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The ability to engineer the properties of quantum opti-
cal states is essential for quantum information processing
applications. Here, we demonstrate tunable control of
spatial correlations between photon pairs produced by
spontaneous parametric down-conversion, and measure
them using an electron multiplying charge coupled device
(EMCCD) camera. By shaping the spatial pump beam pro-
file in a type-I collinear configuration, we tailor the spatial
structure of coincidences between photon pairs entangled
in high dimensions without effect on intensity. The results
highlight fundamental aspects of spatial coherence and hold
potential for the development of quantum technologies
based on high-dimensional spatial entanglement. © 2021
Optical Society of America
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High-dimensional quantum entanglement is an essential
resource for advancing fundamental research and quantum
technologies [1]. In this respect, two-photon states entan-
gled in transverse spatial position and momentum exhibit
high-dimensional entanglement and have been intensively
investigated in the last decades. They are at the basis of many
quantum imaging approaches, including ghost imaging [2],
sub-shot-noise [3], resolution-enhanced [4–6] imaging, and
quantum lithography [7]. In quantum communications,
high-dimensional spatial entanglement has been exploited to
develop quantum cryptography protocols with higher infor-
mation capacity [8,9] and increased noise resilience [10] by
projecting photons onto spatial modes carrying orbital angu-
lar momentum (OAM), but also by measuring them in their
position-momentum bases [11,12]. All of these applications
strongly rely on the two-photon states properties, including
their spatial entanglement structure that generally determines
the capacities of the quantum-based technique. For example,
it defines the information bound in certain high-dimensional
quantum communication schemes [13] and the spatial res-
olution in quantum imaging schemes [14]. However, most
experimental processes used to produce entangled pairs are not
flexible, and adjusting pair’s properties to their specific use is
often a challenging task.

The most used technique for producing entangled photon
pairs is spontaneous parametric down-conversion (SPDC).
In SPDC, the properties of down-converted light are entirely

set by the type and geometry of the nonlinear crystal and the
pump beam characteristics [15]. Therefore, photon pairs with
the desired joint probability distribution (JPD) may not be
collected directly at the output of the crystal. The question that
arises is how to manipulate independently different aspects
of the JPD of entangled photon pairs produced by SPDC.
Moreover, the sought-after methods should work for any pump
wavelength and any nonlinear crystal.

Numerous methods have been developed to control the type
and structure of correlations of down-converted photons. The
majority of them concern the time-frequency aspects of the
JPD, including some based on an appropriate selection of the
nonlinear crystal length and its dispersive properties [16–18]
and others on spectral control of the pump [19] and down-
converted light [20]. To shape the spatial structure of the JPD,
most approaches act directly on the down-converted photons,
such as wavefront shaping [21,22], quantum interferometers
[23,24], metasurfaces [25,26]. and rotating diffusers [27].
Partial control of the spatial JPD has been achieved through
spatial shaping of the pump beam profile [28,29], for exam-
ple, to produce entangled Airy photons [30], compensate for
optical aberrations [31], and to influence its OAM [32–34]
and position-momentum degree of entanglement [35,36].
However, a generic method to deterministically control the
spatial JPD of entangled photon pairs remains a challenge.

In this work, we revisit and generalize spatial pump shaping
[37], with an approach based on wavefront shaping of the SPDC
pump beam to produce entangled photon pairs with tunable
spatial correlations in high dimensions.

We place ourselves in a usual context for SPDC, that is, we
assume that the pump laser and down-converted fields are
monochromatic, have a well defined polarization, and can be
faithfully described in the paraxial approximation. A thorough
modal description of two-photon states produced by SPDC in
this regime is given in [38]. A general expression is
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with the normalized angular spectrum of the two-photon state
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• Vp the normalized angular spectrum of the pump

• Vc (k)= 1
π

√
2L
K sinc( L |k|2

4K ) with L the length of the

nonlinear crystal and K wave number of the pump field

It is straightforward to see in Eq. (2) that the angular spec-
trum of the pump directly shapes that of the two-photon state.
In this work, we aim at manipulating the pump angular spec-
trum through spatial pump shaping in order to engineer the
angular spectrum of the two-photon state. For this shaping to be
observed, it should modulate frequencies such that k1 − k2 does
not belong to the kernel of Vc : such frequencies do not respect
the phase-matching conditions of the crystal. Depending on
the crystal parameters (length, temperature, orientation of the
crystal), this condition offers some freedom for the observation
of spatial modulations. As an illustration, we now present an
analytical solution for the case of a Bessel–Gauss pump beam
[39,40], which was also studied in [41].

First, in many SPDC experimental conditions, the sinc func-
tion in Eq. (2) can be approximated by a Gaussian function [42],
such that

Vc
(
k
)
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)
, (3)

with δ ' 0.257
√

L/4K . At its waist, i.e., z= 0, a Bessel–Gauss
beam of order l can be expressed as

BG(r , φ, 0; l)= A J l (kr r ) exp(ilφ) exp

(
−

r 2

w2
g

)
, (4)

with J l the l th Bessel function of the first kind,wg the transverse
spatial extent of its Gaussian component, and kr the radial spa-
tial frequency. Its angular spectrum is given by [43]
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withw0 = 2/wg , and Il is the l th order modified Bessel function
of the first kind. Thus, for a pump beam of the zeroth-order
Bessel–Gauss beam, the two-photon state can be expressed
analytically:
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Even though not all angular spectrum functions allow for such
analytical decompositions, numerical integration easily allows
the tailoring of the pump spatial profile for the given two-
photon state spatial properties. However, the space of accessible
two-photons states through pump shaping is fundamentally
limited in terms of symmetries by the fact that the angular
spectrum is a function of k1 + k2.

Fig. 1. Spatially monomode, low-power, continuous wave laser
whose angular spectrum is tailored using a SLM and a 4- f system and
injected into a BBO crystal in a type-I SPDC configuration. Using a
lens ( f3) in the f − f configuration, the far-field of the crystal can be
measured.

To observe the effect of pump shaping on the two-photon
state, we used the experimental setup described in Fig. 1. A
pump beam at 405 nm is spatially modulated using a spatial
light modulator (SLM) and imaged onto the front surface
of a β-barium borate (BBO) crystal. The pump beam is fil-
tered out using a narrow band filter at 810 nm. The distance
between the crystal and the camera sensor d was finely tuned
so that by positioning the imaging lens of focal length f3 pre-
cisely half-way we could image the far-field of the crystal plane
( f − f configuration with f3 = d/2). We used an EMCCD
camera (Andor iXon Ultra 897) to measure photon corre-
lations and retrieve the spatial JPD following the procedure
described in [44]. This procedure allows us to study spatial
correlations directly, without having to resort to any scan-
ning of detectors [45]. In this approach, the JPD [denoted as
0(k1, k2), where k1 and k2 are positions of camera pixels] is
measured by acquiring a set of N + 1 frames {Il }l∈[1,N+1] using
a fixed exposure time of 8 ms and the following processing:
0(k1, k2)=

∑N
l=1 Il (k1)Il (k2)− Il (k1)Il+1(k2). In all our

results, N is of the order 106
−107, and the camera’s temperature

is−60◦C with a horizontal pixel shift readout rate of 17 MHz, a
vertical pixel shift each of 0.3 µs, a vertical clock amplitude volt-
age of 4 V above the factory setting, and the amplification gain
set to 1000. The signal to noise ratio (SNR) for0 improves with
larger N, which is itself limited by the stability of the setup. The
efficiency of the parametric down-conversion process depends
on the pump profiles. Hence, to obtain comparable SNRs for0,
the measurement times can vary significantly.

The spatial profile of the pump beam was engineered to
produce a variety of two-photon states. By displaying an axicon
profile on the SLM, the beam pumping the crystal can be shaped
into a Bessel–Gauss beam [46,47]. In Fig. 2(a), we illuminate
the crystal with a Fourier-transformed Bessel–Gauss beam and
observe that the down-converted photons’ autoconvolution is
shaped into a Bessel function. The autoconvolution is defined as
the projection of the JPD of photon pairs in the sum-coordinate
basis {kx1 + kx2 , ky1 + ky2}, i.e.,

∫
0(k, k1 + k2 − k)dk.

Likewise, when pumping directly with a Bessel–Gauss beam
[Fig. 2(b)], the obtained autoconvolution is the Fourier trans-
form of a Bessel function, which is a ring-shaped function.
By displaying a checker-board pattern [Fig. 2(c)] or a random
pattern [Fig. 2(d)], the autoconvolution is likewise shaped as the
Fourier transform of the pumping angular spectrum.
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Fig. 2. Autoconvolutions for different pump profiles with the SLM
profiles used to shape the pump in the inset. In (a), the pump beam is
shaped into a Bessel beam and Fourier transformed by an additional
lens, i.e., ring-shaped and, in (b), directly as a Bessel beam. In (c), a
checker board is displayed, while in (d) we display a random pattern.
In each case, the autoconvolution measured for the down-converted
photons corresponds to the pump beam’s angular spectrum. These
results were obtained with N = 106 frames and 8 ms exposure time.

Fig. 3. Average of the photon correlations between symmetric
rows of the cameras for all ky1 =−ky1 . (a) Gaussian pump. Clear
anticorrelation in the momentum of the down-converted photons is
present as expected. (b) Bessel–Gauss pump. Here, the antidiagonal
is split in two, demonstrating the possibility of correlation properties
engineering. These results were obtained with N = 106 frames and
8 ms exposure time.

To further illustrate correlation engineering of the down-
converted photons, we also measured the photon correlations
between pairs of symmetric rows of the camera, as shown in
Fig. 3. An element (kx1 , kx2 ) therefore corresponds to the joint
probability of detecting one photon at k1 = (kx1 , ky1) together
with the second photon at k2 = (kx2 ,−ky1) (summed over
all ky1 ). In Fig. 3(a), the strong antidiagonal is a signature
of momentum conservation between photons produced by
SPDC in the classical case of a Gaussian pump. In the case
of a Bessel–Gauss pump [Fig. 3(b)], we clearly observe shap-
ing of the photon correlations by a split of the antidiagonal.
Indeed, in a Bessel beam, pump photons all possess the same
momentum in absolute value: having fixed ky1 + ky2 = 0, the
conservation of momentum allows for two different solutions
kx2 =−kx1 ± |k p |, which correspond to the two antidiagonals.

We demonstrate a versatile approach, both for a spatial cor-
relations engineering of SPDC photon pairs using a SLM, and
for correlations measurement using an EMCCD camera. It
is fully compatible with and could easily be integrated in any
conventional type-I SPDC setup, and it should also readily be
applicable to other pair production processes such as type-II
SPDC and atomic vapor systems. This approach also exhibits
the advantage of maintaining the down-converted photon rate:
indeed, the losses introduced are only affecting the pump beam
and can easily be compensated by an increase in pump power.
Tomography of the down-converted field, in the fashion of [48],
is necessary to completely characterize the produced states.
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