible to researchers would be made available. During the
pandemic, this process has continued but at a much larger scale and
faster pace.

Around the world modelling groups have had to respond to ur-
gent policy questions from their governments. In the UK, the SPI-M
modelling group has been responding to numerous commissions from
SAGE on a number of policy questions posed by the UK Govern-
ment, beyond initial work that informed the need for and timing of
lockdown (Ferguson et al., 2020). These included exploring different
scenarios for reopening society after the first epidemic wave in conjunc-
tion with Test–Trace–Isolate (TTI) strategies (Thompson et al., 2020;
Panovska-Griffiths et al., 2020), evaluating emerging questions such as
the transmissibility and severity of the B.1.1.7 variant (Davies et al.,
2021; Challen et al., 2021), or evaluating the roadmap of reopening so-
ciety as vaccination roll out continues (Whittles et al., 2021; Sonabend
et al., 2021; Keeling et al., 2022).
3

Data is key to correct modelling and analysis in all these scenar-
ios (The Royal Society, 2020; Bowman et al., 2020). For example in
the UK SPI-M has had access to a large portfolio of data, in addition
to what is publicly available. Different modelling groups, both within
SPI-M and outside, have used different data, ranging from mortality,
hospitalisations and serology data, to data on reported infections and
from the ZOE COVID Symptom Study (Canas et al., 2021; Menni et al.,
2022)or REACT (Elliott et al., 2021; Ward et al., 2021), with most
models combining more than one data stream.

It is important to note that the choice of data remains at the core
of validating and using mathematical models; it is indeed sometimes
difficult to untangle when and where the data analysis stops and the
modelling starts. We discuss some of these challenges in our discussion
of data lifecycles and data skills. In all cases the existence of richly
described data under the FAIR principles, which we discuss later, needs
to be a new normal.

A clear lesson from the SARS-CoV-2 pandemic is that modelling
was undertaken even with limited data. In fact, the earliest data,
even if scarce, is often invaluable for key estimates especially of hard-
to-measure quantities (e.g. incubation period (Overton et al., 2020),
likely number of unknown infectious cases and probability of case
ascertainment (Omori et al., 2020) etc.), thanks to the geographical
circumscription of an initial pandemic phase: given infection is rarely
observed, detailed travel history to the source location can be used to
bracket the exposure window. Key estimates, for example of epidemic
doubling times, are then revised as more data becomes available (Pellis
et al., 2021). Access to relevant dispersal data becomes essential.

We also know that different kinds of models require different
amounts of data. SEIR and branching models require less data than
structured Agent Based Models (ABMs). More complex (and hence
potentially more realistic) ABM models can capture more fine-grained
behaviour. It is important though to strike a balance between model
details and parsimony. Achieving this is not always easy, and often,
in an emergency, modelling groups will use readily available models
(e.g. established models for influenza spread (Coburn et al., 2009)),
supplementing what cannot be informed from currently available data
with assumptions. For example, in the current pandemic, early studies
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assumed generation times typical of SARS-1 or MERS30, and scaled
versions of pre-pandemic contact surveys (Mossong, 2008; Klepac et al.,
2020), were used to approximate contact patterns during lockdown,
before the CoMix (CoMix study, 2021; Verelst et al., 2021) study was
set up. The development of complex ABMs that make use of large
and complex data, including better contact and behavioural data, has
been one branch of modelling that has developed rapidly during this
pandemic (Kerr et al., 2021; Hinch et al., 2021). Building a publicly
available suite of commonly used models with variable degrees of com-
plexity would be extremely valuable, and there are various attempts in
this direction (Epirecipes, 2021).

As more data becomes available, models can be expanded or re-
vised, if the modellers are aware of its existence. This work, together
with new policy questions, might indicate the need for new data.
However, some aspects of the model will never be properly informed
by data: for example, the uncertainty regarding the impact of NPIs
or unknown future changes in policy mean models often need to
make strong assumptions, and sensitivity analysis to assumptions and
exploration of a wide spectrum of scenarios remains key for scientific
robustness and policy advising.

Though always desirable, more data also gives rise to new chal-
lenges, such as inconsistencies between different data streams, or pre-
dictions for the same measure from models fitted to data from different
sources or collected differently – e.g., in the UK data from REACT,
ONS or the COVID-19 dashboard – might differ. Often the reason
might simply be that two data sources might contain apparently similar
but actually different data (e.g. in the UK, ONS reports all deaths
weekly (Office for National Statistics, 2021) while the COVID-19 dash-
board (Data Gov UK, 2021) reports deaths within 28 days of a positive
test). It is therefore imperative that model assumptions and caveats
are clearly stated, and details about the data used, along with rich
metadata, explicitly stated. However, data will always evolve as a
pandemic progresses, so the practical details of this inter-dependence
of models and data will always need to be dealt with in the contingent
situation.

Recommendation: Data needs to be re-presented and re-structured in
many different ways as questions come to the fore. Data should be captured
with a broad and rich set of attributes, made available under the FAIR
principles, so that at a minimum the existence of particular data assets is
a matter of public record. In all reported work details of the data used, its
limits as well as its utility, and model dependencies need to be made explicit.
The lifecycle of model evolution, data and model dependency needs to be
captured.

1.3. Data types

The COVID-19 pandemic has highlighted the range and type of data
required to deal with a severe infectious disease that spreads at scale
and pace. It has highlighted key data that was to hand, the need to
understand the quality of that data, and the limitations and cautions
that relate to the data on COVID-19 (National Academies of Sciences,
Engineering, and Medicine, 2020). It has highlighted a clear need for
stratified summary statistics. Ideally as fine grained as possible, describ-
ing the who, what, when and where of the disease trajectory as well as
heterogeneities in the at-risk population. In the face of an emerging
pandemic, sharing timely and reliable data has been challenging. For
example, in many countries rapidly changing levels of infection meant
the ability to obtain reliable and representative test results turned out
to be extremely challenging (The Lancet Respiratory Medicine, 2020).

One objective outcome that became more reliably captured in
data relates to hospitalisations. The number of admissions, deaths in
particular health boards, authorities and regions of those admitted
with COVID-19, information on the age structure, ethnicity, socio-
economic status, profession, underlying health conditions have turned
out to be essential data in better understanding the nature of the dis-
4

ease (Navaratnam et al., 2021). The duration of time spent in hospital
and in what context – Intensive Care Unit (ICU) or Intensive Therapy
Unit (ITU) and associated recovery rates – have proven important in
managing resources and outcomes. The extent of illness in the wider
community and any COVID-19 deaths that were not associated with
hospitalisation have also been important data to attempt to qualify
our more certain hospital data. In the UK, both REACT and ONS sur-
veys provided key data. Whether this routine health data surveillance
continues is an important policy choice going forward.

The results from testing health workers, both positive and negative,
became an important data resource. There are clear challenges around
reliable and effective test data, both test-based (and serological) surveys
necessarily reporting estimates of sensitivity and specificity for the tests
used. There has been an increasing awareness of the importance, when
testing, of pathogen genotyping information where available. The role
of crowd sourced self-assessment tools has also yielded interesting data
— symptom tracking (e.g https://covid.joinzoe.com) and self-reporting
of, for example, self-isolation.

A particular challenge is the move from summary data to detailed
data on individuals — the more that is routinely collected the richer the
inferences we may be able to make (((Marion et al., 2022) and Swallow
et al. (2022) in this special issue). Times of: admission to hospital,
testing (multiple tests including previous negative test scores if avail-
able), entry and exit from ICU and time of discharge or death, proxy
information of time of infection for early cases (e.g. in Europe those
returned home from Wuhan or northern Italy); and characteristics of
individuals e.g. age, gender, underlying health conditions, ethnicity,
settings etc. If available: information about timing of treatment, ge-
netic information etc. However, the more detailed the data, the more
pressing the issues likely to arise from privacy legislation, such as the
General Data Protection Regulation (GDPR) within the EU, and the
greater the need for appropriate metadata.

The experience of this pandemic has further highlighted the need in
future for fundamental demographic/denominator data — at as high a
resolution as possible. These include

1. population distribution at high spatial resolution broken down
by age, gender, ethnicity, social deprivation indices etc.;

2. health care demographics: number of: beds in ICU/ITU and num-
ber of health care workers; number, distribution, occupancy and
staffing rates of care homes; current (and planned) location and
capacity of testing centres; contact tracing capacity e.g. public
health workers;

3. social structure e.g. household structure, school catchments,
workplace size and distribution at high spatial resolution;

4. mixing/contact info: e.g. patterns of mixing or relevant data
such as GPS tracking or output from behavioural science sim-
ulations (e.g. urban analytics) that enables estimation of mixing
under different control scenarios within and between individuals
with different characteristics (e.g. age, gender . . . ) and differ-
ent locations (e.g. areas within a city, cities, towns and rural
areas). Ideally these would be combined to give mixing between
individuals at location 𝑥1 with characteristics 𝑐1 and those at
location 𝑥2 with characteristics 𝑐2.

5. Settings with different risks of infecting others and being in-
fected, e.g. workplace, university, asylum centres, prisons, sch-
ools, retail, hospitality etc.

A further category of data that needs to be captured relates to data
about interventions and public health measures:

1. nature and dates of health messaging and awareness of the
epidemic;

2. nature and dates of public health NPIs e.g. lockdowns and other
restrictions imposed or advised (The Health Foundation, 2021;
Blavatnik School of Government, Oxford, 2021);

3. information on vaccination over time broken down by relevant
factors e.g. age, gender, location, occupation, socio-economic

status, ethnicity.

https://covid.joinzoe.com
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The need for data linked to time (e.g. dates) as information is lost
by integrating over time scales that are large relative to the outbreak
dynamics. Data should also be stratified as much as possible since
epidemiologically useful/relevant information is lost when summarised
over a heterogeneous population.

An example of data that was scarcely available at all at the be-
ginning of the current pandemic, but has since became crucial, is
genetic sequencing data (Nextstrain, 2021), a key data source with the
emergence of viral variants (Public Health England, 2021), to monitor
how their prevalence varies across communities and across time, both
within host and between human hosts.

The pandemic has highlighted data gaps in various countries, gaps
that have proven critical in combating its effects. Care homes have been
badly hit around the world, but data on them has been, and still is,
extremely scarce (e.g. in the UK in the first half of 2020, data from care
homes was limited to the number of beds in the home and the presence
or absence of an outbreak, not even how many cases or deaths). Much
more was known about schools, because influenza is concentrated there
and previous surveillance measures were in place. The challenge is to
develop reliable data collection procedures in various societal settings.
Prisons are another case where data is very scarce. Covid in common
with many infectious diseases thrives in enclosed communities.

The DELVE report (The DELVE Initiative, 2020) recommends, and
the authors of this paper also endorse, a step-change in the use of
mobility data for public policy. One means of achieving this would be to
have statutory bodies like the ONS act as the trusted agency to convert
happenstance data into high-frequency population mobility statistics.
An alternative could be to establish a Data Institution to manage
such data (see Section 6). The ambition would be to produce, from
mobile phone operators, daily views of population mobility between
geographic regions, aggregated from origin to destination counts. It
would also be valuable to modellers if such data were available for
retrospective analysis and not deleted after some arbitrary period, but
this must necessarily be balanced against privacy concerns associated
with the data and its retention.

Recommendation: Large-scale infectious disease outbreaks require data
assets to be available or capable of being captured reliably at an appropriate
scale. This will include; (a) stratified summary statistics on the epidemic by
age gender, location etc., (b) the same data on individuals, pathogens and
variants, tests, treatments and vaccines, (c) demographic or denominator
population data at as high a resolution as possible including mixing rates
between different subpopulations and details of populations targeted by
testing and other interventions, (d) data on interventions and public health
measures from tests to vaccines, NPIs to communications. Care should be
taken when updating datasets with enhanced information to avoid needlessly
altering datatypes and structures, however, to avoid difficulties for those
working with existing resources.

2. FAIR data

The quest for effective scientific data management and stewardship
has a long history, restated in 2016 under the FAIR (Findability, Acces-
sibility, Interoperability and Reusability) principles (Wilkinson et al.,
2016). These sought to lay out a set of guidelines to maximise the utility
and potential reuse of data. A particular emphasis was on standards that
would support machine-based discovery and processing of data. These
guidelines rapidly gathered endorsement, for example at the 2016 G20
summit (G20 Leaders, 2016) and figured in a recent statement from
the G7 Science Academies (Science Academies of the G7, 2021). They
are adopted by international organisations such as CODATA (CODATA,
2021) and the Research Data Alliance (Research Data Alliance, 2021),
organisations committed to building research data ecosystems that can
solve cross domain challenges.

Fig. 1 illustrates the fundamental role we see for the FAIR data
principles in developing, managing, and executing data-model-policy
life-cycles (see Section 4). Data policies (see Section 7) should adhere
5
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to FAIR data principles and be realised in the implementation of data
platforms (see Section 3). Data institutions (see Section 6), including
public health bodies, should be informed and guided by the FAIR
principles when formulating data policies or participating in the data-
model-policy lifecycle. Understanding the FAIR principles should be a
key skill for all those engaging with the data-model-policy lifecycle (see
Section 4).

However, the reality is that, whilst there is some increase in adop-
tion of the principles, many epidemiological modellers remain unaware
of them and, even where they are recognised, any concrete or consistent
implementation has lagged far behind. In the following subsections
2.1–2.4 we present a finer grained analysis of the challenges presented
by the FAIR principles, relevant experience during the COVID-19 pan-
demic, and recommendations to help realise them within the infectious
diseases community. We also highlight areas 2.5 through 2.7 where we
believe it is important to supplement the FAIR principles.

2.1. Findable data

The principle of Findability requires that data are assigned globally
unique and persistent identifiers (Meadows et al., 2019) and are de-
scribed with rich metadata (DataCite, 2021b). It also requires that data
are registered or indexed in a searchable resource.

Several challenges surround this simple principle of Findability.
As noted in Section 1.1, many qualitatively different types of data
are relevant to pandemic preparedness, modelling and control. These
include health data (sensitive at a fine spatial or demographic scale
and held in the first instance by individual health care providers), the
underlying baseline demographic data (also sensitive at fine scale, held
by government statisticians), movement data, both individual daily
movements and long-distance travel (often commercially confidential
and held by companies as part of their routine service provision), and
possibly including datasets as varied as weather records and predictions
(held by meteorological organisations) and social care data (often held
by private sector organisations that run care homes, and if aggregated
at all often only at a sub-national level). There is a need to promote
and embed FAIR principles in the data management practices of these
various holders of data. Even if they are variously inclined to make
the data available, the knowledge of the data’s existence is critical.
Persistent identifiers and open metadata are a fundamental feature of
any data infrastructure (Clark, 2021).

Over the past decade numerous open data projects around the
world1 have sought to make available access to key data sets from
government departments and public services. These efforts have ex-
tended to universities, research labs and funding agencies and have
been informed by the FAIR principles. During the pandemic many
governments have set up coronavirus extensions to these efforts (see
for example https://coronavirus.data.gov.uk in the United Kingdom).

Very different findability standards apply to these different sites,
however. Many sites set up during the pandemic have poorly described
data, with little, if any metadata. An example of good practice is Open
Data Scotland (https://www.opendata.nhs.scot) with detailed metadata
on every individual dataset, containing both versioned records of the
dataset metadata, metadata on the individual columns in every dataset,
and even versioned higher-level data on different column entries, with
associated metadata about these new meta-datasets.

However, sensitive data is another matter, none of these sites pro-
vide access to metadata on non-Open Data, and there is certainly no
searchability and persistent identifiers that make sensitive data findable
if the researcher is not already intimately familiar with it. This strongly
limits the utility of such data.

1 See for example https://data.gov in the US, https://www.data.gouv.fr
n France, http://data.gov.uk in the UK and the EU open data site https:
/data.europa.eu.

https://coronavirus.data.gov.uk
https://www.opendata.nhs.scot
https://data.gov
https://www.data.gouv.fr
http://data.gov.uk
https://data.europa.eu
https://data.europa.eu
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For sensitive data, metadata are often treated as if they were as
sensitive as the data they describe. It is legitimate to consider the
sensitivity of the metadata itself, but it is not clear whether data that
is so sensitive that we are not allowed to know it exists should, in
fact, be being collected. Modelling activities based on such data will
consistently lack transparency. Work is beginning in this area, for
instance https://www.healthdatagateway.org/ in the UK.

Given the enormous range of different and rapidly emerging datasets
a single searchable resource is infeasible. Search engines exist that trawl
multiple resources with open standards on the metadata. The approach
in schema.org is to define vocabulary for providing dataset metadata,
alongside (proposed) vocabulary for describing aggregate statistics in
ways that can be understood by the major search engines: Google,
Microsoft Bing, Yandex and Yahoo!. This is one way to deal with the
challenge that a modeller would not know how to search for data they
do not know exists. Google’s recent Dataset Search capability (Google
Dataset Search, 2021) uses the schema.org format and now anyone who
publishes data can make their datasets discoverable in Dataset Search
by using the open standard to describe the properties of their dataset
on their own web page.

Another, pragmatic, way of discovering new relevant datasets is
simply to find which datasets other people are using for related prob-
lems. Publicly recording the provenance of model outputs and reports
allows identification of the specific data they used. It would support a
different kind of findability as well as being important in its own right
e.g. flagging of issues once detected. Promoting this kind of openness
is a challenge in its own right, and it is discussed separately below.

Recommendation: Policy should require the use of globally unique and
persistent identifiers to identify data, including sensitive data, to further open
up data or at the very least publish relevant metadata. Metadata needs to
be released under open licences and schemas so that it can be archived,
preserved and transferred to other searchable resources if necessary, or else
used in initiatives such as schema.org and be part of the normal reporting
and publication process for models and their data.

2.2. Accessible data

The principle of Accessibility requires that data and metadata are
retrievable by their identifier using a standardised communications pro-
tocol, this may be machine based or involve human intermediaries in
cases where full automation is not possible. The challenge is to ensure
that data can be obtained by machines and humans upon appropriate
authorisation.

Non-sensitive data have become much more broadly available dur-
ing the pandemic. As well as data provided directly by government,
there have been several major initiatives to curate high quality data on
large information technology platforms.

We noted in Section 1.1, the Google GitHub repository of COVID-
19 open data (GitHub GoogleCloudPlatform, 2021) which provides an
example where the process of depositing, publishing and sharing data
is mediated through significant support from a community of data
wranglers. These data are all available through simple protocols such
as https.

Access to sensitive data is more complex, but approaches have been
developed during the pandemic to make them more accessible. Open-
SAFELY (OpenSAFELY, 2021) is a new kind of secure analytics platform
for electronic health records in the NHS, which has been created to de-
liver urgent results during the emergency. It currently delivers analyses
across more than 55 million patients’ full pseudonymised primary care
NHS records. We discuss it in more detail in 3.1.

The technical Accessibility requirement is usually met by the use of
‘click on the link’ protocols such as https. However, where restricted
access may make fully automated access impossible a contact protocol
in the associated metadata is a requirement. The technical Accessibility
protocol should be free and universally implementable whilst also
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allowing for authentication and authorisation. Metadata should always
remain accessible even when the primary data is access restricted, no
longer available or deprecated.

Recommendation: Standards should be agreed so that researchers need-
ing access to new restricted data sources can do so without high barriers of
entry in an emergency.

2.3. Interoperable data

Interoperability is ensured through the use of broadly applicable
knowledge representation formats such as JavaScript Object Notation
— JSON (Marrs, 2017). These provide an open standard file format and
data interchange format.

Interoperability is also supported through the use of widely adopted
controlled vocabularies, such as SNOMED CT, UniProt and W3C DCAT
(W3C, 2021a) to describe the metadata itself. EMBL-EBI maintains a
virus and general infectious diseases ontology as well as a more specific
COVID-19 extension using the OWL Description Logic as the knowl-
edge representation language (eMBL-EBI, 2021). Despite the ontology
lookup service mapping into other widely used controlled vocabularies
such as UniProt (UniProt Org, 2021), it does not appear to have been
widely used.

There is little evidence that outside of particular areas such as
medical records data the epidemiological modelling world was unified
in adopting agreed, widely adopted controlled vocabularies.

As to other forms of data that are available for incorporation into
models such as happenstance data, they rarely use standard ontologies,
and may not even be in standard formats.

Recommendation: The uptake of data in future pandemics requires
the development of pipelines for converting data quickly and easily, while
respecting its provenance, into more standards-compliant forms so that it
can then be provided in a FAIR manner.

2.4. Reusable data

Reusability requires rich descriptions of data along with a plural-
ity of relevant and accurate attributes. Each record should contain a
set of properties that meet a level of descriptive adequacy to help
ensure reusability — see for example DataCite’s mandatory terms for
metadata (DataCite, 2021a).

Reusability also requires that data is supplied with a clear and
accessible data usage licence, detailed provenance and meets domain-
relevant community standards. Provenance information allows for a
more detailed understanding of the origination, and subsequent his-
tory of any modifications of the data. Standards exist for this (W3C
PROV) (W3C, 2021b). We discuss this further in Section 2.6, and also
provide an example of a platform for monitoring provenance (the FAIR
Data Pipeline, Section 3.2).

Recommendation: Data resources should be richly described with a
plurality of accurate and relevant attributes.

2.5. Linked data

Datasets containing information on specific aspects of our private
lives are inherently sensitive, and the ability to link these aspects
together presents challenges. There is an understandable reluctance in
allowing a government to build a full picture of someone from where
they live to where they work, from when they travel to where they
sleep, from who they call to who they meet, from the specific viral
strain they are infected with to which other people have been infected
with closely related strains.

However, being able to make inferences and detect patterns across
these linked sets of individual data can help enormously in controlling
the spread of an infectious disease. In Scotland the Community Health
Index Number (CHI number) uniquely identifies a patient, and since
2013 it has been possible to use it for social care and other non-health

service bodies. It facilitates powerful studies (SLS-DSU), although for

https://www.healthdatagateway.org/
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some data linkage raises concerns around privacy and proportionality,
balancing the insights derived against the extent of data linkage.

Is it possible even in principle to preserve privacy while connecting
all of these datasets together? If not, then do we compromise our right
to privacy or our ability to accelerate the control of infectious diseases
in an emergency? This is not purely a technical concern — approaches
such as OpenSAFELY, discussed later, may allow linkage to be carried
out in a secure manner, but if the data exists to link records, who is
to say that it will only be used during a pandemic and in a controlled
way?

In response to concerns around data sensitivity and privacy, re-
search communities have been turning to trusted research environ-
ments (TREs). Traditionally, researchers often downloaded a dataset
onto their computer to be able to use it for analysis. In a TRE the
data remains in a secure location, and approved researchers access it
remotely.

If linkage is possible in a suitably privacy-preserving manner, then
how do we link datasets in practice that are held in different TREs
under different restrictions? One solution would be to hold all of the
data in a single TRE, but most countries could not consider sharing such
data with others for legal reasons and, even if it were possible at a more
local (e.g. national) scale, the sheer variety of data and increased risk of
misuse may make it practically impossible. Another is to federate TREs
to allow analysis of data that sits at rest in multiple locations (HDRUK,
2021).

Recommendations: Policy decisions need to be made around proportion-
ate linkage both of data in purpose-limited ways, involving agile methods
to determine context-specific consent from policy makers and also critically
from engaged citizens. Further work needs to be carried out on different
approaches to federation and aggregation of linked data assets between and
within jurisdictions and providers.

2.6. Provenanced data

Provenance issues arise when considering the FAIR principles, but
they are equally important when we consider the pipeline from data to
policy. We have already noted that data availability indirectly impacts
model structure, but data directly drives model outputs, and model
outputs inform reports summarising the current state of a pandemic
or predicting its future course under different control scenarios. These
modelling reports then affect policy proposals and advice, and these
in turn inform policy. However, very few of these dependencies are
exposed or represented in a way that allows for inspection. Even when
reproducibility concerns are highlighted, what data modelling code
uses and what outputs it generates are often opaque to anyone but an
expert, often only to one in the research group running the model.

We have noted that a common standard exists for tracing prove-
nance (W3C PROV) (W3C, 2021b), and this could be used for tracing
data use in modelling and analysis. It will be a major challenge to
enable, much less enforce, adoption of standards and practice that
will allow us to trace the path from data through code to policy
adoption (Harris et al., 2018), but we believe it is critical to allow us to
understand how decisions are informed, and what confidence we can
therefore have in them. We discuss one tool that enables such tracing
(the FAIR Data Pipeline (Mitchell et al., 2021)) in Section 3.2 below.

Recommendation: Develop provenance and accountability traces for the
full life cycle of acquisition, through model use to policy advice.

2.7. Quality data

A significant failing of much data collected, and particularly that
available in the early stages of a disease breakout is its quality (Wynants
et al., 2020). This also applies to data not ordinarily collected or used
for analysis. More importantly, metadata describing the limitations of
data is often lacking or not easily interpreted and/or machine readable,
making the data difficult to analyse correctly. Missing data, or data
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removed because of privacy concerns, is often hard to identify and
handle correctly. Furthermore, issues that are identified with datasets,
either before or (even harder) after use, are ordinarily recorded (if at
all) separately from the data and are therefore almost impossible to
trace and use to assess confidence in results arising from their use.

When assessing data quality as it impacts on modelling activi-
ties, the approach proposed within the Scottish COVID-19 Response
Consortium was to explore these key attributes:

• the degree to which a dataset was well defined and documented,
and had good metadata;

• the ‘intrinsic quality’ of the data, focusing on concepts such as
credibility and completeness;

• uniqueness, given that some information was available from very
few sources;

• relevance or applicability, as a case-specific assessment of how
well aligned was the dataset with the needs of the model; this is
not a property of the dataset, although it depends on these.

The aim was to combine the assessed criteria to give an overall, ordered
categorical, score for ‘fitness for purpose’, and thus identify datasets
which should not be used to support modelling, and to prioritise which
other data resources merited most urgent attention. Other criteria
might reasonably be considered, but it was felt that these were the most
important in practice. FAIR principles aim to facilitate reuse, but their
use also supports decision making about many of these criteria. By as-
sessing a dataset as green (low priority for further investigation), amber
(mildly problematic, but not a priority), red (high priority for further
investigation of alternative resources), or black (not appropriate for
use), this approach aimed to support ongoing continuous improvement
in available data resources, while itself generating useful metadata to
associate with datasets.

Recommendation: Mechanisms are needed to record data and code
quality issues that, together with provenance traces, will allow the end user
to identify potential problems, even those only identified retrospectively, with
both specific model outputs and the derived policy advice. These quality
attributes should automatically form part of the associated metadata for any
output.

3. Data platforms

We have discussed some of the challenges around data availability
and accessibility, and the extent to which existing data assets have
been necessary, though certainly not sufficient, during the pandemic.
We have detailed a number of responses by governments and other
organisations, groups and individuals to make data available. But what
of the data platforms that have been devised to deal with the demands
and exigencies of large scale and urgent data analysis? And what
of pipelines that allow modellers and policy advisors (and the many
people who now fulfil both roles) to provide a chain of trust that
connects the raw data flowing from these sources to the policy advice
that we hope ultimately guides government decision making? We will
discuss some approaches that we think provide useful insights into both
challenges and recommendations for ways forward.

3.1. Open secure analytics

The experience of the pandemic has challenged the normal model of
researchers working on intermittently extracted records for restricted
numbers of patients via a conventional research data service. This
data is commonly months out of date when it becomes available for
research. What is needed is a response to the challenges of speed, near
real-time situational awareness and scale.

OpenSAFELY is a new kind of secure analytics platform for elec-
tronic health records in the NHS, created to deliver urgent results
during the global COVID-19 emergency. It currently delivers analyses

across more than 55 million patients’ full pseudonymised primary care
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NHS records. It represents a pragmatic, efficient and secure approach
that delivered the first analyses showing factors associated with COVID-
19 death across 17 million patients, subsequently appearing as a Nature
article (Williamson et al., 2020), in just five weeks from project start
during the COVID-19 pandemic.

OpenSAFELY uses a new approach for enhanced security and timely
access to data, in several important respects. Firstly, data remains
within the secure environments managed by the electronic health
record software company. Analysts run large scale computation across
near real-time pseudonymised patient records inside the data cen-
tre of the electronic health records software company. Secondly, the
OpenSAFELY project does not use an ‘off the shelf’ Trusted Research
Environment (TRE). Bespoke software creates a series of increasingly
non-disclosive tables to protect patients’ privacy, while preserving all
the detail in the data for research analysis. Thirdly, the framework gen-
erates realistic dummy data. This adds additional privacy protection.
Analysts develop all their code collaboratively, and in the open, without
ever touching any potentially disclosive patient records. When their
code is ready to run, it is sent into the secure environment where it
runs against the real data, so analytic code can run against the full raw
information. From this secure environment, only the summary results
tables and graphs are released.

In addition to these features all analysis code is shared for review
and re-use. Analysis code, intermediate codelists, and algorithms are
shared openly, by default, in structures that make it possible for subse-
quent researchers to see how the analysis was done and to efficiently
re-use components of the work. The benefits include reproducibility,
transparency, trustworthiness, and efficiency. The platform is built in
such a way that only shared code can run. In addition, the platform
and analytic software is also made openly available for security review,
scientific review, and re-use.

Lastly, the paradigm of analysts developing code against synthetic
dummy data means that all code is guaranteed to be non-disclosive and
shareable, meaning that the platform is able to share in real time a full
log of all code ever executed against patients’ data, with links out to
the GitHub repository and commit ID of each process (albeit that these
repositories can, at analysts discretion, remain closed until the analysis
results are complete and reported). This builds accountability, by show-
ing patients, professionals and other stakeholders an unambiguous and
complete account of all platform activity, allowing any interested party
to evaluate whether the datasets are appropriately minimised, and the
analyses are proportionate and permitted.

The design is a considered response to the overarching concern of
risks associated with data sharing at scale. Particularly as they relate
to highly sensitive data. Whilst many models of infection may not
require seeding with actual patient data, the understanding of risks,
therapeutics and surveillance do. The platform has shown a novel way
to tackle this data challenge.

The results obtained have demonstrated the value of this approach.
From the first results on factors associated with COVID-19 deaths, to
more detailed assessments of patients with conditions such as COPD,
asthma (Williamson et al., 2020) and HIV (Bhaskaran et al., 2020),
studies on therapeutic effects of drugs such as hydroxychloroquine
(Rentsch et al., 2020) (no benefits or disbenefits observed), and analysis
of whether NSAIDs might have an adverse effect on outcomes (Wong
et al., 2021), valuable insights have been generated.

However, one potential current weakness of OpenSAFELY (along
with all existing mechanisms for analysing data in TREs) is that they are
constrained by issues of trust between secure environments, restricting
analyses to data held wholly within a single store. Currently these issues
are only solved by mutual agreements to share individual datasets
between stores, a solution that does not scale well.

Recommendation: Develop platform(s) for open secure data analytics
such as OpenSAFELY, and investigate mechanisms for data federation to
allow individual TREs to control access to their data in a shared data
collection, allowing analyses to be carried out seamlessly using data from
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multiple secure data providers.
3.2. FAIR data pipelines

An important concern during the pandemic was the traceability of
policy decisions back to primary data and models, and the degree of
trust that could be placed in the component parts of this pipeline and
in the connections between them. The challenge is therefore to develop
software tools to enable traceability of dependencies between analyses
that may be used to inform policy, and the models, methods and data
on which they are based, and to make such tools attractive and easy
for modellers and analysts to adopt.

Such a pipeline would link model outputs to input data and the
models used to generate them as well as any assessments made about
these, for instance through peer review of data and models. This would
create an acyclic directed graph of dependencies that would also allow
‘issues’ to be flagged and tracked. Likewise, software version control
systems could be tied into such a pipeline so that issues were raised
against previous versions of code bases when commits were flagged as
bug fixes, or issues were raised and accepted on software development
platforms such as GitHub. Such ‘warnings’ would apply to any data,
model or method of analysis for which issues are identified, and any
of their dependencies found in the provenance records at the time of
search (not of use).

Such a system should be agnostic on whether or not data are openly
available, but all data must be publicly and uniquely identifiable for
the result to be FAIR, and the metadata should be publicly available
for the pipeline to be as useful as possible, and compliant with the
extended FAIR standards detailed in Section 2. Standards for unique
identification of public artefacts are already well established, from
Open Researcher and Contributor IDs (ORCID, 2021) for individuals
and Research Organization Registry IDs for organisations (ROR, 2021)
to Digital Object Identifiers (DOI Foundation, 2021) for documents and
datasets. Unique identifiers could also be relatively easily created for
datasets held privately, but this would greatly benefit from coopera-
tion with creators and maintainers of data safe havens (and between
them and developers of the traceability tools). Standards also exist for
metadata (W3C DCAT) and for provenance information (W3C PROV),
as we have discussed earlier, and should be adopted.

Beyond the identifiers, many other elements of such a pipeline are
also already well established. In particular RO-Crate (RO-Crate, 2021),
developed by the Research Object community, provides a common
format based around the FAIR principles ‘‘to improve the potential for
understanding and reuse of research by making sure that the informa-
tion that is needed to make a published resource useful is associated
with it, and shared as a whole’’ (ResearchObject.Org, 2021). A baseline
for such a data pipeline would consist of a way to reference a bundle of
research artefacts as a single entity and describe both what they are and
their connection to one another (for example input data to be analysed,
code for the analysis, and output data describing the results), and using
metadata standards to uphold the FAIR principles while doing so.

A key goal of such a data pipeline is the provision of tools to allow
researchers to manage data, outputs and their provenance, allowing
them to keep track of files related to analyses they run, along with the
specific versions of their code used to produce them, without extensive
manual annotation.

An example, developed during the pandemic – the FAIR Data
Pipeline (Scottish COVID-19 Response Consortium, 2021a; Mitchell
et al., 2021) – provides a simple API to programmers in a variety of
languages (currently R, Python, Java, C++ and Julia) that allows the
pipeline to trace I/O by code using a simple wrapper around read and
write calls, provided external input data is registered with the pipeline
(via a separate API that provides metadata). It also allows deeper
metadata provision for data in specified ‘‘internal pipeline’’ formats
(e.g. tables, arrays) to allow better automatic annotation and introspec-
tion of data, and an issue tracking system for attaching problems to data
or code so that the provenance system can identify potentially ’at risk’

research and policy outputs.
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Metadata for data registered through these interfaces is available
from a public, FAIR data registry (Scottish COVID-19 Response Con-
sortium, 2021c), which also provides URIs to access all of the publicly
available data. The FAIR Data Pipeline uses all of the standards referred
to above to ensure that it does not reinvent the wheel, but also provides
the benefits of local data management and remote metadata storage;
immediate benefits that will hopefully encourage uptake. The pipeline
operates fully offline when running code to allow it to operate in TREs
or High Performance Computing (HPC) systems, though it ordinarily
requires a remote connection to communicate with a remote registry
and data stores when accessing data initially. Further work will be
required to ensure that approaches like this can operate within a TRE
or in conjunction with platforms like OpenSAFELY.

Recommendation: Develop pipeline(s) for FAIR data and metadata stor-
age and management such as the FAIR Data Pipeline, and investigate
mechanisms for integrating them into TREs and secure analytics platforms
like OpenSAFELY.

3.3. Advanced data tools in data platforms

As illustrated in Fig. 1, data platforms provide indispensable sup-
port to data-model-policy lifecycles (see Section 4). They are built by
some data institutions and used by almost all (see Section 6). For
the stakeholders of data-model-policy lifecycles, while technical skills
are usually required to use data platforms, the provision of advanced
techniques within data platforms can alleviate the shortage of partic-
ular skills as well as providing an effective means for skills training
(Section 5).

The development of data science as an interdisciplinary field over
the past decade has resulted in many different data analysis and data
visualisation techniques. There are many merits in having data plat-
forms provide users with mature techniques through advanced data
tools. As most data platforms are designed and developed by major data
institutions, advanced data tools can be developed with a high-level
of technical transparency and a rigorous process of quality assurance;
can be cost-effectively shared by many users and enable knowledge
sharing through data institutions; can facilitate the identification and
promotion of best practices in working with data. Whilst it is necessary
to develop the data skills of many users in order for them to use various
data tools, poor availability of such tools, especially through trusted
data platforms, is a common factor hindering the skills development of
data users.

The experience of the current pandemic has indicated that many
modellers have not had access to advanced data analysis and data
visualisation tools and do not have the time to search for, install, try,
test and benefit from such tools. This topic is covered in more detail
in Chen et al. (2022).

Recommendation: equip data platforms with advanced open-source tools
for data analysis and data visualisation. Such tools can significantly improve
the effective use of data stored on the platforms and enable the integration
of advanced data tools into data-model-policy lifecycles, whist providing
hands-on content for skills training.

4. Data-model-policy lifecycles

Here we highlight the importance of the data-model-policy lifecycle
that ideally links data collection with modelling, modelling with policy,
and policy with intervention and back to active data collection. Here
models represent any analysis that aims to extract useful understanding
from data to inform policy options for effective intervention to control
a pandemic including symptomatic testing, surveillance and contact
tracing, which in turn can yield large amounts of data useful in mod-
elling. Such activities encompass pandemic preparedness, prevention
and detection in addition to response during a pandemic. We believe
that the current paradigm emphasises a unidirectional flow from data to
policy via modelling. This mitigates against feedback that would yield
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more efficient and effective gathering of the data needed to underpin
interventions to control and prevent future pandemics.

We identify three challenges that represent significant opportunities
to improve the data-model-policy lifecycle; (i) the level at which the
data-driven analysis informing policy questions are communicated to
decision makers, (ii) the infrastructure and tools for data collection and
analysis along with relationships between data collectors and analysts,
(iii) ensuring that insights and information from data-driven analysis
and modelling influences policy to improve the active learning that
modifies data collection during a pandemic. These challenges are likely
to have parallels beyond public health policy.

4.1. Open epidemiology standards

When using data to inform public health there is a pressing need
to assess the quality of data and their suitability for the task at hand
(Sections Section 1.1, 3). This includes the impact of biases, missing
values and lack of precision (see Swallow et al. (2022) Section 7.3). It
is also critical to understand and track when these issues change for a
given data source e.g., changes to the disease testing regime over time.
Such concerns must also encompass the code used to process the data,
and the models and analysis procedures used to analyse them as a data
pipeline (Section 3.2).

A key challenge is therefore to develop approaches and accepted
standards to assess the suitability of models and their outputs to inform
policy questions including any likely ethical implications. It is critical
to assess traceability of both model assumptions and data provenance
and suitability. A standard but indispensable step is peer review of
data and science quality including assessing suitability of data, the
representation of epidemiological and other relevant processes, simu-
lation and inference algorithms, and the limitations in each of these
and consequent impacts on use. There is a welcome growth in the
acceptance that software implementation of models and analysis needs
to be both open and reproducible (O’Donnell, 2020). However, stan-
dards are needed to assess whether software works as intended with
test results verifiable, repeatable and reproducible. Aspects such as
automated code checking and implementation of regression tests should
be routine and code should be written to be understandable, readable
and documented for both users and developers (see for example a
software checklist produced by research software engineers (RSEs) for
SCRC (Scottish COVID-19 Response Consortium, 2021b)). Model results
need to quantify uncertainty related to imprecise knowledge of param-
eters and model structure. This should ideally be conducted through
application of rigorous statistical tools for parameter estimation and
model assessment ((Swallow et al., 2022) in this special issue).

The implementation of such standards will require improved data
platforms, development of suitable skills and better data institutions
and policies 6 and 7. However, even when carried out, the results of
such assessments must be communicated effectively and in a manner
understood by end users i.e. the decision makers who will develop
public health policy. This could, for example, be achieved by cod-
ifying the above assessments into an Open Epidemiology standard,
communicated via scorecards that traffic-light and briefly summarise
the results of each of the steps identified above. There are developments
in this direction, for example through the RAMP initiative, the Scottish
COVID-19 Response Consortium has developed the FAIR Data Pipeline
(Section 3.2) and a software checklist, which aims to incorporate all
these aspects into a single open and traceable lifecycle.

Recommendation: Develop Open Epidemiology standards and scorecard
systems that assess policy readiness – i.e. the suitability of models and their
outputs to inform policy questions including ethical implications – under-
pinned by a) data and model traceability including quality and provenance;
b) assessment of data and science quality; c) open and reproducible software
that is well documented and tested; and d) inference and model validation
against simulated and real data including quantification of uncertainty.
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4.2. Anticipating data and infrastructure needs

The variety, velocity and volume of data being collected during the
SARS-CoV-2 pandemic has highlighted significant complexities asso-
ciated with data collection. Novel viruses pose significant challenges
in that there are often particular gaps in real-time understanding and
current data available. There are challenges, both in terms of antic-
ipating specific data that may be required (since the nature of the
next pandemic will be far from certain), as well as anticipating the
required infrastructures for collection, storage and dissemination of
the associated data products. As already noted, genetic sequencing,
economic indices, mobility, contact and air pollution data have all been
important information streams in the COVID-19 pandemic (Whitehead
et al., 2021; Travaglio et al., 2021). There is the potential for these
to be routinely collected, even outside of pandemics. However, there
are significant challenges to address in terms of dealing with such
’big data’, including molecular biology data, in terms of the digital
infrastructure required to store and process such data. These include
the need for methodologies to process a wide range of different types of
data (variety) produced at potentially high rates (velocity) and storing
the cumulative results along with any associated raw data (volume).

Developing and maintaining open and effective communication be-
tween modellers and data holders through active collaboration will also
assist with pandemic preparedness. Most data collection protocols have
strict design protocols underpinning them for reasons of continuity, pri-
vacy and integrity. This means that generally the same data is collected
in the same manner over time. There are benefits associated with this
in ensuring continuity and the ability to detect trends without concerns
of altered observation processes. New protocols often take considerable
time to introduce, if they are possible at all. However, breadth and
flexibility in data collection and analysis pipelines are vital to allow
for variation in local circumstance and adaptation to changing needs.
This is particularly important in low- and middle-income countries,
where public health implications of epidemics are often severe, partly
due to less developed infrastructure. During a pandemic data that
can inform policy decisions as well as improve scientific knowledge
is a priority. Improving the flexibility of data collection protocols in
advance of future pandemics is therefore a significant but essential
challenge that could improve and enhance model-data integration. A
further challenge is to develop and implement guidelines for collection
and curation of operational and happenstance data. With increasing
development of new technologies, such as contact tracing apps, and
sequencing procedures generating high-throughput genomic data, new
data will become increasingly available to modellers and practitioners.

The second WHO report by the Independent Panel for Pandemic
Preparedness and Response (IPPP, 2021) notes that the current global
pandemic alert system is not fit for purpose. In many cases alerts are
currently via news or social media. Platforms to collate epidemic intel-
ligence from open and non-traditional sources have been created (WHO
EIOS, 2021). What is needed is an architecture that collects data in real-
time from a distributed network of local clinics and laboratories with
associated decision-making tools to provide early alerts and warnings.
With smartphone availability reaching ever more of the global popu-
lation there are significant opportunities in using the power of mobile
apps to collect data relevant to pandemic and epidemic surveillance.

Linking these different sources of data and accounting for their
dependencies is a significant challenge in terms of volume, privacy,
granularity and their associated uncertainties. The ability to link be-
tween data sources depends significantly on having sufficient metadata
available that allows models to reliably account for dependencies, as
well as connections between patients/households/regions etc. to be
made. There are additional privacy and anonymity constraints that are
also at play here, which pose constraints on users of the data products
in both access and publishing results, however there are ways of dealing
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with this (Tang, 2020).
The need to set up structures to facilitate communication between
data collectors, modellers and policy makers is discussed further in
Section 7.

Recommendation: Communication between data collectors and mod-
ellers is paramount in supporting the production of robust data lifecycles
and products, and should be facilitated. Users of data should make the case
for better linking between data products and data collectors should act on
this by collecting and documenting appropriate meta-data on all products
e.g. denominator population, observation processes, granularity, etc. Flexible
and adaptive data collection procedures should be encouraged, as should the
development of methodologies to inform these adaptive designs and exploit
available data to the fullest extent possible. These approaches should aim
to exploit the development of digital infrastructure to enable more complete
use of big data including genomic and telecoms data sets.

4.3. Adaptive data collection during pandemics

The better linking of models and data provide a number of oppor-
tunities to improve use, collection and collation of data, and especially
operational data collected as part of ongoing activities or public health
interventions. The analyses of model sensitivity and scenario projec-
tions provide ideal opportunities to study model deficiencies, as well
as examine the information gain of varying data integration proce-
dures (Pianosi et al., 2016; Jackson et al., 2019; Simmonds et al., 2020).
Statistical parameter and model estimation, assimilation and inverse
modelling allow existing data to improve model formulation, selection
and integration (Swallow et al., 2022). In the process, these analyses
can also help inform what data is required, through power analyses,
uncertainty quantification and studies of parameter and model iden-
tifiability (Marion et al., 2022). The ability to refine and triangulate
new sources of data informed by developing models in real time is a
further closely linked challenge. There are also significant challenges
for modellers and statisticians to develop appropriate methodology to
make use of new and emerging sources of data that, while represent-
ing new opportunities, come with significant problems in terms of
bias, coverage and interpretation, for example when modelling human
behaviour (Galesic et al., 2021).

As knowledge of new viruses improves, and important transmission
processes and comorbidities are discovered, new data may be needed,
and tapping into existing infrastructure would be beneficial from both
time and financial perspectives. To better exploit this modellers and
analysts need to be more aware of the implementation constraints that
could conflict with improved data collection. For example, priorities for
diagnostic testing, primarily conducted to monitor rates of infection,
do not currently maximise the value of such information for estimation
of transmission rates and other epidemiological parameters (Swallow
et al., 2022). However, the latter can be significantly enhanced, and
conflicts between these goals minimised, by recording the character-
istics of those being tested for both test-positive and test-negative
individuals. This reflects a general principle of data collection that
information on who or what is assessed, in this case denominator
population data, should be collected alongside primary data.

There are methodological challenges here in terms of estimation
(Swallow et al., 2022), but also software and institutional challenges in
developing suitable pipelines. Given the dynamic nature of policy needs
during a pandemic (Marion et al., 2022) structured but adaptable feed-
back loops are needed between data collectors and modellers. There
may well be useful lessons from the significant advances in information-
driven data collection and automation for improving estimation in the
environmental sciences (Fossum et al., 2019).

It is vital that decision makers are provided with clear and guidance
as to what data would most improve situational awareness and under-
standing. Open Epidemiological Standards will help but communicating
the benefits of enhanced data collection for effective decision making
is paramount.
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Recommendation: Value of information studies based on inference for
epidemiological models should be conducted prior to and during pandemics
and disease emergencies, and advice on the benefits of expanded and
enhanced data collection should be communicated to decision makers in a
way that makes clear the resulting benefits to control disease.

5. Data skills

Modellers need to adopt an integrated, team-based approach to
modelling in the future, defining the particular roles needed to allow
computational work to deliver good data, insight and decision making
in a pandemic (Czyzewski, 2021; Aguas et al., 2020). They need
to move away from the ‘‘lone researcher’’ who-has-to-do-everything
approach to a ‘‘team leader’’, who owns the scientific direction and
selects the appropriate modelling approaches, but, depending on group
size, skills and preferences, may write much of the code, write only
prototype code, or simply work via discussion with research software
engineers (RSEs) and only contribute code within particular specialist
areas.

The experience of the current pandemic has highlighted that, as we
anticipate future pandemics, modellers also need to be more flexible in
incorporating new datasets and running models on them — they need
to adapt to reading and using different data sources. The adoption of
more participatory approaches to data-model-policy decision making is
evident in initiatives such as CoMo (Aguas et al., 2020) Critical to this is
the recognition that skills in data curation and management are distinct
from modelling and software development, and should be recognised in
their own right.

While software engineering skills are beginning to be appreciated
within the research community (although academic credit for such
skills is still lacking), there is a dearth of data management expertise
in academia, accompanied by a matching absence of respect in many
disciplines for those critical roles that are tied to data generation and
data management.

There are a wide range of data roles that could be envisaged as
supporting this collaborative modelling enterprise:

• data managers, who set up and maintain data registries, and have
overview of all data processes;

• data brokers, who can identify modellers’ information needs, both
proactively and responsively, and manage flow of data resources
into and through the system;

• dataset experts, who understand relevant datasets, help identify
useful data and the best choice of analysts, they might have a role
in assigning quality metrics to data;

• data wranglers, who develop scripts to reformat and restructure
datasets ready for use, and as part of the curation process;

• literature reviewers, who find and summarise relevant papers and
reports;

• data analysts, who prepare data for analysis, produce data prod-
ucts and assign metadata, select and apply analytical methods,
and create data visualisations;

• analysis experts who review analysis plans and data products;
• data mining experts, who recommend, develop, and test data

analysis algorithms for supporting various analytical tasks, such
as multivariate data analysis, time series analysis, classification
and clustering, association analysis, network analysis, dimension-
ality reduction;

• visualisation experts, who design visual representations for spe-
cific data, users, and tasks, develop visualisation tools for moni-
toring and optimising the performance of individual models, and
create visualisations for public dissemination (Chen et al., 2022);

• data curators, who curate data resources sourced externally and
convert them into required internal formats for the modellers;

• those who map data products to the structures required as input
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to a specific model.
Of course, some of these roles may be carried out by the same
person, and some may be subsumed by the modeller, but all are impor-
tant aspects of the process, and might usefully be specialised to some
extent. There will be challenges in managing specialism, collaboration
and recognition within traditional academic structures.

An important role, identified by the Scottish COVID Response Con-
sortium, although only partially realised in practice, is that of ‘data
broker’. There are many datasets in existence, or which might poten-
tially be collected, which might usefully inform modelling activities.
This is particularly true of happenstance data (Section 3.1), which by
definition may not have a wide prior audience, and/or may not even
be collated until such time as someone identifies potential value. The
existence of new data resources may even be sufficient to make viable
modelling activities which would otherwise lack credibility. A success-
ful data broker would have knowledge of available data resources, and
a good understanding of their properties, their potentialities, and hence
how they relate to the needs and objectives (both specific and more
broadly) of the modelling team. Linking these together is not just an
administrative task: done well, it will be a highly creative role. It is use-
ful to explore the interaction between different roles. As listed above,
the data broker will necessarily interact with the roles of data manager
and curator, as well as with data analysts, visualisation scientists, and
those engaging with the process of mapping data products to pipeline
into a specific model. It is a key integrative role, whose opinions
will be critical in prioritising choices when assigning staff resource to
delivery of different data products. Note that the data broker does not
necessarily have to carry out data analyses themselves, but probably
does need to be able to see the potential for a particular dataset, when
analysed in a particular way, to inform a specific requirement in a
model.

The role of data analyst in a modelling project may be subtly
different to that delivered by statisticians in other contexts. The focus
has to be on delivering meaningful results, given the inadequacies and
peculiarities of the available data, the skills readily available within
the group, and the time available. This is not an excuse for poor data
management, bad choices in methodology or suboptimal analysis, but
it does mean that there has to be a willingness to ensure that ‘the
best does not become the enemy of the good’. In this context, what
becomes more vital is that the metadata for the data and analytic
scripts are recorded appropriately, that the provenance of intermediate
data products is clear, and that the metadata recording these issues
is inherited by the model outputs. Good metadata is, however, also
often the key to delivering better analyses in this context. Unless data
has been collected specifically for a purpose at least analogous to
that which it is being used in the modelling exercise, it is likely to
exhibit bias. This is particularly true of happenstance data, but it also
applies, for example, to the repurposing of administrative datasets.
Metadata is vital in understanding what bias might be present, and the
scope to use any associated covariates to statistically adjust for bias,
using methods such as propensity scoring or multilevel regression with
post-stratification.

Much could be learnt from looking at different collaborations during
the current pandemic, what worked and did not work in terms of data
exploitation, to better understand what would help make collaboration
easier. There are signs of increasing skills in the data science area and
nurturing the growth of Research Software Engineering and wider data
disciplines. We need to understand what would help make this growth
easier, drawing on case studies from the previous year to identify
specific recommendations and ideas for wider mechanisms to improve
the environment for doing these things well.

Recommendation: Data skills are critical to analysis, modelling and
accurate policy advice, particularly during a pandemic, and Research Data
Management and related skills should be promoted as an important aspect
of research, just as Research Software Engineering has been over the last
decade. Social science research should be commissioned to study research

teams that were involved in the pandemic, both those that existed prior as
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well as those that were created de novo during the crisis. These projects
would review their working practices to establish how these groups worked,
and failed to work, effectively, and how they managed different aspects of
their work and how this relates to the wider data-model-policy lifecycle.

6. Data institutions

Throughout the COVID-19 pandemic different modellers and their
groups have been dependent on different data sources. We noted in
Section 1.1 that these different sources of data can lead to different
predictions and model outcomes.

Across the world a wide variety of institutions have generated,
maintained, made available and licenced the data that the modellers
depend on. These organisations range from government departments
to public service delivery bodies such as the various national health
systems which operate independently but are politically accountable to
their relevant governments. Data has also been provided by statutory
bodies such as statistics authorities. These various organisations usually
have the benefit of being publicly funded and are required, as part of
their function, to capture and curate data.

Other organisations have generated, curated and made data avail-
able: universities, the private sector, NGOs, charities and Learned So-
cieties. These have been important resources and one of the challenges
we face is ensuring these various data resources are sustained, main-
tained and potentially consolidated going forward. Sustainability will
ensure that institutions can steward data over the long term, in ways
that help to increase the value that can be created from that data, while
minimising potential harms (Snaith et al., 2020).

One concept that is attracting increasing attention is the Data
Institution. These are organisations that steward data on behalf of
others, often towards public, educational or charitable aims. Data
stewardship involves collecting, maintaining and sharing data, and, in
particular, determining who has access to it, for what purpose and
to whose benefit. Data trusts are one type of data institution. They
provide independent, fiduciary stewardship of data (Open Data Insti-
tute, 2020). An example of an effective data institution is UK Biobank,
established in 2004 as a registered charity, providing access to high
quality biomedical health data, funded through a mix of grant funding
and subscription.

Recommendation: The scope for an infectious-diseases-related Data Insti-
tution is one that should be seriously considered. It would serve as a first port
of call for key data assets and would have a duty to curate and collate data
from a broad range of sources. It could also be responsible for happenstance
datasets such as those described in Section 1.3. It could be independent or
be incorporated within an existing organisation.

7. Data policies

Governments will simultaneously be the leading customer for in-
sights generated from modelling activities, a significant generator of
data of potential use by the modelling community (either directly by
provision to access to government data or indirectly because of its abil-
ity to leverage cooperation from third parties), and the leading funder
of most modelling work. It is important to assess whether there are
aspects of government decision-making with potential to make these
activities more or less effective. This topic is covered in more detail
in Hadley et al. (2021) but we will make a number of observations
from the data perspective. Without appropriate data policies, FAIR
data principles may not be implemented and other parts of the data
ecosystem (Fig. 1) may not function effectively or efficiently.

Particular policy challenges relating to data include:

• Incentives for data provision — are they (can they) be aligned to
meet policy ends in a way that provides future flexibility? What
should be the role of legal obligations and/or statutory powers
for data provision?
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• Legacy issues around data — do existing arrangements help or
hinder data availability and access? What does better look like?
How should we structure (and fund) ongoing capability?

• How can we make data accessible and useful under privacy con-
straints? What are the appropriate mechanisms by which you can
modulate ‘privacy’ assumptions when you are in an emergency?

• How do we maintain a robust system for management of metadata
in the context of mixed private and public data from multiple
independent sources?

• How can we ensure that data collected for administrative or
operational purposes is augmented by appropriate metadata that
characterise the context in which individual data are recorded,
e.g. who is tested and why?

• How can policies and support be put in place to ensure that
happenstance data are used in a way that balances public benefit
while managing concerns about individual privacy or business
value?

The impact of all data and modelling oriented activities will depend
on the ability of the customer to understand and make use of them.
More fundamentally, the ability of modellers, statisticians and data
scientists to orient their work towards policy-relevant activities, and
to access vital data resources, will be constrained by the willingness
and ability of government to understand the potential benefits from
engaging early during a time of crisis, and to continue to engage
between crises. In all such respects, the involvement of an informed
customer will be vital. Alternative project delivery structures, where,
for example, someone external takes on the role of project sponsor
on behalf of government, thus helping maintain focus on genuinely
impactful activities, are potentially valuable, but in turn these depend
on the availability of a sufficiently informed third-party. The UK gov-
ernment and devolved administrations made good use of quantitative
expertise, such as the Office for National Statistics, both to deliver
key functionality and provide direction to external researchers, but it
would be much preferable for relationships between policy staff and
quantitative researchers to be managed and nurtured over the long-
term, in advance of a crisis. It is to be hoped that initiatives such as
the UK Joint Biosecurity Centre will be able to deliver aspects of this
role.

Another useful exemplar for government interaction with modelling
and data science comes from the structures developed to provide
advice and expertise in the event of an incursion of an exotic livestock
pathogen, such as Foot-and-Mouth Disease virus.

Since 2011 the EPIC (Epidemiology, Population health and Infec-
tious disease Control) consortium has held a contract from the Scottish
Government to provide on-going advice on the control and eradication
of animal and zoonotic pathogens, and, in particular, to prepare to
provide evidence to support government decision-making in the event
of animal disease outbreak. The consortium comprises quantitative and
qualitative researchers, epidemiologists and veterinary public health
specialists.

Set up to implement aspects of the 2008 Scudamore Report on
the 2007 Foot and Mouth Disease (FMD) outbreak, EPIC ensures that
Government has access at all times to the expertise necessary to analyse
information on animal movements and conduct risk analysis using the
most up-to-date methodologies and techniques, EPIC scientists seek
to develop and clarify the scientific advice and analysis government
requires, both during times of disease freedom and during outbreaks
in order to ensure appropriate information and analysis are available
to enable evidence-based decisions to be made when assessing risk and
implementing control strategies.

Substantial resource within EPIC has been devoted to the develop-
ment of independent data management and curation functionality. Both
formal and informal elements of data access management involve a sig-
nificant lead-time. A substantial time investment by data management
and legal professionals is required when negotiating GDPR-compliant
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data sharing agreements (typically made more complex where data
management has been outsourced by government, and/or where data
use involves collaboration across multiple legal entities). Even the
informal development of effective working arrangements to facilitate
the movement and processing of data between data provider and data
user, based on a shared understanding of the needs of the latter and the
constraints on the former, will be a time-consuming process. It would
be naïve to expect that strong and effective data management processes
could be developed and implemented in a short period of time, and
these would be even less likely to be achieved while negotiating the
stress and conflicting demands of an outbreak emergency.

In addition, data collected for administrative purposes is subject
to a rigorous curation process, ensuring that data is stored in well-
defined, consistent and appropriate structures, having been processed
using robust, tested data-processing scripts, and associated with ap-
propriate meta-data that describes both the provenance of the data
objects and additional quality-oriented meta-data where appropriate.
Data providers have also had the opportunity to refine their download
procedures and scripts.

None of this infrastructure, whether hardware, software or intellec-
tual capital, could easily or effectively be developed in real-time in the
face of a disease incursion. The ready availability of pre-identified, pre-
processed datasets, already familiar to key researchers, and very well
understood by dedicated EPIC data managers, is now recognised by the
consortium as a key asset. This level of preparedness is available only
because of the willingness to fund the necessary activity prospectively
over the medium to long term, not just reactively during crises.

A vital aspect of EPIC activities has been the role of policy/science
brokers in supporting effective communication of the needs of gov-
ernment to quantitative modellers and in helping policy customers
interpret quantitative and semi-quantitative results.

Another important leadership role within EPIC is best thought of
as a type of ‘project sponsor’, where an experienced scientist with a
sound understanding of the needs of government essentially maintains
a watching brief to ensure and maintain the relevance of project out-
comes to policy needs, helping fill any gaps in the capacity or capability
of government policy staff.

This model of preparedness, with its emphasis on data provision
and access, would serve as an excellent template for similar policy
commitments in the field of human infectious disease control.

Recommendation: Develop policies and provide long term support to
nurture relationships, expertise and improve dialogue and understanding
between individuals and commercial, governmental and academic institu-
tions to enable better interactions across the data-model-policy lifecycle.
Preposition structures and resources akin to approaches like EPIC.

Discussion

If we are to tackle future pandemics more effectively with better
and wider data assets at our disposal, we need to learn the lessons
of the COVID-19 pandemic. We need to prepare and preposition skills
and resources now. It requires an ability to collect, curate and analyse
the types of data for modelling described in Section 1. It needs that
ata to be managed according to the FAIR data principles outlined

in Section 2. It needs investment in data platforms that support
open data sets, access to sensitive linked data, and trace provenance
of model outputs as described in Section 3. We need to recognise
the complex lifecycle of data use and modelling, and support the
technical and socio-technical processes described in Section 4. This in
turn will require the promotion and development of data skills and a
recognition of the collaborative nature of effective data use in pandemic
situations, described in Section 5. It needs key data institutions to be
sustainably funded at various regional levels, discussed in Section 6.
And data policies are required to enable full advantage to be taken
of this prepositioned and continuously developing data ecosystem, as
proposed in Section 7.
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